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Multipollutant models are frequently used to differentiate roles of multiple pollutants in epidemiologic studies of ambient air pollution. In the presence of

differing levels of measurement error across pollutants under consideration, however, they can be biased and as misleading as single-pollutant models.

Their appropriate interpretation depends on the relationships among the pollutant measurements and the outcomes in question. In situations where two

or more pollutant variables may be acting as surrogates for the etiologic agent(s), multipollutant models can help identify the best surrogate, but the risk

estimates may be influenced by inclusion of a second variable that is not itself an independent risk factor for the outcome in question. In this paper, these

issues will be illustrated in the context of an ongoing study of emergency visits in Atlanta. Emergency department visits from 41 of 42 hospitals serving the

20-county Atlanta metropolitan area for the period 1993–2004 (n¼ 10,206,389 visits) were studied in relation to ambient pollutant levels, including
speciated particle measurements from an intensive monitoring campaign at a downtown station starting in 1998. Relative to our earlier publications,

reporting results through 2000, the period for which the speciated data are available is now tripled (6 years in length). Poisson generalized linear models

were used to examine outcome counts in relation to 3-day moving average concentrations of pollutants of a priori interest (ozone, nitrogen dioxide,

carbon monoxide, sulfur dioxide, oxygenated hydrocarbons, PM10, coarse PM, PM2.5, and the following components of PM2.5: elemental carbon,

organic carbon, sulfate, and water-soluble transition metals). In the present analysis, we report results for two outcome groups: a respiratory outcomes

group and a cardiovascular outcomes group. For cardiovascular visits, associations were observed with CO, NO2, and PM2.5 elemental carbon and

organic carbon. In multipollutant models, CO was the strongest predictor. For respiratory visits, associations were observed with ozone, PM10, CO, and

NO2 in single-pollutant models. In multipollutant models, PM10 and ozone persisted as predictors, with ozone the stronger predictor. Caveats and

considerations in interpreting the multipollutant model results are discussed.
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Introduction

Epidemiologic studies assessing the roles of multiple ambient

air pollutants are inherently limited by a number of inter-

related issues including covariation of pollutants, potential

confounding by mismeasured or unmeasured pollutants (or

groups of pollutants), the possibility of complex interactions

among pollutants in producing health effects, the subtlety of

the associations of interest, extensive exposure uncertainty,

and power constraints. In this context, multipollutant models

are often used in an effort to distinguish the roles of various

pollutants. In the presence of differing levels of measurement

error across pollutants under consideration, however, they

can be biased and as misleading as single-pollutant models.

Their appropriate interpretation depends on the relationships

among the pollutant measurements and the outcomes in

question. In situations where two or more pollutant variables

may be acting as surrogates for the etiologic agent(s),

multipollutant models can help identify the best surrogate,

but the risk estimates may be influenced by inclusion of a

second variable that is not itself an independent risk factor

for the outcome in question.

To illustrate some of the issues involved in multipollutant

modeling in time series studies of acute outcomes in relation

to central monitor ambient air quality data, we present work

from an ongoing study of emergency department visits in

Atlanta, the Study of Particles and Health in Atlanta

(SOPHIA). We previously published results for the time

period 1993–2000, 2 years of which included speciated PM2.5

data (Metzger et al., 2004; Peel et al., 2005). We now have

data through 2004, tripling the period for which the speciated

PM2.5 data are available. For the current assessment, we

focus on two large outcome groups: a respiratory diseases

(RDs) group and a cardiovascular diseases (CVDs) groupReceived 7 September 2007; accepted 12 September 2007
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(where each outcome group represents an aggregation of

several diseases of a priori interest), and present updated

single-pollutant and selected multipollutant model results.

Considerations and caveats involved in the use of multi-

pollutant modeling are highlighted.

Methods

Ambient Air Quality Data
The air quality data available for the study have been

described previously (Van Loy et al., 2000; Metzger et al.,

2004; Wade et al., 2006). Briefly, for the period January 1,

1993 through December 31, 2004, we obtained daily ambient

air quality data for PM10 mass (PM with an aerodynamic

diameter less than 10mm), ozone (O3), nitrogen dioxide
(NO2), sulfur dioxide (SO2), and carbon monoxide (CO)

from several existing monitoring networks, including the Air

Quality System (AQS, formerly the Aerometric Information

Retrieval System or AIRS). Meteorologic data, including

temperature and dew point temperature, were obtained from

the National Climatic Data Center network. Ozone levels

were not monitored during the winter months when ozone

levels are low in Atlanta; the remaining pollutants were

measured year-round.

Starting August 1, 1998, an extensive suite of pollutants,

including PM size fractions and components, was also

measured on a daily basis at the Aerosol Inhalation

Epidemiology Study (ARIES) monitoring station in down-

town Atlanta. From the ARIES measurements, we selected

the following pollutants for this analysis a priori: PM2.5 mass

(PM with an aerodynamic diameter less than 2.5mm), coarse
PM (PM with an aerodynamic diameter between 2.5 and

10 mm), the PM2.5 components sulfate, elemental carbon

(EC), organic carbon (OC), and water-soluble transition

metals, and oxygenated hydrocarbons (OHC).

In the data analyses performed for this study, the a priori

metrics for the pollutants of interest were as follows: 1-h

maxima for NO2, SO2, and CO; 8-h maximum for ozone;

and 24-h averages for PM size fractions and components.

Emergency Department Data
Each of the 42 hospitals with emergency departments in the

20-county Atlanta metropolitan statistical area (MSA)

agreed to contribute emergency department data for this

study. Of these, 41 hospitals were able to provide usable

electronic billing records for at least part of the study period.

Computerized billing records for all emergency department

visits between January 1, 1993 and December 31, 2004 were

collected, including the following data for each visit: primary

International Classification of Diseases 9th Revision (ICD-9)

diagnostic code, secondary ICD-9 diagnosis codes, age, date

of birth, gender, race, and residential zip code. Only residents

of the Atlanta MSA, determined by residential zip code at the

time of the visit, were included in the analytic data set. Repeat

visits within a single day were counted as a single visit.

For the present analysis, two outcome groups were

formed: a combined CVDs group and a combined RDs

group. The combined cardiovascular case group included

the following groups of primary ICD-9 diagnostic codes

(all two-digit extensions were used unless otherwise specified):

ischemic heart disease (410–414), cardiac dysrhythmias

(427), congestive heart failure (428), and peripheral vascular

and cerebrovascular disease (433–437, 440, 443–445, and

451–453). The combined RDs group included: asthma (493,

786.07, and 786.09), COPD (491, 492, and 496), URI (460–

465, 460.0, and 477), pneumonia (480–486), and bronchio-

litis (466.1, 466.11, and 466.19).

Analytic Methods
All analyses were performed using SAS statistical software,

version 9.1 (SAS Institute Inc., Cary, North Carolina, USA)

unless otherwise indicated. We used Poisson generalized

linear models (McCullagh and Nelder, 1989) to examine the

association between ambient pollutants of a priori interest

and counts of cardiovascular and respiratory emergency

department visits. Risk ratios and 95% confidence intervals

were calculated for increments of one interquartile range in

the corresponding pollutant concentrations. The basic single-

pollutant models had the following form:

logðEðY ÞÞ ¼aþ b pollutantþ SklkDOWk þ Smxmseasonm

þ Snvnhospitaln þ Spzpholidayp þ gðg1; . . . ; gN ; timeÞ
þ gðd1; . . . ; dN ; tempÞ þ gðZ1; . . . ; ZN ; dewpointÞ;

where Y indicated the count of visits to participating emergency

departments for a given day for the outcome of interest. The

a priori models contained a 3-day moving average of pollution

levels (average of 0-, 1-, and 2-day lags relative to the visits)

(pollutant). Long-term temporal trends were accounted for using

cubic splines with monthly knots [g(g1,y,gN; time)]. Because

ozone data were not available from November through March,

models using the ozone measurements included separate time

splines for each year. For the RDs outcome, additional season

indicator variables (the 21st day of March, June, September,

and December) were added to further control for seasonal trends

(season). Cubic splines were also used to control for daily

average temperature [g(d1,y,dN; temp)] and dew point

[g(Z1,y,ZN; dew point)] with knots at the 25th and 75th

percentiles (moving average of lags 0, 1, and 2). Indicator

variables for day of week (DOW), federal holidays (holiday),

and hospital entry and exit (hospital) were also included in the a

priorimodel (as the hospitals provided data for varying amounts

of time). The cubic splines, g(x), were defined as follows:

gðg1; g2; . . . gN; xÞ ¼ g1x þ g2x2 þ g3x3 þ
XN

j¼4
gjwjðxÞ;

where wj(x)¼ (x-tj)
3 if xZtj, and wj(x)¼ 0 otherwise. The

cubic splines were defined so that the first and second

derivatives were continuous.
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Multipollutant models used the same basic structure as the

single-pollutant models, with the inclusion of two or more

pollutant variable terms. To have a consistent time series for

comparison of the multipollutant results, we excluded days

for which measurements of any of the pollutants included in

the set of models for a given outcome group were missing.

Results

With 41 of 42 hospitals providing data, the final outcome

database included data regarding 10,234,490 total emergency

department visits, with 238,360 and 1,072,429 included in

the CVD and RD groups, respectively. The average daily

counts for CVD and RD groups were 54 and 244,

respectively, providing robust numbers for the time-series

analysis (Table 1). Descriptive statistics for the air quality

variables of interest are presented in Table 2, and a

Spearman’s correlation matrix for pairs of the pollutants

presented in Table 3.

Results of the a priori single-pollutant models are

presented in Table 4. For CVD, significant positive associa-

tions were found with CO, NO2, EC, OC, and TC. For RD,

associations were observed with ozone, PM10, CO, and NO2.

Results of selected multipollutant models are presented in

Figures 1 and 2, on the basis of the results of the single-

pollutant models. In models predicting CVD, TC was used in

place of EC and OC, as relationships for each type of carbon

were similar in single-pollutant models, and the use of a

single carbon metric reduced the number of parameters to be

fit. Restricting our multipollutant analyses to days with no

missing data among all pollutants of interest, multipollutant

models predicting CVD visits were limited to the 1998–2004

time period when PM2.5 component data were available. For

CVD, CO was the strongest predictor in models with two-

pollutant combinations of NO2, CO, and TC, as well as in a

model including all three pollutants.

Because we restricted our multipollutant analyses to days

with no missing data among all pollutants of interest, models

predicting RD visits were limited to non-winter months (as

ozone was not measured in winter). For RD, results of a two-

pollutant model with CO and NO2 suggested that NO2 was a

stronger predictor of RD than CO (NB: this assessment was

sensitive to the exclusion of the winter months; when winter

was included, CO was a stronger predictor of RD than NO2
(data not shown)). In two- and three-pollutant models of

ozone, PM10, and NO2 (or alternatively CO (model results

not shown)), PM10 and ozone remained predictive, with

ozone the stronger predictor of the two. It should be noted

that while the findings for PM10 predicting RD appeared

more robust than those for PM2.5, this result is likely a

reflection of the longer time series for which PM10

measurements were available, that is, 1993–2004. In the

1998–2004 data, there was no indication that PM2.5 was less T
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associated with respiratory outcomes than coarse PM. In

addition, the association of PM10 with respiratory outcomes

was weaker when analyses were restricted to the 1998–2004

time period.

Discussion

The uses and interpretation of multipollutant models vary

depending on the relationship of pollutants to each other and

to the outcome of interest. For example, consider several

possible scenarios with respect to two-pollutant models. If

the two pollutants are thought to be independent risk factors

for the outcome in question, and are correlated with each

other (positively or negatively), then it may be appropriate to

use a two-pollutant model to adjust the effect estimate of

each pollutant for confounding by the other pollutant. While

it should be kept in mind that there may be residual

confounding as a result of model mis-specification or

measurement error, the risk estimates from this model are

likely to be more valid than those from each pollutant’s

single-pollutant model. In a second scenario, if one of the

pollutants is etiologically linked to the outcome and

the second pollutant is a surrogate for the first pollutant,

Table 2. Mean, SD, and selected percentiles of daily ambient air quality measurements for criteria pollutants from AQS/MAI during the period

January 1, 1993 to December 31, 2004 and for other pollutants from ARIES during the period August 1, 1998 to December 31, 2004.

No. of days Mean Minimum 10th % 25th % Median 75th % 90th % Maximum

January 1, 1993 to December 31, 2004

24-h PM10 (mg/m
3) 4264 26.6 0.5 12.3 17.5 24.8 33.8 42.8 98.4

8-h Ozone (p.p.b.) 2935 53.0 2.9 26.1 37.3 51.0 67.0 82.1 147.5

1-h Nitrogen dioxide (p.p.b.) 4351 43.2 1.0 22.0 31.0 41.0 54.0 66.0 181.0

1-h Carbon monoxide (p.p.m.) 4275 1.6 0.1 0.5 0.8 1.3 2.0 3.0 7.7

1-h Sulfur dioxide (p.p.b.) 4358 14.9 1.0 2.0 4.0 9.0 20.0 35.0 149.0

Average temperature (1C)a 4383 17.1 �10.8 5.6 10.6 18.1 24.4 26.9 32.5

Average dew point (1C)a 4383 10.4 �19.1 �2.6 3.8 12.3 18.5 20.8 23.7

August 1, 1998 to December 31, 2004

24-h PM2.5 (mg/m
3) 2291 17.1 0.8 7.9 11.0 15.6 21.9 28.8 65.8

24-h coarse PM (mg/m3) 2183 9.0 0.5 3.6 5.6 8.2 11.5 15.1 50.3

24-h PM2.5 sulfate (mg/m
3) 2135 4.9 0.5 1.7 2.4 3.9 6.2 9.5 21.9

24-h PM2.5 organic carbon (mg/m
3) 2259 4.4 0.4 2.1 2.7 3.8 5.3 7.2 25.9

24-h PM2.5 elemental carbon (mg/m
3) 2258 1.6 0.1 0.6 0.9 1.3 2.0 3.0 11.9

24-h PM2.5 water-soluble metals (mg/m
3) 2138 0.030 0.003 0.009 0.014 0.023 0.039 0.059 0.202

24-h oxygenated hydrocarbon (p.p.b.) 1890 29.2 0.7 12.2 18.4 27.6 37.8 48.6 91.6

AQS, Air Quality System; ARIES, Aerosol Research and Inhalation Epidemiology Study; PM, particulate matter.
aFor temperature and dew point: average of minimum and maximum values recorded at Hartsfield-Atlanta International Airport.

Table 3. Spearman’s correlation coefficients for pollutant measurements, 1993–2004, study of particles and health in Atlanta (SOPHIA).

PM10 O3 NO2 CO SO2 Coarse PM PM2.5 SO4 EC OC TC Water-sol metals OHC

PM10 (24-h) 1.00

O3 (8-h) 0.59 1.00

NO2 (1-h) 0.53 0.44 1.00

CO (1-h) 0.51 0.27 0.70 1.00

SO2 (1-h) 0.21 0.21 0.36 0.28 1.00

Coarse PM (24-h) 0.67 0.36 0.48 0.38 0.16 1.00

PM2.5 (24-h) 0.84 0.62 0.47 0.47 0.17 0.47 1.00

PM2.5 SO4 (24-h) 0.69 0.56 0.14 0.14 0.09 0.32 0.76 1.00

PM2.5 EC (24-h) 0.61 0.40 0.64 0.66 0.22 0.49 0.65 0.32 1.00

PM2.5 OC (24-h) 0.65 0.54 0.62 0.59 0.17 0.49 0.70 0.33 0.82 1.00

PM2.5 TC (24-h) 0.67 0.52 0.65 0.63 0.19 0.51 0.71 0.34 0.91 0.98 1.00

PM2.5 water-sol metals (24-h) 0.73 0.43 0.32 0.35 0.06 0.50 0.69 0.65 0.52 0.49 0.52 1.00

OHC (24-h) 0.53 0.37 0.24 0.29 0.05 0.41 0.50 0.47 0.35 0.37 0.38 0.48 1.00

CO, carbon monoxide; EC, elemental carbon; NO2, nitrogen dioxide; O3, ozone; OC, organic carbon; OHC, oxygenated hydrocarbons; PM, particulate

matter; SO2, sulfur dioxide; SO4, sulfate; TC, total carbon.
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the two-pollutant model is only useful for determining which

pollutant is the better predictor of the outcome. If the

etiologic agent is measured with substantially more error than

the surrogate (e.g., because of spatial variation or analytic

error), measurements of this agent may be less predictive than

those of the surrogate, leading to potentially misleading

conclusions if the model is interpreted causally. Finally, in a

third scenario in which both pollutants are thought to be

surrogates for an etiologic agent, a multipollutant model may

be helpful in determining which of the two pollutants is the

better surrogate. The risk estimates from models in both the

second and third scenarios, however, are biased by the

inclusion of the second pollutant variable that is correlated

with the first pollutant, but is not an independent risk

factor; thus, in these scenarios, risk estimates obtained from

Table 4. Results of a priori modelsa for the association of emergency department visits for cardiovascular disease and respiratory disease with daily

ambient air quality measurements, 1993–2004, Study of Particles and Health in Atlanta (SOPHIA).

Pollutant (IQR)b IQR CVD RD

RR per IQR (95% CI) RR per IQR (95% CI)

January 1, 1993 to December 31, 2004

24-h PM10 16.30 mg/m3 1.008 (0.997–1.020) 1.015 (1.006–1.024)

8-h ozone 29.75 p.p.b. 1.000 (0.982–1.019) 1.039 (1.027–1.052)

1-h nitrogen dioxide 23.00 p.p.b. 1.015 (1.004–1.025) 1.015 (1.004–1.025)

1-h carbon monoxide 1.22 p.p.m. 1.020 (1.010–1.030) 1.016 (1.009–1.022)

1-h sulfur dioxide 16.00 p.p.b. 1.003 (0.994–1.011) 1.003 (0.997–1.009)

August 1, 1998 to December 31, 2004

24-h PM2.5 10.96 mg/m3 1.005 (0.993–1.017) 1.005 (0.995–1.015)

24-h coarse PM 5.89 mg/m3 1.004 (0.990–1.019) 0.983 (0.972–0.995)

24-h PM2.5 sulfate 3.82 mg/m3 0.999 (0.987–1.011) 1.007 (0.996–1.018)

24-h PM2.5 total carbon 3.63 mg/m3 1.016 (1.005–1.026) 1.001 (0.993–1.008)

24-h PM2.5 organic carbon 2.61 mg/m3 1.015 (1.005–1.026) 1.003 (0.995–1.011)

24-h PM2.5 elemental carbon 1.15 mg/m3 1.015 (1.005–1.025) 0.996 (0.989–1.004)

24-h PM2.5 water-soluble metals 0.03 mg/m3 1.009 (0.997–1.021) 1.005 (0.995–1.015)

24-h oxygenated hydrocarbon 19.40 mg/m3 1.009 (0.991–1.028) 0.990 (0.975–1.004)

CI, confidence interval; CVD, cardiovascular disease; IQR, inter-quartile range; PM, particulate matter; RD, respiratory disease; RR, risk ratio.
aSingle-pollutant generalized linear models including indicators for day-of-week, hospital entry and holidays; cubic splines for time, temperature and dew

point temperature.
bThree-day moving average.
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Figure 1. Results of selected multipollutant models for combined
cardiovascular diseases group, 1998–2004, Study of Particles and
Health in Atlanta (SOPHIA). CO, carbon monoxide; IQR, inter-
quartile range; NO2, nitrogen dioxide; PM, particulate matter; TC,
total carbon. Models shown include only days on which CO, NO2,
PM2.5, and TC are all non-missing. The single-pollutant results
therefore are not identical to the single-pollutant results presented in
Table 4.
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identical to the single-pollutant results presented in Table 4.
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single-pollutant models will be better estimates of the

relationship of the risk factor (or surrogate) with the health

outcome.

The Atlanta emergency department study provides the

opportunity to apply this type of assessment to epidemiologic

model results. The predictors of interest for multipollutant

models of CVD were based on significant positive single-

pollutant model results and included NO2, CO, and fine

particle EC, OC, and TC. TC was chosen as a combined EC

and OC metric in all CVD multipollutant models, as

described earlier. The three resulting predictors, NO2, CO,

and TC, are all known to be markers of motor vehicle

emissions. While diesel and gas engines both emit all three

pollutants, gas engines emit relatively more CO and diesel

exhaust is richer in EC and NOx. Spearman’s correlation

coefficients between NO2, CO, and TC concentrations were

moderate, in the range of 0.60–0.70. While it is conceivable

that all three pollutants are independent risk factors for

CVD, it is also plausible that some or all of these pollutants

are related to CVDs only through their correlation with other

agents in vehicle exhaust. In such a case, the two- or three-

pollutant models can assist in identifying which of the

predictors is the best surrogate for traffic emissions, as

evidenced by the strongest association with the outcome. In

our analysis, we found that for CVD, CO was the strongest

predictor in models with two-pollutant combinations of NO2,

CO, and TC, as well as in a model including all three

pollutants. Several scenarios are consistent with this observa-

tion. For instance, these results could have been obtained if

TC is etiologically linked to the outcome and CO is

associated with the outcome only by virtue of being a

marker of TC, and ambient CO levels measured at a central

monitor are more correlated with personal exposure to TC of

ambient origin than ambient TC. Spatial variation for these

motor vehicle-related pollutants is substantial, but because

traffic tends to have citywide temporal variation, there is at

least moderate temporal correlation in levels of each of these

pollutants across space (Wade et al., 2006). Of these three

pollutants, CO appears to be most reliably measured in the

Atlanta data based on collocation studies (Wade et al., 2006),

suggesting that differential measurement error may partly

explain our multipollutant CVD results. Rather than being

itself responsible for the CVD association, CO may be

operating as the best surrogate of vehicular emissions in this

context. USEPA’s most recent carbon monoxide criteria

document concluded that ambient carbon monoxide at levels

typically found in US cities is unlikely to have detrimental

effects in healthy individuals, based largely on evidence from

controlled-exposure studies (USEPA, 2000). Levels such as

those observed in Atlanta (mean 1-h level of 1.6 p.p.m. and

maximum 1-h level of 7.7 p.p.m. during our study period)

would not be expected to impact carboxy-hemoglobin levels

appreciably. Thus, while some subpopulations, such as those

with coronary heart disease, may be particularly susceptible

to reduction of oxygen-carrying capacity of the blood, and

certain microenvironments can have substantially higher

levels than those reported at AQS monitoring sites, there is a

reasonable possibility that ambient carbon monoxide is

operating as a surrogate of other components of traffic

emissions.

For RD, multipollutant analyses included combinations of

CO, NO2, PM10, and ozone, based on positive single-

pollutant model results for these pollutants. These analyses,

therefore, included two pollutants associated with vehicle

exhaust (i.e., CO and NO2), a heterogeneous pollutant

comprised of both primary and secondary species (i.e.,

PM10), and a secondary pollutant formed largely from

photooxidation of other pollutants, including NO2 (i.e.,

ozone). These pollutants were weakly to moderately

positively correlated with each other in our data, with

Spearman’s correlation coefficients ranging from 0.27 for

ozone and CO to 0.70 for NO2 and CO. In multipollutant

models, PM10 and ozone remained predictive, with ozone

the stronger predictor of the two. Ozone is the least

spatially varying of all the pollutants under consideration

in the RD models, and measurements at the central monitor

are broadly representative of ozone levels throughout the

study area (Wade et al., 2006). As such, differential

measurement error among the four pollutants of interest

may also partly explain our multipollutant RD results. In

addition, it is possible that at least part of the observed

association of ozone with respiratory outcomes is mediated

through ambient ozone measurements operating as a

surrogate for personal PM exposure (Sarnat et al.,

2001), and may explain the stronger association of ozone

with RD compared to PM10. On the other hand, ozone is

known to have direct adverse pulmonary effects based on

chamber studies with human volunteers (e.g., Adams, 2002),

and thus an association with ozone itself is biologically

plausible. These results highlight the uncertainty and

potential for misinterpretation associated with multipollutant

modeling.

Generally, the extension of the time series for an additional

4 years led to more stable risk estimates, and the observed

associations are consistent with those observed in the earlier

analysis (Metzger et al., 2004; Peel et al., 2005). For the two

case groups examined here, we found no additional pollutant

associations compared to our previous analyses. As before,

EC and OC continued to be the fine particle species most

strongly associated with the combined CVD outcome group.

Source apportionment has been proposed as an approach

for dealing with some of the challenges of studying the roles

of multiple pollutants, particularly in the case of PM

components. While source apportionment introduces an

additional layer of uncertainty into epidemiologic analyses

and results in a loss of specificity, it is complementary to

more traditional modeling approaches. In the Atlanta

study, PM2.5 source apportionment work corroborates the
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impression provided by the single-pollutant models that

CVD visits are related to vehicular emissions (both diesel and

gasoline) (Kim et al., 2003, 2004; Marmur et al., 2005, 2006;

Sarnat et al., 2006). Reports on these and a number of other

analyses of the Atlanta data, including spatial subanalyses and

assessment of measurement error impacts, are forthcoming.
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