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Effects of ambient air pollution measurement error on health effect
estimates in time-series studies: a simulation-based analysis
Matthew J. Strickland1, Katherine M. Gass2, Gretchen T. Goldman3 and James A. Mulholland3

In this study, we investigated bias caused by spatial variability and spatial heterogeneity in outdoor air-pollutant concentrations,
instrument imprecision, and choice of daily pollutant metric on risk ratio (RR) estimates obtained from a Poisson time-series
analysis. Daily concentrations for 12 pollutants were simulated for Atlanta, Georgia, at 5 km resolution during a 6-year period.
Viewing these as being representative of the true concentrations, a population-level pollutant health effect (RR) was specified, and
daily counts of health events were simulated. Error representative of instrument imprecision was added to the simulated
concentrations at the locations of fixed site monitors in Atlanta, and these mismeasured values were combined to create three
different city-wide daily metrics (central monitor, unweighted average, and population-weighted average). Given our assumptions,
the median bias in the RR per unit increase in concentration was found to be lowest for the population-weighted average metric.
Although the Berkson component of error caused bias away from the null in the log-linear models, the net bias due to
measurement error tended to be towards the null. The relative differences in bias among the metrics were lessened, although not
eliminated, by scaling results to interquartile range increases in concentration.
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INTRODUCTION
Time-series studies are commonly used to investigate short-term
health effects of ambient air-pollutant concentrations. In these
studies, individual-level personal-exposure measurements are rarely
available; instead, measurements from fixed monitoring sites are
used to create a metric that summarizes the pollutant concentra-
tions throughout the urban airshed. For research questions that
center on the health effects of personal exposure to air pollutants,
the use of outdoor concentrations as a proxy for personal exposure
is an important source of measurement error.1–3 For questions that
center on the population-level health effects of outdoor pollutant
concentrations, the difference between individual-level exposure
and the outdoor concentration is not a relevant source of
measurement error2,4,5 because the counterfactual effect of
interest is the population-level health response associated with a
change in ambient pollutant concentrations.

The summary pollutant metrics that are commonly used in
time-series studies are affected by spatial errors as well as
instrument imprecision.2,6–9 Instrument imprecision is the random
error caused by mismeasurement of the true pollutant
concentration at the monitoring station; for most routinely
collected pollutant species, instrument imprecision at the
monitors is fairly small.7 Components of spatial error include
spatial heterogeneity, which occurs when the average
concentration of a pollutant is not uniformly distributed across
space, and spatial variability, which occurs when the day-to-day
changes in concentration are not uniform across space. Spatial
errors are present because the network of monitors is not
sufficiently dense to fully characterize the spatial heterogeneity
and variability of a pollutant. In combination, these errors may

cause the population-level health effect estimate from a time-
series study to be biased and have reduced precision.1,2,10,11

Assessment of the effects of measurement error is challenging
in part because the distribution of true pollutant concentrations
throughout the airshed cannot be known with certainty. A
simulation-based approach can help to overcome this limitation
because it allows for the generation of model-based pollutant
concentrations that are representative of true concentrations;
from these, a mismeasured pollutant metric can be created and its
properties investigated. In the present study, we used simulations
to investigate the effects of measurement error due to instrument
imprecision and spatial error on the population-level health effect
estimates associated with regulatory ambient pollutant concen-
trations in a time-series study. In previous work, we described how
the Stanford Geostatistical Modeling Software (SGeMS)12 was used
to create individual pollutant fields (at 5 km grids) that contained
the same short-term temporal and spatial autocorrelations that
were observed in the monitoring data from Atlanta, Georgia.13

In that study, we created mismeasured pollutant metrics and
used them, along with the observed daily counts of emergency
department (ED) visits from Atlanta, to predict bias caused
by instrument imprecision and spatial error on health effect
estimates. Here, instead of using observational health data, we
specified the health effect caused by a given increase in pollutant
concentration and directly simulated daily counts of health
events at each grid location. We then created three different
mismeasured daily pollutant metrics and estimated the bias by
comparing the regression coefficient for the risk ratio (RR) that was
specified in the simulation with the regression coefficients that
were obtained from the daily pollutant metrics.
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METHODS
Air-Quality Data
Air-quality measurements in 20-county Atlanta were obtained from
various networks of monitoring stations during 1999–2004. Pollutant
measurements included 1-h maximum nitrogen dioxide (NO2),
nitrogen oxides (NOx), carbon monoxide (CO), and sulfur dioxide (SO2),
8-h maximum ozone (O3), and 24-h average particulate matter
o10mm in diameter (PM10), particulate matter o2.5mm in diameter
(PM2.5), PM2.5 sulfate (SO4), PM2.5 nitrate (NO3), PM2.5 ammonium
(NH4), PM2.5 elemental carbon (EC), and PM2.5 organic carbon (OC).
Measurements were available from six NO2/NOx monitors, five CO
monitors, five SO2 monitors, five O3 monitors, eight PM10 monitors,
nine PM2.5 monitors, and six speciated PM2.5 monitors.13 Pollutant
concentrations were approximately log-normally distributed.10 From
these measurements, we estimated the temporal autocorrelation
and spatial autocorrelation of the log concentrations, the day of
week trends, and the mean, SD, and seasonal trend as functions of
distance from the urban center. Further details of the approach
are available.13 Briefly, we estimated the short-term temporal
autocorrelation out to 14 days, which (for a given pollutant)
was found to be similar across the urban, suburban, and rural
monitors. Correlograms based on an isotropic exponential model
were constructed for each pollutant to estimate the spatial
autocorrelation of the measurements, with the correlation at
distance zero equal to the correlation between measurements
from collocated instruments. Using this correlogram, we estimated
the correlation coefficients between the center of the urban core
and each of the 660 Census tract centroids in 20-county Atlanta
from Census 2000. Each of these correlation coefficients was
weighted by the population residing in that Census tract, and the
spatial autocorrelation was defined as the population-weighted
average of the correlation coefficients. The mean and SD of the log
concentrations were modeled as linear functions of distance from
the urban core. Day of week trends were found to be similar across
urban, suburban, and rural monitors, whereas the seasonal trends
(estimated using a fourth-order polynomial) differed somewhat and
hence were allowed to differ based on distance from the urban core.

Simulation of Ambient Air-Pollutant Concentrations
Based on the six distributional properties that were estimated
form the air-quality measurements (mean, SD, day of week
pattern, seasonal trend, temporal autocorrelation, and spatial
autocorrelation), we created daily two-dimensional pollutant fields
for 20-county Atlanta (16,000 km2) at 5-km resolution for each of
the 12 air pollutants during a 6-year period (2192 days) using
SGeMS. A full description of this model, along with selected model
diagnostics, is available.13 The pollutant fields generated from this
approach are not designed to predict the actual pollutant
concentrations in Atlanta; rather, the fields are designed to have
the same distributional properties (described above) that were
observed in the measured concentrations in Atlanta. For each
pollutant, we used the direct sequential simulation method in
SGeMS14 to generate normalized fields with the desired short-
term temporal and spatial autocorrelation. The pollutant fields
were then denormalized to yield concentrations with the desired
means, SD, day of week patterns, and seasonal trends. The result
was a set of 2192 consecutive fields (per pollutant) that contained
simulated concentrations at 5 km grids (1054 total grid locations
throughout the study area—based on a 31� 34 grid).

Simulation of Health Events
We began by creating a model that utilized data from the ongoing
Study of Particles and Health in Atlanta.15,16 This model used
observed data on ED visits and weather to obtain realistic
parameter estimates for selected meteorological covariates that
would be used in subsequent simulation models. Individual-level

administrative data on ED visits collected from hospitals in 20-
county Atlanta were aggregated into daily counts of cardiovascular
disease (visits with a primary ICD 9 code of 410–414, 427–428,
433–437, 440, 443–445, or 451–453) during 1999–2004.16 Measure-
ments of mean temperature and dew point were obtained from
Hartsfield–Jackson airport because spatially resolved meteorologi-
cal data were not available. The daily counts of ED visits were
modeled (using model (1) below) as a function of mean
temperature and dew point (cubic splines with knots at the 25th
and 75th percentile), day of follow-up (cubic spline on day of
follow-up with monthly knots), and day of week (indicator variables)
using a Poisson time-series regression model to obtain regression
coefficients for use in the next stage of the simulation model.

log EðYiÞ½ � ¼ aþ g1ðg1; . . . ; g5 ; TempiÞ
þ g2ðd1; . . . ; d5 ; Dew PtiÞþ g3ðy1; . . . ; y75

; Day of follow upiÞþ
X6

k¼ 1

bkðDay of weekiÞ
ð1Þ

Where i¼ 1,y,2192 (days)

To simulate the daily number of ED visits for cardiovascular
disease, we created a Poisson regression model that used the
regression coefficients for temperature, dew point, day of follow-
up, and day of week that were obtained from model (1) plus an
additional term (that we specified) for the effect of ambient air-
pollutant concentrations. For consistency across the pollutants
examined, we set the RR for the effect of ambient air-pollutant
concentrations as RR¼ 1.05 per population-weighted inter-
quartile range (IQR) in concentration. We deemed RR¼ 1.05 per
IQR increase to be a plausible effect size for the population-level
effect of outdoor pollutant concentrations. The biases caused by
measurement error (when characterized as a percentage) will be
the same for other RR of similar magnitude. The population-
weighted IQR for each pollutant was obtained by weighting the
simulated concentration from the SGeMS model at each of the
1,054 grid locations by the number of people residing at that
location (Census 2000 estimates), averaging these population-
weighted concentrations on each day, and calculating the IQR of
the daily population-weighted average concentrations during
the 6-year time period. For each pollutant, we set the regression
coefficient (which corresponds to the natural log of the RR) for a
1-unit increase in concentration as log(1.05) divided by the
population-weighted IQR for that pollutant. We used these
regression coefficients in a Poisson regression model (model (2)
below) to estimate the expected number of ED visits at each grid
point on each day. Apart from the addition of the grid-specific
daily pollutant concentrations that were simulated using SGeMS,
the covariates in the Poisson regression model were the same as
previously described in (1). To account for the variability in
population density across grid locations, the log of the proportion
of the total population estimated to be residing at each grid location
was used as the offset. These proportions were estimated using the
2000 US Census data. When a census tract spanned multiple cells,
we assigned an area-weighted fraction of the population to each of
the cells (assuming a uniformly distributed population density). The
predicted values from this model correspond to the expected
number of ED visits at each grid location on each day.

log EðYi;jÞ
� �

¼ âþ logð1:05Þ
IQR

� �
ðPollutantijÞþ

X5

k¼ 1

ĝkðTempiÞ

þ
X5

k¼ 1

d̂kðDew PtiÞþ
X75

k¼ 1

ŷkðDay of follow upiÞ

þ
X6

k¼ 1

b̂kðDay of weekiÞþ log
Populationj

Total population

� �

Where i¼ 1,y,2192 (days) and j¼ 1,y,1054 (grid cells)
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To simulate the observed number of ED visits (and to add
Poisson random error), we then drew a random variable from a
Poisson distribution with mean equal to the expected number of
events for each grid location on each day (model (3) below).
Because the sum of two (or more) independent Poisson
distributions is itself a Poisson distribution, the final step was to
sum the daily counts across all the grids to generate the city-wide
daily count of ED visits. We simulated 50 such data sets for each
pollutant, each time drawing a new set of Poisson random
variables.

Yi;j;k � PoissonðEðYi;jÞÞ ð3Þ
Where i¼ 1,y,2192 (days), j¼ 1,y,1054 (grid cells), and
k¼ 1,y,50 (number of simulations)

Evaluation of Measurement Error
We first examined the consequences of Berkson error by
comparing the effect estimate obtained from a Poisson time-
series regression model that included the population-weighted
average pollutant concentration, calculated from the 1054 grid
locations and interpreted as the ‘‘true’’ population-weighted
average (TPWA) for the study region, along with the other
covariates used in the simulation model for the health events
(temperature, dew point, day of follow-up, and day of week), with
the effect that was specified in the simulations. We view these
errors as Berkson type because the grid-specific concentrations
vary about the measured concentration (the TPWA) and the error
is independent of the TPWA. Examination of the effect these errors
have on the RR estimate is of interest, because in log-linear
models Berkson error can cause bias away from the null if the
variance of the errors is not constant (e.g., as in our situation
where the pollutant concentrations are log-normally distribu-
ted).17,18 Percent bias in bk for a given simulated data set
(k¼ 1,y,50) due to Berkson error was calculated as:

Percent bias in bk ðper unit increaseÞ due to Berkson error

¼
bk;TPWA � IQRTPWA

logð1:05Þ � 1

� �
� 100

We then created three different daily pollutant metrics that
contained additional measurement error.13 To create these
metrics, we began by identifying the grid cells that
corresponded to the sites of the actual ambient air-quality
monitors in Atlanta, and then supposed that instead of having
pollutant measurements at all 1054 grids, we only had the
measurements at the grid cells that contained a monitor (between
five and nine locations, depending on the pollutant). To introduce
instrument error, classical error was added to the simulated
pollutant concentrations at these locations such that the Pearson’s
correlation coefficient between the directly simulated ‘‘true’’
concentration and that same concentration with instrument
error added was equal to the square-root of the correlation
between measurements from collocated monitors observed in
field tests.7,13 Using the simulated concentrations that contained
instrument error, three daily metrics were created for each
pollutant: (1) a central monitor metric (the concentrations at
the grid cell where the Jefferson Street monitor is sited (near the
center of the urban core)), (2) an unweighted average metric
(the average of the available measurements), and (3) a population-
weighted metric (which required additional modeling). With the
population-weighted metric, we attempted to reproduce the
TPWA concentration, but instead of having the full suite of
simulated concentrations at 1054 grid locations, we used only the
mismeasured concentrations at the locations where monitors are
sited. To calculate the population-weighted metric, we used a
previously described interpolation method19 wherein daily Census
tract-specific concentrations were estimated using a model that
adjusted the inverse distance-weighted concentration at each

Census tract (calculated from mismeasured concentrations at the
monitor locations) by the distance between the centroid of that
tract and the center of the urban core. Each Census tract-specific
estimate was weighted by the number of people living in that
tract, and the population-weighted average was calculated.

For each metric, we investigated the effects of measurement
error by comparing the regression coefficient (bk) with the effect
that was specified in the simulations (RR¼ 1.05 per IQR increase in
the TPWA). Because the IQR for each metric will differ from the
IQR for the TPWA, we investigated bias in bk on both a per-unit
basis and after scaling bk to its corresponding IQR. For each
combination of pollutant and metric, the bias in bk (k¼ 1,y,50)
was calculated as:

Percent bias in bkðper unit increaseÞ¼
bmetric;k

log 1:05ð Þ=IQRTPWA
� 1

� �
� 100

Percent bias in bkðper IQR increaseÞ¼
bmetric;k � IQRmetric

logð1:05Þ � 1

� �
� 100

RESULTS
The mean and IQR for the TPWA and for each of the three metrics
are shown in Table 1. Primary pollutants emitted directly from
sources tend to have more spatial heterogeneity than secondary
pollutants, and this difference is reflected in the summary statistics
presented in Table 1. For example, among the traffic-related
pollutants, such as NOx, CO, and PM2.5 EC, the central monitor
metric tended to be higher than the other two metrics, reflecting
the heavier traffic volume near the urban core. For these
pollutants, the IQRs also differed across the metrics, with the
highest IQRs observed for the central monitor metric. For
pollutants of secondary origin, such as O3 and SO4, the mean
concentrations and IQRs were more similar across metrics.

On each day for each pollutant, the true grid-specific ambient
pollution levels (Z*) were distributed about the TPWA (ZTPWA) with
a population-weighted mean error of zero (ZTPWA� Z*¼ 0).
Table 2 displays the bias in the estimated regression coefficient
for the RR caused by use of the TPWA. We observed bias away
from the null in our Poisson time-series models because the
variance of the Berkson error tended to be larger on days when
the TPWA was large.18 Positive relationships between the variance
of the Berkson error and the TPWA were observed for all
pollutants. In Figure 1, we plot the observed bias (reported in
Table 2) against the slope of the relationship between the variance
of the Berkson error and the TPWA; to make the slopes non-
dimensional and comparable across pollutants, each slope was
normalized by the IQR of that pollutant’s TPWA. The pollutants of
substantial secondary origin (O3, PM10, PM2.5, SO4, NO3, NH4, and
OC) have low spatial variability and had normalized slopes o1.
The Berkson error caused little or no bias for these pollutants. The
source-oriented pollutants (SO2, NOx, NO2, CO, and EC) have more
spatial variability, which resulted in steeper normalized slopes and
consequently increased bias. The observed bias away from
the null was largest for SO2, the pollutant for which the variance
of the Berkson error increased most rapidly in relation to increases
in the TPWA.

In addition to bias associated with using a perfectly measured
population-weighted average as described above, bias is also
caused by using mismeasured pollutant metrics. Although the
Berkson component of error related to the spatial variability of air
pollution caused bias away from the null (as shown in Table 2), the
net bias (per unit increase in concentration) due to all the sources
of measurement error considered, including error resulting from
the limited number and location of monitors, instrument
imprecision, and choice of metric, tended to be towards the null
(Table 3). Large differences across the metrics were observed, with
the central monitor metric always resulting in the most bias
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towards the null. For spatially heterogeneous primary pollutants,
the metric based on the population-weighted average tended to
be less biased than the metric based on the unweighted average,
whereas these two metrics resulted in similar bias for secondary
pollutants that were more homogeneously distributed throughout
the airshed. Figure 2 displays the component of this bias caused
from using a mismeasured pollutant metric (Z) rather than the
TPWA (ZTPWA), which is related to the slope of the error (Z� ZTPWA)
versus the mismeasured value.10,13

Because some of the differences in bias between the metrics on
a per unit basis might have been due to calibration issues, results
are also presented per IQR increase in pollutant concentration in
Table 4. When the RR is scaled to an IQR increase in concentration,
the median bias decreased for both the central monitor and
unweighted average metrics, with the most noticeable reduction
in bias for the central monitor metric. Even so, the central monitor
metric was still the most biased metric. Median bias was similar for
the population-weighted average metric and the unweighted
average metric, with some indication that the effects per IQR
might be slightly less biased for the unweighted average metric.

DISCUSSION
We investigated bias in the RR estimate caused by using a
mismeasured daily pollutant metric in a time-series analysis. For all
the pollutants examined, the central monitoring station metric
resulted in the most bias. This was true not only when bias was
examined per unit increase in concentration, which might have
been expected if the differences among the metrics were largely
due to issues of calibration, but also when the effects were scaled
to IQR increases in concentration. When the effect estimates were
scaled per unit increase in concentration, the least bias was
observed in the population-weighted average. We interpret our
results as supporting the use of a population-weighted average
metric in time-series analyses. In simulating the health data, we
specified a population-level health effect per unit increase in
pollutant concentration — this is the target parameter that we
wish to estimate — and given this objective, the population-
weighted average metric outperformed the other two metrics.

Table 2. Median bias per unit increase in pollutant concentration and
82% interval (5th lowest value, 5th highest value from the 50
simulations) caused by Berkson error.

Median bias 82% Interval

NO2 2.88% (� 1.94%, 12.57%)
NOx 12.32% (2.72%, 20.65%)
CO 6.81% (� 2.37%, 16.96%)
SO2 23.91% (18.29%, 29.99%)
O3 2.21% (� 14.32%, 15.48%)
PM10 0.07% (� 6.56%, 10.55%)
PM2.5 0.37% (� 12.12%, 12.64%)
SO4 � 1.09% (� 10.81%, 9.66%)
NO3 1.67% (� 4.66%, 9.65%)
NH4 2.04% (� 7.4%, 11.37%)
EC 4.86% (� 1.29%, 11.69%)
OC 1.98% (� 5.27%, 8.02%)

Abbreviations: NO2, 1-h maximum nitrogen dioxide; NOx, 1-h maximum
nitrogen oxides; CO, 1-h maximum carbon monoxide; SO2, 1-h maximum
sulfur dioxide; O3, 8-h maximum ozone; PM10, 24-h average particulate
mattero10 mm in diameter; PM2.5, particulate mattero2.5 mm in diameter;
SO4, PM2.5 sulfate; NO3, PM2.5 nitrate; NH4, PM2.5 ammonium; EC, PM2.5

elemental carbon; OC, PM2.5 organic carbon.
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Figure 1. Observed bias (median, 82% interval) in the RR caused by
Berkson error. The x axis is the slope of the relationship between the
Berkson error and the TPWA normalized by the IQR of the TPWA.
From left to right, the pollutants are O3, PM2.5, SO4, PM10, NH4, OC,
NO3, NO2, EC, CO, NOx, and SO2.

Table 1. Mean and IQR of the true population-weighted average concentration, the central monitor metric, the population-weighted average metric
and the unweighted average metric.

Pollutant True population-weighted average Central monitor metric Population-weighted average metric Unweighted average metric

Mean IQR Mean IQR Mean IQR Mean IQR

NO2 (ppb) 24.67 13.20 44.54 24.57 23.46 14.24 29.43 15.85
NOx (ppm) 0.05 0.04 0.12 0.11 0.05 0.04 0.07 0.06
CO (ppm) 0.78 0.45 1.62 1.32 0.79 0.52 1.11 0.78
SO2 (ppb) 12.15 9.00 15.35 14.17 10.34 8.90 12.78 10.88
O3 (ppb) 44.62 30.30 44.90 34.37 43.91 31.34 44.77 31.29
PM10 (mg/m3) 23.02 13.64 25.13 16.76 22.56 14.00 24.00 14.16
PM2.5 (mg/m3) 16.09 10.41 18.03 11.64 16.10 10.61 17.00 10.91
SO4 (mg/m3) 4.96 4.41 5.35 4.82 4.93 4.42 5.03 4.56
NO3 (mg/m3) 1.13 1.02 1.34 1.22 1.11 1.00 1.15 1.03
NH4 (mg/m3) 2.30 1.66 2.32 1.86 2.24 1.63 2.34 1.72
EC (mg/m3) 0.68 0.49 0.90 0.81 0.62 0.49 0.70 0.53
OC (mg/m3) 5.16 3.48 5.93 4.72 5.10 3.50 5.33 3.65

Abbreviations: CO, 1-h maximum carbon monoxide; EC, PM2.5 elemental carbon; IQR, interquartile range; NO2, 1-h maximum nitrogen dioxide; NOx, 1-h
maximum nitrogen oxides; SO2, 1-h maximum sulfur dioxide; OC, PM2.5 organic carbon; O3, 8-h maximum ozone; PM10, 24-h average particulate matter
o10 mm in diameter; PM2.5, particulate matter o2.5 mm in diameter; SO4, PM2.5 sulfate; NO3, PM2.5 nitrate; NH4, PM2.5 ammonium.
Further description of how these concentrations were simulated is available.13
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The practice of scaling results to an IQR increase in concentra-
tion (or to a SD increase in concentration) is common in air
pollution epidemiology because it facilitates comparisons of
estimated effects across pollutant species that would otherwise
be difficult (e.g., because two pollutants are measured in different
units or at different monitoring stations). In our study, we
observed that the bias per IQR increase in concentration tended
to be less than the bias per unit increase in concentration for both
the unweighted average metric and the central monitor metric.
Presumably, this occurs because pollutants are not uniformly
distributed throughout the urban airshed, and (given these
patterns) in absolute terms the amount of pollution needed to
increase the central monitor concentration by 1 p.p.b. is less than
the amount needed to increase the unweighted average by
1 p.p.b. Although scaling the results per IQR increases attempts to
account for this difference, doing so has the disadvantage
of tying the interpretation of the RR to the distribution of
pollutant concentrations specific to the study. Conversely, for the
population-weighted average metric, we did not see a similar

reduction in bias when results were scaled to an IQR increase
because a 1-unit increase in the metric corresponds well with a
1-unit increase in the TPWA.

For most of the pollutants examined, the bias away from the
null due to Berkson error was small, although the median bias was
as large as 24% for SO2. The phenomena of Berkson error causing
bias away from the null has been previously reported, and an
approximate method to correct for this bias using regression
calibration has been proposed.18 Because the common practice in
air pollution epidemiology is not to attempt to correct for this bias,
we presented the uncorrected results. Even though Berkson error
was present in all of the metrics, for most pollutants the bias
caused by instrument error and unmeasured spatial variability in
pollutant concentrations, which are more classical-like, was larger
than the bias caused by Berkson error, and consequently the net
bias was towards the null.

This study extends our previous work on the effects of
measurement error in time-series studies. In those studies, we pre-
dicted the effect of measurement error on bias as being
approximately equal to the slope of the measurement error
(measurement — truth) versus the measurement across the
various pollutant species.10 We also predicted the bias as being
approximately equal to 1 minus the ratio of the TPWA SD to the
SD of the chosen metric.13 Although our previous conclusions
were informed by performing analyses on the observed daily
counts of ED visits in Atlanta, here we specified a data-generating
function to simulate counts of ED visits, which allowed us to
specify the true population-level health effect of ambient
pollutant concentrations and then compare the estimates
obtained from the mismeasured pollutant metrics with the true
effect. Results from the present analysis were largely in agreement
with the predictions made in previous work, with bias towards the
null being greater for primary pollutants than for secondary
pollutants, and with the population-weighted average having the
least bias when RRs were scaled per unit increase in concentration.

In simulating the daily counts of health events, we constrained
the pollutant concentration for each grid cell to only affect the
population in that cell. In doing so, we imposed an assumption
that the pollutant concentration at the place of residence was the
relevant concentration for health studies. In practice, this
assumption will not be fully satisfied because people move about
the city throughout the day. Thus, the advantage of the
population-weighted average over the other two metrics is likely
overstated in our simulation-based results. In previous work based

Table 3. Median bias and 82% interval (5th lowest value, 5th highest value from the 50 simulations) in the estimated regression coefficients (per
standard unit increase in pollutant concentration) for each of the three daily pollutant metrics compared with the specified effect.

Central monitor metric Population-weighted average metric Unweighted average metric

Median bias 82% Interval Median bias 82% Interval Median bias 82% Interval

NO2 � 63.2% (� 66.2%, � 58.2%) � 19.7% (� 26.9%, � 13.2%) � 26.5% (� 33.2%, � 20.7%)
NOx � 69.8% (� 72.6%, � 67.7%) 2.8% (� 5.0%, 11.5%) � 26.5% (� 32.7%, � 20.9%)
CO � 77.0% (� 78.6%, � 74.0%) � 18.2% (� 24.4%, � 10.8%) � 48.0% (� 52.2%, � 43.4%)
SO2 � 70.3% (� 72.1%, � 68.4%) � 22.6% (� 26.9%, � 17.9%) � 32.8% (� 37.5%, � 29.7%)
O3 � 16.9% (� 32.5%, � 6.9%) � 1.6% (� 18.4%, 8.9%) � 2.6% (� 19.8%, 8.1%)
PM10 � 39.6% (� 43.6%, � 32.2%) � 14.6% (� 19.5%, � 5.2%) � 13.7% (� 18.3%, � 4.2%)
PM2.5 � 31.3% (� 41.5%, � 21.8%) � 8.1% (� 19.3%, 2.5%) � 9.0% (� 20.1%, 0.8%)
SO4 � 29.7% (� 37.8%, � 21.2%) � 8.4% (� 17.8%, 1.7%) � 4.8% (� 15.3%, 5.4%)
NO3 � 31.9% (� 37.7%, -26.1%) � 2.0% (� 9.2%, 5.9%) � 5.2% (� 11.4%, 2.5%)
NH4 � 26.6% (� 33.6%, � 20.2%) � 5.7% (� 13.5%, 2.6%) � 3.1% (� 11.7%, 5.3%)
EC � 57.2% (� 60.3%, � 54.2%) � 5.1% (� 10.6%, 2.1%) � 12.8% (� 17.8%, � 5.6%)
OC � 41.8% (� 48.7%, � 37.1%) � 9.1% (� 15.4%, � 4.1%) � 8.6% (� 14.7%, � 2.9%)

Abbreviations: NO2, 1-h maximum nitrogen dioxide; NOx, 1-h maximum nitrogen oxides; CO, 1-h maximum carbon monoxide; SO2, 1-h maximum sulfur
dioxide; O3, 8-h maximum ozone; PM10, 24-h average particulate mattero10 mm in diameter; PM2.5, particulate mattero2.5mm in diameter; SO4, PM2.5 sulfate;
NO3, PM2.5 nitrate; NH4, PM2.5 ammonium; EC, PM2.5 elemental carbon; OC, PM2.5 organic carbon.
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Figure 2. Observed bias (median, 82% interval) in the RR per unit
increase in concentration for the three metrics relative to the RR
estimated using TPWA. The x axis is the slope of the relationship
between the error (Z� ZTPWA) and the measurement (Z). Bias is
presented on the y axis. Data points represent each of the 12
pollutants (unlabeled) for each of the three metrics. A 1:1 line is
shown for reference.
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on observed data from Atlanta, the three daily pollutant metrics
produced similar estimates of the RR per IQR increase in
concentration in a time-series analysis.20 The somewhat
discrepant findings between our simulations and our analysis of
observational data might be viewed as supporting the hypothesis
that pollutant concentrations from areas other than the place of
residence also contribute to morbidity.

Our modeled pollutant fields do not incorporate the fine-scale
variability in pollutant concentrations that is not captured by the
existing regulatory network of fixed monitoring sites, such as
pollutant gradients associated with major roadways. Another
limitation of our current approach is the inability to examine the
effects of measurement error in a multi-pollutant context because
the fields for one pollutant were simulated independently from
the fields for the other pollutants, yet the actual concentrations of
many pollutants will covary. Further, even though we controlled
for meteorology in the analysis, the pollutant concentrations were
simulated independently of meteorological conditions; thus,
meteorology was not a confounder in our simulated data sets.
We included meteorology in the Poisson regression models so
that the number of simulated ED visits would be similar to the
number of ED visits that were observed during 1999–2004. Finally,
our simulation results did not consider differences between
personal exposure and the ambient concentration as a source of
measurement error because our target parameter of interest was
the population-level health effect of outdoor concentrations.
Investigations that use ambient concentrations as surrogate for
personal exposure need to consider the consequences of this
source of measurement error as well.

In this simulation-based study, we examined bias caused
from using three different mismeasured pollutant metrics in a
time-series analysis. Given our assumptions, the population-
weighted average metric resulted in the least amount of
bias in the estimated RR per unit increase in outdoor concentra-
tion. The estimated RRs tended to be more biased for primary
pollutants than for secondary pollutants, owing to the increased
spatial variability in the concentration of primary pollutants.
Future work is needed to better establish the effects of
measurement error for time-series studies in multi-pollutant
settings.
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