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ABSTRACT
Data from the U.S. Environmental Protection Agency Air
Quality System, the Southeastern Aerosol Research and
Characterization database, and the Assessment of Spatial
Aerosol Composition in Atlanta database for 1999
through 2002 have been used to characterize error asso-
ciated with instrument precision and spatial variability on
the assessment of the temporal variation of ambient air
pollution in Atlanta, GA. These data are being used in
time series epidemiologic studies in which associations of
acute respiratory and cardiovascular health outcomes and
daily ambient air pollutant levels are assessed. Modified
semivariograms are used to quantify the effects of instru-
ment precision and spatial variability on the assessment
of daily metrics of ambient gaseous pollutants (SO2, CO,
NOx, and O3) and fine particulate matter ([PM2.5] PM2.5

mass, sulfate, nitrate, ammonium, elemental carbon [EC],
and organic carbon [OC]). Variation because of instru-
ment imprecision represented 7–40% of the temporal
variation in the daily pollutant measures and was largest
for the PM2.5 EC and OC. Spatial variability was greatest
for primary pollutants (SO2, CO, NOx, and EC). Popula-
tion-weighted variation in daily ambient air pollutant
levels because of both instrument imprecision and spatial
variability ranged from 20% of the temporal variation for
O3 to 70% of the temporal variation for SO2 and EC. Wind

rose plots, corrected for diurnal and seasonal pattern ef-
fects, are used to demonstrate the impacts of local sources
on monitoring station data. The results presented are
being used to quantify the impacts of instrument preci-
sion and spatial variability on the assessment of health
effects of ambient air pollution in Atlanta and are relevant
to the interpretation of results from time series health
studies that use data from fixed monitors.

INTRODUCTION
In epidemiologic time series studies in which the short-
term health effects of ambient air pollution are assessed,
instrument error and the spatial variability of air pollu-
tion can impact the assessment. A number of studies have
addressed the limitations of using central monitoring sta-
tion data as exposure estimates.1–5 In population-based
epidemiologic studies, however, whereas differences be-
tween personal exposures and central station values can
be large, the daily mean of personal exposures is likely to
be better correlated with a central station value than an
individual exposure level.6 Introduction of uncertainty in
the exposure measurement tends to reduce the ability of
epidemiologic studies to assess the health effects of air
pollution, decreasing the strength of association estimate
(bias to null). The attenuation varies across pollutants,
because instrument error, which includes instrument bias
and instrument precision, and spatial variation differ
across pollutants. In population-based time series studies
of acute health effects and ambient air pollution, risk
ratios are typically estimated per standard increment (ei-
ther the standard deviation or the interquartile range) of
the temporal distribution of ambient pollutant measures
to facilitate comparison across multiple air pollutants.
Meteorological variables and day-of-week, seasonal, and
long-term trends are generally controlled for in the health
models. Therefore, a quantitative understanding of the
error in estimates of the day-to-day variation of air pol-
lutant levels is needed to better compare results for mul-
tiple pollutants.

Results of the Aerosol Research Inhalation Epidemi-
ology Study (ARIES; ref. 7) of emergency department visits

IMPLICATIONS
A quantitative understanding of errors associated with as-
sessment of the temporal variation in ambient air pollution
because of instrument imprecision and spatial variability is
needed to improve the assessment and interpretation of
health risk from time series studies that use data from
ambient air pollutant monitors. This work demonstrates that
these errors can be substantial and vary widely between
pollutants. Primary pollutants are less spatially uniform than
secondary pollutants, indicating greater uncertainty in ex-
posure estimates based on ambient concentrations of pri-
mary pollutants than secondary pollutants and greater po-
tential for attenuation of health risk results.
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for cardiovascular and respiratory diseases in relation to
ambient air pollution in Atlanta, GA, from 1993 to 2000
have been published recently.8,9 For cardiovascular dis-
ease, positive associations were observed with nitrogen
dioxide (NO2), CO, fine particulate matter (PM2.5), and
PM2.5 components organic carbon (OC) and elemental
carbon (EC). Risk ratios ranged from 1.02 to 1.03 per
standard deviation increase for these pollutant measures.
For respiratory disease, positive associations were ob-
served with ozone (O3), NO2, CO, and coarse particulate
matter (PM10). Central monitoring station data were used
in this assessment, including data obtained since August
1998, from the Southeastern Aerosol Research and Char-
acterization Study (SEARCH) site near downtown Atlanta
at Jefferson Street (JS).10 In this paper, the authors address
the issue of two types of error in the estimates of the
day-to-day variation of air pollutant levels in Atlanta:
error associated with instrument imprecision and error
associated with spatial variability. Instrument impreci-
sion includes that for a single type of instrument and
analytical protocol, as well as that stemming from the use
of different instruments or analytical procedures for a
single analyte. In the context of the time series health
study, instrument accuracy is not a source of error if the
error results in a systematic bias but not an error in the
assessment of temporal variation. That is, a systematic
bias may affect the magnitude of the standard deviation
of temporal variation but will not affect the estimated risk
ratio or confidence interval per standard deviation. How-
ever, differences between instruments and analytical pro-
cedures that affect the precision of assessment of temporal
variation are sources of error. Factors that affect the spa-
tial heterogeneity of air pollution include the distribution
of emission sources, as well as meteorological phenom-
ena, topological features, and pollutant volatility and re-
activity.

Instrument precision can be quantified using data
from colocated instruments. For continuous and semi-
continuous measurements, instrument error typically re-
sults from calibration drift, flow rate changes, and
changes in atmospheric conditions, such as relative hu-
midity. These errors are minimized through adherence to
a stringent quality control protocol. For filter-based mea-
surements, such as PM mass, ions, OC, and EC, instru-
ment error also results from sample handling artifacts and
laboratory analysis.

A number of studies have examined the spatial vari-
ability of air pollutants in urban areas. When data from a
sufficient number of monitoring stations are available,
spatial interpolation techniques can be used to provide a
spatially continuous representation. In previous work, the
authors used a universal kriging procedure for estimating
daily O3 concentrations for each zip code in the 20-
county Atlanta metropolitan statistical area (MSA).11

However, the area of representativeness for a given mon-
itor for a given pollutant can lead to uncertainty in a
study.5–7,11,12 Several studies have used Pearson correla-
tion coefficients to characterize spatial variability in am-
bient air pollutant concentrations.13–17 Other studies
have used analysis of variance to characterize variability
in air pollutant concentrations between specific monitor-
ing sites.18–20 Analysis of variance provides a measure of

variation between monitoring sites relative to variation
over time at one monitoring site and is particularly useful
when several sites with different average concentrations
are considered. Alternatively, the semivariogram, which
uses the covariance instead of the correlation, is a well-
established tool for conveying information about the spa-
tial variability of environmental pollutants.21–25 Diem26

has argued against the use of semivariogram analysis for
air pollution, because there are often not enough moni-
toring stations available to provide a suitable number of
points for estimation. In particular, the Atlanta MSA
would need data from 100 monitoring stations to create a
stable estimate of the semivariogram for O3. Obviously,
this is an unrealistic expectation. Diem26 suggests that
spatial modeling can be used to surmount this obstacle. In
this study, however, the authors wish to provide a metric
that can be used within existing monitoring networks to
assess the spatial accuracy of these networks when applied
to continuous surfaces, for example, the epidemiologic
study area. In such instances, the exact point of exposure
is often not known, and, instead, a central or averaged
value is used. The semivariograms developed in this study
can be used to qualify the accuracy of this central value.

Although ambient air quality monitoring stations are
sited to minimize local source effects in most instances,
impacts of specific point and roadway sources are ob-
served, particularly for primary pollutants. For example,
Duncan et al.27 showed the contribution of power plant
plume fumigation events on nitrogen oxides ([NOx] � NO
� NO2) and sulfur dioxide (SO2) concentrations in At-
lanta. Kirby et al.28 showed the contribution of roadways
to NOx. Secondary air pollutants, such as O3, and a sig-
nificant fraction of PM2.5 mass exhibit high spatial auto-
correlation. From analyses of the spatial variability of
PM2.5 in several urban areas in the southeast, Pinto et al.29

found high correlations between site pairs and spatial
uniformity in concentration fields. In a study of spatial
aerosol composition in Atlanta in 1999, Butler et al.30

concluded that PM2.5 mass and major constituents were
relatively spatially homogeneous.

In this paper, the authors address the following two
questions. First, for each ambient air pollutant of interest
in time series studies of the short-term health effects of air
pollution in Atlanta, what is the error in the estimate of
ambient air pollutant concentration because of instru-
ment imprecision and spatial variability relative to the
temporal variation in this ambient air pollutant? Second,
to what extent do local and specific point sources impact
measurements at each of the ambient air quality moni-
toring stations in Atlanta?

EXPERIMENTAL WORK
Ambient Air Quality Monitoring Station Data

Ambient air quality data from U.S. Environmental Protec-
tion Agency (EPA) Air Quality System ([AQS] formerly
known as Aerometric Information Retrieval System), the
SEARCH database, and the Assessment of Spatial Aerosol
Composition in Atlanta (ASACA) are used to characterize
instrument precision and spatial variability of air pollu-
tion in the 20-county Atlanta MSA for the 4-yr period
1999–2002; Atlanta monitoring site locations are shown
in Figure 1. The JS site is of particular focus here, because
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it was the location of the Atlanta Supersite, and Atlanta-
based epidemiologic studies rely heavily on data from
that location. Pollutants used in this study, for which
daily measures were available at multiple sites in the At-
lanta MSA, are four pollutant gases (SO2, CO, NOx, and
O3), PM2.5 total mass, and five PM2.5 components (sulfate
ion [SO4

2�], nitrate ion [NO3
�], ammonium ion [NH4

�],
EC, and OC). The completeness of the dataset was very
high (�90% for most pollutants). The data for each pol-
lutant at each monitoring site closely approximate a log-
normal distribution. Values of the geometric mean, geo-
metric standard deviation, and correlation coefficients
with log-transformed data from the JS monitoring station
near downtown Atlanta are listed in Tables 1 and 2. The
daily metrics listed are the a priori variables used in the
health studies: 1-hr maximum for SO2, CO, and NOx; 8-hr
maximum for O3; and 24-hr average for PM2.5 total mass
and major component masses.

SO2 data from five monitoring sites in the Atlanta
MSA are available. SO2 levels are low in Atlanta, on aver-
age between 3 and 6 ppb. Levels at JS were higher than the
two AQS sites located near downtown Atlanta, Georgia
Tech and Confederate Avenue, possibly because of differ-
ences in analytical methods of drying the gas stream and
calibration procedures. Unlike the AQS sites, calibration
gases are added to the ambient airstream at JS. Thus, the
SO2 measurement at JS accounts for losses in sampling
lines. CO data from four monitoring stations are avail-
able. Highest CO levels are observed at Roswell Road,

which is located near high traffic density roads. NOx are
measured at six sites in the Atlanta MSA. Within the
perimeter highway of Atlanta, average NOx levels exceed
40 ppb. NOx levels are appreciably lower at the rural
Conyers and Yorkville sites. O3 data from five stations
were used. During the period 1999 through 2002, AQS
sites only reported data from April through October. O3

levels are spatially very uniform and highly correlated
across sites.

To assess instrument precision, NOx and O3 data
from AQS and SEARCH monitors at the Yorkville site were
used. To assess CO and SO2 instrument error, AQS audit
data were used. Audit tests are performed quarterly by an
independent contractor, with standards at three different
concentrations run through each sampler.

PM2.5 mass data from eight AQS stations, two
SEARCH sites, and three ASACA sites were used. AQS
stations at East River School, South Dekalb, and Doraville
Health Center monitor daily PM2.5 mass by the filter-
based Federal Reference Method (FRM). AQS stations at
Fire Station 8, East Point Health Center, Forest Park, Ken-
nesaw, and Yorkville report PM2.5 mass by FRM every 3
days. At the ASACA sites at South Dekalb, Tucker, and Fort
McPherson, PM2.5 mass is measured continuously by ta-
pered element oscillating microbalance (TEOM). At the
SEARCH sites at JS and Yorkville, PM2.5 mass is measured
both by FRM and TEOM. PM2.5 mass instrument precision
includes differences in the method of measurement. Data
from collocated samplers at East River School, Doraville

Figure 1. Locations of 20-county Atlanta metropolitan area ambient air quality monitoring sites (F) and coal-fired power plants (Œ). Total area
shown: 100 � 100 km. County boundaries (—) and interstate highways (�) are also shown. GT � Georgia Tech; ERS � East River School;
FS8 � Fire Station 8; FM � Fort McPherson; CA � Confederate Avenue; RR � Roswell Road; DHC � Doraville Health Center; Tu � Tucker;
DT � Dekalb Tech; SD � South Dekalb; FP � Forest Park; EPHC � East Point Health Center; Co � Conyers; Ke � Kennesaw; Yo � Yorkville;
and St � Stilesboro.
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Health Center, and Forest Park was used to evaluate in-
strument precision.

PM2.5 major ion (SO4
�2, NO3

�, and NH4
�) and car-

bon fraction (EC and OC) data from March 1999 through
August 2000 at five locations in the Atlanta MSA were
used (Table 2). Filter-based particle composition monitors
(PCMs) were used that included three channels to collect
24-hr integrated samples for analysis of major ions, trace
metals, OC, and EC in the PM2.5 size range. Ion chroma-
tography was used to quantify water-soluble ionic species,
except for ammonium, which was measured using auto-
mated colorimetry. EC and OC collected on quartz filters
were measured by thermal optical transmittance (TOT) in
the ASACA network (South Dekalb, Tucker, and Fort
McPherson) and by thermal optical reflectance (TOR) in
the SEARCH network (JS and Yorkville). Comparison of
these two techniques indicates that whereas the total
carbon measurements are in good agreement, EC is lower,
and OC is higher for TOT values.31 At the JS site, multiple
measurements of PM2.5 components using different
methods were made. These data were used to assess

instrument precision. For the major ion components, si-
multaneous PCM and FRM measurements were used. For
EC and OC, TOR measurements performed by Atmo-
spheric Research & Analysis, Inc. (ARA), were compared
with TOR measurements performed by the Desert Re-
search Institute (DRI).

Spatial Statistical Analysis
Using methods from the field of geostatistics, the authors
developed an approach for describing the spatial autocor-
relation of air pollutant data. Air pollutant concentration
data (C) typically have a lognormal distribution. Here,
they take the log transform of the data (Z) and normalize
based on the mean (�z) and standard deviation (�z) of the
log-transformed data. That is:

Z � lnC (1)

Z� �
Z � �z

�z
(2)

The distribution of normalized data (Z�) has a mean of 0
and a standard deviation of 1. Given the strong correla-
tion found between the TOT and TOR techniques for
measuring EC and OC,32 this normalization eliminates
most of the bias between these measures, as well as po-
tential bias because of differences in the SEARCH and AQS
SO2 and NOx monitors.

Table 1. Average values and correlation coefficients of ambient air
pollutants, 1999 –2002.

Pollutant
Measure Stationa

Distance
(km)

Geometric
Mean

Geometric
Standard
Deviation R

SO2

1-hr max
JS–SEARCH 0 12.4 ppb 2.1
GT 1.5 8.0 ppb 2.4 0.78
CA 8.3 6.5 ppb 2.3 0.71
St 58.6 5.9 ppb 2.9 0.36
Yo–SEARCH 60.6 6.5 ppb 2.6 0.20

CO
1-hr max

JS–SEARCH 0 0.96 ppm 2.2
RR 11.5 1.43 ppm 1.6 0.65
DT 16.8 1.15 ppm 1.8 0.76
Yo–SEARCH 60.6 0.26 ppm 1.4 0.24

NOx

1-hr max
JS–SEARCH 0 97.5 ppb 2.1
GT 1.5 89.1 ppb 2.3 0.86
SD 15.3 113.6 ppb 2.0 0.74
Tu 20.4 51.2 ppb 2.0 0.79
Co 36.8 35.0 ppb 3.4 0.50
Yo–SEARCH 60.6 9.1 ppb 2.3 0.26

O3

8-hr max
JS–SEARCH 0 50.0 ppb 1.5
CA 8.3 50.6 ppb 1.5 0.98

April to October SD 15.3 46.6 ppb 1.5 0.96
Co 36.8 49.8 ppb 1.5 0.91
Yo–SEARCH 60.6 57.4 ppb 1.4 0.85

PM2.5 mass JS–SEARCH 0 15.6 �g/m3 1.6
24-h average ERS 5.2 16.1 �g/m3 1.6 0.87

SD 15.3 15.6 �g/m3 1.7 0.84
DHC 18.9 16.5 �g/m3 1.6 0.88
FS8–3rd day 3.2 17.8 �g/m3 1.7 0.62
EPHC–3rd day 17.9 16.0 �g/m3 1.8 0.65
FP–3rd day 18.7 16.2 �g/m3 1.7 0.87
Ke–3rd day 31.6 15.9 �g/m3 1.7 0.77
Yo–3rd day 60.6 13.6 �g/m3 1.8 0.72
JS–TEOM 0 18.1 �g/m3 1.6 0.91
FM–TEOM 7.8 17.4 �g/m3 1.6 0.83
SD–TEOM 15.3 16.6 �g/m3 1.5 0.91
Tu–TEOM 20.4 17.6 �g/m3 1.7 0.77
Yo–SEARCH 60.6 11.7 �g/m3 1.7 0.85

aStation abbreviations and locations shown in Figure 1.

Table 2. Average values and correlation coefficients of PM2.5

components, March 1999 –August 2000.

PM2.5

Component Stationa
Distance

(km)

Geometric
Mean

(�g/m3)

Geometric
Standard
Deviation R

Sulfate JS–SEARCH 0 4.6 1.9
FM–ASACA 7.8 4.3 2.1 0.82
SD–ASACA 15.3 4.4 2.0 0.84
Tu–ASACA 20.4 4.3 2.1 0.92
Yo–SEARCH 60.6 4.5 2.1 0.95

Nitrate JS–SEARCH 0 0.8 2.1
FM–ASACA 7.8 0.7 2.3 0.63
SD–ASACA 15.3 0.3 2.4 0.64
Tu–ASACA 20.4 0.8 2.6 0.70
Yo–SEARCH 60.6 0.6 2.0 0.55

Ammonium JS–SEARCH 0 1.8 1.9
FM–ASACA 7.8 1.6 2.1 0.86
SD–ASACA 15.3 1.5 2.2 0.82
Tu–ASACA 20.4 1.7 2.1 0.81
Yo–SEARCH 60.6 2.4 1.9 0.82

EC JS–SEARCH 0 1.4 1.9
FM–ASACA 7.8 1.2 1.8 0.47
SD–ASACA 15.3 1.5 1.9 0.47
Tu–ASACA 20.4 1.2 1.8 0.29
Yo–SEARCH 60.6 0.7 1.7 0.57

OC JS–SEARCH 0 4.0 1.7
FM–ASACA 7.8 3.8 2.6 0.52
SD–ASACA 15.3 4.2 2.4 0.50
Tu–ASACA 20.4 3.8 2.5 0.47
Yo–SEARCH 60.6 3.2 1.7 0.71

aStation abbreviations and locations shown in Figure 1.
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For a pair of monitoring sites at locations i and j, the
correlation coefficient R is defined as follows:

R	h
 �
1
n �

k � 1

n
	Zi, k � �i
	Zi, k � �j


�i�j
�

1
n �

k � 1

n

	Z�i, k � Z�j, k


(3)

Here, n is the number of daily observations, and h is the
distance between i and j. Spatial autocorrelation is an
attribute of spatial data based on the fact that observa-
tions closer together tend to be more alike than observa-
tions farther apart. If the spatial process is isotropic, then
the correlation coefficient is a function of distance alone
(independent of direction). The correlogram plot, a graph
of R versus the distance h, provides a measure of spatial
autocorrelation as a function of distance. For small dis-
tances, R is close to 1; as distance increases, R decreases,
approaching 0 as the spatial correlation approaches 0.

Another measure of spatial autocorrelation is the
semivariogram.33 The semivariogram (�) is one half of the
variogram:

�	h
 �
1
2

Var	Z�i � Z�j
 (4)

It can be shown that the semivariogram for the normal-
ized log-transformed data (Z�) is related to the correlation
coefficient as follows:

�	h
 � 1 �
n

n � 1
� R	h
 � 1 � R	h
 (5)

Thus, the graph of the semivariogram versus distance is
an inverted form of the correlogram, starting near 0 at
short distances if the correlation is close to 1, and increas-
ing with distance as the correlation decreases with dis-
tance. In the geostatistical field, the shape of the semiva-
riogram is described by the nugget, which refers to a
nonzero semivariogram near the origin, the range, which
refers to the separation distance at which the semivario-
gram levels off, and the sill, which refers to the value of
the semivariogram at which it levels off.

In this paper, the authors propose a measure of spa-
tial autocorrelation that can most easily be interpreted in
terms of potential impact of measurement error on the
epidemiologic study findings. In this population-based
epidemiologic study of the short-term health effects of air
pollution in Atlanta, instrument precision and spatial
variation represent uncertainty in the ambient pollutant
measure used as the exposure surrogate, and temporal
variation in daily air pollutant levels is a key determinant
of the power of time series studies to detect epidemiologic
associations. Therefore, the authors are interested in the
ratio of the standard deviation of the differences between
two sites to the standard deviation of the averages of two
sites. For low values of this ratio, the impact of exposure
variable uncertainty on health risk assessment is expected
to be low. For high values, the impact is likely to be a bias
to the null in the point estimate of health risk.

The daily average of the normalized variables at two
monitoring sites is (Z�i � Z�j)/2, and the difference of the
measurement at each site to this average is given by (Z�i �
Z�j)/2. The ratio of the standard deviation of the differ-
ences to the standard deviation of the averages is the
desired metric. It can be shown that these standard devi-
ations are given as follows:

�average	h
 � �1 �
1
2

�	h
 (6)

�difference	h
 � �1
2

�	h
 (7)

Thus, for large n,

��	h
 �
�difference	h


�average	h

� �1 � R	h


1 � R	h

(8)

Because a plot of this ratio versus distance between mon-
itoring stations has the same general shape as a semivar-
iogram plot, the authors refer to it as a modified semiva-
riogram, ��(h). Its value is 0 for a correlation coefficient of
1 and 1 for a correlation coefficient of 0. This modified
semivariogram can be interpreted as the amount of am-
bient estimate error, because of instrument precision and
spatial variability, relative to the amount of temporal
variation in the air pollutant data.

The modified semivariogram can be modeled using
an exponential function as follows.

�’	h
 � co � ce�1 � exp	�h/ae
 (9)

Here, co is the nugget effect, ce is the partial sill (co � ce) is
the sill, and the effective range is 3ae.34 The nugget rep-
resents a measure of instrument precision, with a value of
0 for colocated measurements that are exactly correlated
and increasing with increasing imprecision. The partial
sill represents a measure of spatial variability in the limit
of monitors separated by a large distance, and the effec-
tive range is the distance at which 95% of the partial sill
is reached. Zero values for the nugget and sill mean that
the log-transformed, normalized measurements are iden-
tical, and, therefore, there is no error because of instru-
ment imprecision and spatial variability over the study
area. Values between 0 and 1 correspond with error because
of instrument imprecision and spatial variability between
0 and 100% of the temporal variation of the pollutant
modeled. Values �1, which correspond with anticorre-
lated measurements, indicate that error because of instru-
ment imprecision and spatial variability data is greater
than the temporal variation of the pollutant of interest.

To assess the impact of point sources and local road
sources on the ambient air pollutant monitors, wind rose
plots are used. Hourly measurements of pollutants and
wind direction were used for the 4-yr period 1999–2002.
Wind data bins were 12°. More than 35,000 data points
were possible; data completeness was �90%. Because
both wind direction and pollutant concentrations exhibit
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diurnal and seasonal patterns, effects of these patterns
were estimated and removed. To estimate possible effects
of diurnal and seasonal patterns in wind direction and
pollutant levels on the wind rose plots, wind rose plots
were constructed using the actual wind direction data and
average monthly and diurnal (twelve 2-hr averages) con-
centrations. Deviation of these wind rose plots from a
perfect circle indicate effects of confounding of wind di-
rection and pollutant level because of seasonal and diur-
nal trends. Plots corrected for diurnal and seasonal pat-
terns were generated by subtracting the seasonal and
diurnal deviations from the original wind rose plot using
raw data. With seasonal and diurnal effects removed, high
concentrations in the wind rose plots suggest the direc-
tion of sources that impact the station.

RESULTS AND DISCUSSION
Instrument Precision and Spatial Variation

Effects
Modified semivariograms for 1-hr maximum CO, 1-hr max-
imum NOx, 1-hr maximum SO2, 8-hr maximum O3, and

24-hr average PM2.5 mass are shown in Figure 2. Exponen-
tial model best-fit values and upper and lower bounds of the
nugget (co), sill (co � ce), and effective range (3ae) are esti-
mated for each of the semivariogram plots (Table 3).

The nugget or instrument imprecision estimate as
assessed using colocated instrument data ranged from 10%
of the temporal variation for CO and O3 to 20% for SO2,
NOx, and PM2.5 mass. The greater instrument imprecision

Figure 2. Modified semivariograms for ambient air pollutant measures in Atlanta, 1999–2002. E, points that include JS data. Œ, use of audit
data. Exponential model results are shown by solid curve (best fit) and dashed curves (upper and lower bound estimates); model parameters
(nugget, range, sill) are shown on the CO semivariogram and listed in Table 3.

Table 3. Parameter estimates for semivariogram functions of gaseous
pollutants and PM2.5 mass.

Pollutant Nugget
Effective

Range Sill
Population

Weighted ��

1-hr max SO2 0.2 � 0.1 40 � 20 0.8 � 0.1 0.7 � 0.1
1-hr max CO 0.1 � 0.05 70 � 20 0.8 � 0.1 0.6 � 0.1
1-hr max NOx 0.2 � 0.1 100 � 30 0.8 � 0.1 0.6 � 0.1
8-hr max O3 0.1 � 0.03 100 � 20 0.3 � 0.03 0.2 � 0.03
24-hr PM2.5 mass 0.2 � 0.1 30 � 20 0.45 � 0.1 0.4 � 0.1
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for SO2, NOx, and PM2.5 mass is likely because of differ-
ences in measurement techniques among the AQS,
SEARCH, and ASACA networks for these pollutants.

As expected, the primary pollutants (CO, NOx, and
SO2) exhibited much greater spatial variability than the
predominantly secondary pollutants (O3 and PM2.5

mass). That is, estimates of the sills of the primary pollut-
ant semivariograms are 0.8, indicating that, at large dis-
tances, the uncertainty in the primary pollutant variable
because of instrument precision and spatial variability is
�80% of the temporal variation in that pollutant. Of
these three primary pollutant gases, the effective range in
the semivariogram was smallest for SO2 (40 km). As will
be shown later, this is likely because of point-source
plume events that impact SO2 measurements at the am-
bient monitoring stations. The larger effective ranges for
CO (70 km), NOx (100 km), and O3 (100 km) are likely

because of the predominance of dispersed mobile sources
for CO and NOx and the regional atmospheric formation
of O3. Sills for O3 and PM2.5, on the other hand, are
estimated to be 0.3 and 0.45, respectively. O3 is a second-
ary pollutant, formed by atmospheric reactions. Source
apportionment modeling indicates that 60–70% of PM2.5

mass at JS is secondary.35,36 Because concentrations of
these pollutants are driven more by regional meteorology
and chemistry than by specific sources, spatial variation
for the secondary pollutants accounts for a smaller frac-
tion of temporal variation than for the primary pollut-
ants. Although values of O3 were lower at the South
Dekalb monitoring site because of titration from local NO
sources, as described later, the O3 correlation with other
monitoring sites is strong.

Modified semivariograms for 24-hr integrated mea-
surements of PM2.5 major ions (SO4

�2, NO3
�, and NH4

�)

Figure 3. Modified semivariograms for PM2.5 components in Atlanta, March 1999 to August 2000. Hollow symbols, points that include JS data.
Œ, TOR method used for both EC and OC measurements. Exponential model results are shown by solid curve (best fit) and dashed curves
(upper and lower bound estimates); model parameters (nugget, range, sill) are listed in Table 4.
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and carbon fractions (EC and OC), shown in Figure 3 and
Table 4, are consistent with the findings cited above. The
semivariogram nuggets are higher for the EC and OC
measurements, likely because of differences in the TOR
analysis protocol used by ARA and DRI. The semivario-
gram sills for the predominantly secondary components
of PM2.5 (SO4

�2, NO3
�, NH4

�, and, to some extent, OC)
are lower than the sill for the primary PM2.5 component
(EC). Source apportionment modeling suggests that
�50% of OC mass at JS is secondary organic aerosol,
although there is high uncertainty associated with this
estimate.36 The EC and OC semivariogram plots also sug-
gest that error in the ambient estimate results from dif-
ferences between the TOR method (SEARCH data) and the
TOT method (ASACA data). EC and OC semivariograms
from the SEARCH site pair (JS and Yorkville, hollow tri-
angles at 60 km in the EC and OC plots in Figure 3) are
lower than from other pairs. Comparison of SEARCH
data, obtained using the TOR method, and more recent
data from EPA Speciation Trends Network, using the TOT
method, suggest that EC and OC measurement precision
is improving.

The semivariograms shown in Figures 2 and 3 indi-
cate that no one station appears to be an outlier, suggest-
ing that local and regional influences play similar roles at
each site. Data from the JS monitoring station, used for
the points represented by hollow symbols in Figures 2 and

3, were used for the primary analyses in the epidemiologic
studies because of the wide range of measures available at
this site and its central location. These data appear to be as
representative as data from any of the other monitoring
stations in the Atlanta area for the pollutants shown.

On the other hand, the semivariogram analysis sug-
gests that error in the ambient air pollutant measures used
in the health studies is likely to reduce the power of
health risk assessment, particularly for primary pollut-
ants. As a reference point for comparing ambient estimate
error, the authors computed population-weighted semi-
variograms for the metropolitan Atlanta area; these are
listed in the last columns of Tables 3 and 4. Fifty-seven
percent of the patients in the emergency department da-
tabase for the 20-county area (and a similar proportion of
the 20-county population) live within a 30-km radius of
downtown. For primary pollutant variables (SO2, CO,
NOx, and EC), instrument precision and spatial variability
result in a population-weighted uncertainty of �60–70%
of the temporal variation. For O3, on the other hand,
uncertainty in the ambient concentration is only �20%
of the temporal variation. Work is ongoing to incorporate
these ambient air pollution error estimates into the health
risk models.

Point and Local Source Impacts
To assess the impact of point sources and local road
sources on the ambient air pollutant monitors, wind rose
plots (both uncorrected and corrected for seasonal and
diurnal effects) were constructed for those pollutants for
which hourly data are available (Figures 4–8). Hourly
measurements of pollutants and wind direction were used
for the 4-yr period 1999–2002. Two sites did not have
wind direction data available for this time period, Georgia
Tech and Roswell Road. JS wind direction data were used
for the Georgia Tech analysis because of the proximity of
these sites, and Confederate Avenue data were used for
the Roswell Road analysis because of the similarity in

Table 4. Parameter estimates for semivariogram functions of PM2.5

components.

PM2.5 Component
(24-hr) Nugget

Effective
Range Sill

Population
Weighted ��

SO4
2� 0.1 � 0.05 30 � 10 0.3 � 0.1 0.25 � 0.1

NO3
� 0.2 � 0.1 40 � 10 0.55 � 0.1 0.5 � 0.1

NH4
� 0.2 � 0.1 80 � 20 0.5 � 0.1 0.4 � 0.1

EC 0.4 � 0.1 40 � 10 0.8 � 0.15 0.7 � 0.15
OC 0.4 � 0.1 30 � 10 0.6 � 0.15 0.55 � 0.15

Figure 4. Wind rose plots for PM2.5 mass and the BC component of PM2.5 measured hourly at JS monitoring station, 1999–2002. Seasonal
and diurnal effects are removed from corrected curves. Dashed circle, average value. Full scale is 32 �g/m3 for PM2.5 mass and 2.5 �g/m3 for
BC.
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topography at these sites. With seasonal and diurnal ef-
fects removed, high concentrations in the wind rose plots
suggest the direction of sources that impact the station.

The degree to which sources impact a monitoring site is
also an indicator of the degree to which the pollutant
fields are isotropic. That is, greater source impact results in

Figure 5. SO2 wind rose plots, 1999–2002. Full scale is 10 ppb. Dashed circle, average value. Distances and directions of coal-fired power
plants and a coal-fired cement facility from monitoring stations are shown.
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more scatter in the semivariogram plots because of aniso-
tropic pollutant fields.

In Figure 4, wind rose plots at the JS monitoring
station are shown for PM2.5 mass and the black carbon
(BC) component of PM2.5. The latter was measured by
aethalometer and should correlate approximately with
EC.37,38 Plots of SO2, CO, NOx, and O3 are shown in
Figures 5–8, respectively.

The plots of CO, NOx, and BC at JS are similar. Pos-
sible sources of these pollutants are roadways to the south
and west, a trucking facility and major rail yard to the
north, and a bus maintenance facility to the south. The
peak in these pollutants to the northeast is consistent
with the alignment of two major highways (I-85 and
Ga-400; Figure 1).

As expected, the plots of O3 and PM2.5 mass do not
show strong effects of wind direction. O3 is a secondary
pollutant, and, as stated previously, 60–70% of PM2.5

mass is estimated to be secondary.35,36 Secondary pollut-
ants are less affected by emission sources than primary
pollutants. The authors do note, however, that O3 min-
ima are observed in directions where NOx peaks occur.
This is likely because of O3 inhibition by radical scaveng-
ing and the titration of O3 by NO, indicating NOx inhi-
bition. O3 tends to peak on weekends at JS when NOx

levels are lower, consistent with NOx inhibition.
The SO2 wind rose plot at JS has a large peak when

winds come from the northwest and smaller peaks when
winds come from the southwest and north. The peak

corresponding with the winds from the north may be
because of the trucking facility. Analysis of the peak SO2

concentrations in the 0–12° category indicates that the
peaks occur most frequently in the morning when activ-
ity at the trucking facility is greatest. The northwest and
southwest peaks typically occur in late afternoon. These
peaks are likely because of vertical mixing effects on coal
combustion plumes (Figure 5), as evidenced by the align-
ment of SO2 peaks at each monitoring site with the direc-
tion of coal-fired power plants and a coal-fired cement
facility. Power plant emissions are injected above the at-
mospheric mixed layer at night and can be downwardly
mixed after the breakup of the nocturnal inversion. Plant
Bowen, located 60 km northwest of Atlanta, is the largest
of the coal-fired power plants; Plant McDonough, located
much closer to downtown Atlanta and also to the north-
west, is the smallest of these sources. There is also a
coal-fired cement kiln near Plant McDonough.

Observed CO and NOx peaks in these pollutants are
consistent with the directions of major roadways (Figures
6 and 7). The data show the extent to which the primary
pollutant monitoring data are impacted by local source
effects. In the case of NOx at South Dekalb, the large peak
to the north is likely because of close proximity of two major
highways (I-285 and I-20) in that direction (Figure 1).

Finally, O3 wind rose plots using data from four mon-
itoring stations are shown in Figure 8. These plots dem-
onstrate minimal local source impacts on O3, as expected.
As already mentioned, NOx inhibition likely accounts for

Figure 6. CO wind rose plots for 1999–2002. Full scale is 1.5 ppm.
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the shape of the O3 wind rose plot at the JS station near
downtown Atlanta. Given the large NOx peak associated
with winds from I-285 north of South Dekalb, one might
have expected more NOx inhibition in the O3 wind rose
plot at SD. One explanation is that the time-of-day cor-
rection removed evidence of source impacts as well. Note
that the uncorrected wind rose plot does show lower O3

levels when winds are from the north. The diurnal pattern
of wind direction at South Dekalb is quite strong, with
80% of the winds from the north at night and 80% of the
winds from the south during the day. The authors tested
their correction by using JS O3 data with the South Dekalb
wind direction data and found the correction to be reli-
able. A more plausible explanation, therefore, is that the
more suburban South Dekalb site is less NOx inhibited

than the more urban JS site because of greater biogenic
volatile organic compound emissions at South Dekalb.

CONCLUSIONS
Effects of instrument precision and spatial variability on
the characterization of ambient air pollution in Atlanta
have been assessed. For quantifying error in the ambient
air pollution variables used in large population time series
health analyses, a modified semivariogram is proposed.
Population-weighted uncertainty in primary pollutant
levels because of instrument imprecision and spatial vari-
ability was found to be 60–70% of the temporal variation.
As expected, secondary pollutants are much more spa-
tially homogeneous and correlated than primary pollut-
ants, with a population-weighted uncertainty of only

Figure 7. NOx wind rose plots for 1999–2002. Full scale is 150 ppb.
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20% for O3. Error because of instrument imprecision was
greatest for air pollutants measured by different analytical
techniques, such as the elemental and OC fractions of
PM2.5. Local source impacts for primary air pollutants
were identified at several Atlanta monitoring stations us-
ing wind rose plots with adjustments to remove diurnal
and seasonal pattern effects. The use of spatial average
values, obtained using interpolation and population-
weighting methods, rather than data from one central
monitoring station, can dampen these local impacts on
exposure measures used in population-based epidemio-
logic studies of the health effects of air pollution.

Exposure variable error estimates are needed to inter-
pret findings from epidemiologic studies of ambient air
pollution and health. Work is ongoing to incorporate the
ambient estimate errors presented in this paper into the
health risk models.
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