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ABSTRACT
Background: Relationships between ambient air pollu-
tion levels during pregnancy and adverse pregnancy
outcomes have been investigated using one of three
analytic approaches: ambient pollution levels have been
contrasted over space, time or both space and time.
Although the three approaches share a common goal, to
estimate the causal effects of pollution on pregnancy
outcomes, they face different challenges with respect to
confounding.
Methods: A framework based on counterfactual effect
definitions to examine issues related to confounding in
spatial, temporal, and spatial–temporal analyses of air
pollution and pregnancy outcomes is presented, and their
implications for inference are discussed.
Results: In spatial analyses, risk factors that are spatially
correlated with pollution levels are confounders; the
primary challenges relate to the availability and validity of
risk factor measurements. In temporal analyses, where
smooth functions of time are commonly used to control
for confounding, concerns relate to the adequacy of
control and the possibility that abrupt changes in risk
might be systematically related to pollution levels.
Spatial–temporal approaches are subject to challenges
faced in both spatial and temporal analyses.
Conclusion: Each approach faces different challenges
with respect to the likely sources of confounding and the
ability to control for that confounding because of
differences in the type, availability, and quality of
information required. Thoughtful consideration of these
differences should help investigators select the analytic
approach that best promotes the validity of their research.

Since the mid-1990s, investigators have become
increasingly interested in studying the effects of air
pollution on pregnancy outcomes. As detailed in
several reviews,1–6 outcomes such as preterm
delivery, low birth weight, intrauterine growth
restriction, spontaneous abortion and congenital
malformations have been associated with ambient
air pollution levels.

Overwhelmingly, the studies conducted to date
have focused on associations between ambient air
pollution levels and pregnancy outcomes.
Information about relationships between personal
exposure to air pollution during pregnancy and
risks of adverse pregnancy outcomes is limited;
reported effects have been small.7 8 However, even
if the dose effects were large, the expectation for a
measure of association based on ambient pollution
levels may be attenuated if the measurement error
incurred is non-differential with respect to the
outcome.9 10 This measurement error can be sub-
stantial. Longitudinal correlation coefficients

between ambient pollution levels and personal
exposure measurements range between 0.5 and 0.7
for particulate matter (2.5 mm in aerodynamic
diameter;11–14 correlations for gaseous pollutants
tend to be weaker.11–14 The attenuation of the risk
ratio that may occur because of this measurement
error, coupled with the small effects observed in
the personal exposure studies, suggests that the
causal effects of ambient air pollution on adverse
pregnancy outcomes, if they exist, are likely to be
small.7 8

The possibility that an observed association
might be due to confounding constantly threatens
the validity of observational research; in studies of
ambient air pollution and pregnancy outcomes this
concern is particularly relevant because the effect
sizes are likely to be small. We present a framework
based on counterfactual effect definitions to
examine issues related to confounding in spatial,
temporal and spatial–temporal analyses of air
pollution and pregnancy outcomes, and we discuss
their implications for inference.

COUNTERFACTUAL DEFINITION OF A CAUSAL
EFFECT
Our exposition focuses on a cohort of pregnant
women with a shared exposure. One such cohort is
women who conceive on a particular day who live
in a particular area. We assign all these women the
same pollution metric, for example an average of
ambient measurements during the first month of
pregnancy. We refer to this cohort of women as the
‘‘target population’’.15 Our goal is to estimate the
causal effect of a change in ambient air pollution
levels on the risk of an adverse pregnancy outcome
in the target population.

We label the observed risk of the adverse
pregnancy outcome in the target population,
ignoring sampling error, as Risk, and the observed
ambient air pollution level as Pollution. Inherent to
the consideration of causality in this context is the
question: ‘‘What would the risk in the target
population have been if the pollution level had
been Pollution* instead of its observed level?’’ We
denote this ‘‘counterfactual’’ risk, which describes
the risk in the target population under a hypothe-
tical alternative condition that did not occur, as
Risk*.15 A counterfactual definition for the causal
effect of this difference in pollution levels
(Pollution–Pollution*) is the difference in risks in
the target population under the two exposure
scenarios, that is Risk–Risk*.15 16

To determine this causal effect requires knowl-
edge of both Risk and Risk*. Because the counter-
factual risk cannot be observed, data external to
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the target population are needed to estimate Risk*. For example,
the observed risk for a different cohort of pregnant women
exposed to ambient air pollution level Pollution* could be used to
estimate Risk*. We refer to this second cohort of pregnant
women as the ‘‘substitute population’’, because the risk in this
cohort is used to substitute for the parameter of interest.15

Confounding occurs when the risk in the substitute population
imperfectly represents what the risk in the target population
would have been under the hypothetical alternative pollution
level.15 16

A counterfactual framework to discuss confounding
In studies of ambient air pollution and pregnancy outcomes,
women may be assigned pollution levels that vary over space,
time or both space and time. Although analysis typically
proceeds by analysing all women together, we contend these
studies can be envisioned as a series of contrasts between a
target population (or individual) and a substitute population (or
individual).

Risks of an adverse pregnancy outcome for four mutually
exclusive cohorts of pregnant women, defined with respect to
location and time, are presented in table 1. Risk11 and Risk21 are
risks for two cohorts at different locations at one point in time.
Similarly, Risk11 and Risk12 are risks for two cohorts at the same
location at different times. Risks for two cohorts that differ
with respect to both location and time are denoted by Risk11

and Risk22.
Assume the cohort at Location 1 and Time 1 is the target

population. Because ambient air pollution levels vary across
space and time, any of the other cohorts in table 1 could be used
as the substitute population, and Risk21, Risk12 or Risk22 could
be used to estimate the counterfactual risk in the target
population. Unfortunately, none of these populations will likely
be a perfect substitute for the target population, and confound-
ing will be a concern. Therefore, the choice of Risk21, Risk12 or
Risk22 as the estimate of the counterfactual risk should be based
on the investigator’s ability to compensate for differences
between the two populations in the analysis. For each scenario,
we describe challenges commonly encountered when analytic
techniques are used to account for differences between the
target and the substitute populations, and we discuss how the
presumably small effect of ambient air pollution on the
pregnancy outcome influences interpretation of the effect
estimate.

CONFOUNDING IN SPATIAL ANALYSES
A spatial analysis contrasts pollution levels between popula-
tions in different locations at a given point in time by using
Risk21 as the counterfactual risk estimate (table 1). Examples of
spatial analyses include Vassilev et al,17 Wilhelm and Ritz18 and
Huynh et al.19 In spatial analyses, confounding occurs when the
risk in the substitute population imperfectly represents what
the risk in the target population would have been under the
hypothetical alternative pollution level, for example if socio-
economic status, which affects risk, differs between the two
locations of interest. To validly estimate this causal effect, risk

factors that differ between the target and substitute popula-
tions must be appropriately accounted for in the analysis.
Practical challenges can arise when analytic methods are used to
account for confounding.

One such challenge is residual confounding, which can occur
if confounders are measured with error. In most investigations,
birth certificates have been used as the primary data source for
information about the outcome and potential confounders.1–6

Much information contained in birth certificates is subject to
measurement error, with the validity of data pertaining to
tobacco use, alcohol use, prenatal care, maternal risk factors,
pregnancy complications and delivery method generally con-
sidered to be poor for US birth certificates.20 21 Many adverse
pregnancy outcome risk factors are unlikely to be uniformly
distributed across space, as evidenced by the disparities that
exist across US urban populations with respect to proximity to
environmental hazards according to factors such as race,
socioeconomic status, education and health insurance status.22 23

Because risk factors may be spatially correlated with ambient air
pollution levels, investigators should be concerned about
residual confounding when variables on birth certificates (that
might be measured with error) are relied upon to compensate
for differences between target and substitute populations in an
analysis. The impact of residual confounding has been
described, for example if the sensitivity and specificity of a
dichotomous confounder are both 0.90, only 64% of the
confounding is expected to be removed.24

Information on several potential confounders may not be
available on birth certificates; of these, socioeconomic status is
perhaps the greatest concern.23 Commonly available individual-
level variables, such as race and education, are unlikely to
capture the full construct of socioeconomic status.25 Controlling
for neighbourhood-level socioeconomic status variables may not
capture potentially important within-neighbourhood variation
(eg, in many urban US neighbourhoods, houses located on
highly trafficked roads tend to have lower resale values than
similar houses on roads with less traffic).26 27 Other unmeasured
risk factors could also vary across locations and potentially
confound the estimated effect of air pollution in a spatial
analysis. For example, health-conscious women may be more
averse to living near visible environmental hazards such as
automobile traffic, high-tension wires or waste sites. These
women may be more likely to engage in other behaviours that
would reduce their risk of an adverse pregnancy outcome (eg,
exercise, diet, vitamin use, prenatal care).

Although residual confounding and weak uncontrolled
confounding are common concerns in observational research,
we believe they are particularly relevant in this setting, because
accurate measurements of all confounders are usually not
available, and because the causal effects of ambient air
pollution, if they exist, are likely to be small. Although an
elevated risk ratio is compatible with a true pollution effect, it is
also compatible with an estimate biased away from the null
because of residual confounding or weak uncontrolled con-
founding. It seems prudent to be concerned about confounding
in this setting; the imperfect validity of data on US birth records
is well known,20 and perfect control of socioeconomic status
using birth certificate data seems unlikely.25 Consistency of
results does not necessarily rule out confounding as a plausible
explanation, because confounding can be similar across studies.

CONFOUNDING IN TEMPORAL ANALYSES
Temporal analyses contrast pollution levels over time between
populations at a particular location by using Risk12 as the

Table 1 Risks of an adverse pregnancy outcome for four mutually
exclusive cohorts of pregnant women

Time 1 Time 2

Location 1 Risk11 Risk12

Location 2 Risk21 Risk22
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counterfactual risk estimate (table 1). Examples include Gouveia
et al,28 Sagiv et al29 and Hansen et al.30 As is true for spatial
analyses, valid estimation of the causal effect requires proper
control for risk factors that differ between the target and the
substitute populations.

In temporal analyses, smoothing functions (eg, parametric
splines and nonparametric smoothers) can be used to control for
confounding by risk factors that change gradually over time.
Many risk factors change smoothly over time, for example long-
term trends in demographics, healthcare, smoking, use of
assisted reproductive technologies and prenatal vitamin use.
When a smooth function of time is included in a regression
model, successful control of confounding will depend on how
well that function of time serves as a proxy for unmeasured
time-varying risk factors. In these analyses, concerns about
confounding often centre on abrupt, unmeasured changes in
risk which are not accounted for in the analysis. Residual
confounding, which is also a concern, can occur when the
smoothing function does not fully account for the long-term
and seasonal variations in risk or if risk factors with short-term
variability are measured with error.

To confound a temporal analysis that adequately controls for
gradual trends, a risk factor with abrupt temporal variation
must be systematically associated with air pollution levels.
Otherwise, the risk factor will simply add to uncertainty and
reduce power to detect an association. An infectious disease
outbreak is a short-term change that could increase risks of
adverse pregnancy outcomes. Some infections during pregnancy
increase risks of specific outcomes (eg, cytomegalovirus infec-
tion is associated with intrauterine growth restriction and
congenital anomalies),31 whereas others plausibly increase risk
(eg, influenza and respiratory illness cause inflammation, and
inflammation is a risk factor for preterm delivery).32 Many
infectious diseases are seasonal;33 furthermore, within a parti-
cular season, outbreaks may be more likely to occur during
bouts of cold weather, when people spend more time indoors
and interpersonal contacts are increased.34 Since temperature
impacts the concentrations of many air pollutants,35 such
outbreaks could confound the association of interest. A disaster
of any type could increase risks as well, for example because of
changes in maternal stress; exposure to toxic agents; or
disruptions in the availability of food, water or medical services.
If short-term changes in risk, such as those resulting from an
infection or disaster, are systematically associated with ambient
air pollution levels, then the association of interest will be
confounded. These risk factors can also confound spatial
analyses, for example if the event disproportionately affected
people in areas that had relatively high (or low) air pollution
levels.

Irrespective of the analytic approach, most investigators have
examined ambient air pollution levels averaged over a few
weeks or months during pregnancy. If a smooth function of
time is used to account for confounding by factors with
seasonal and long-term variation, this control may intrude upon
the gestational window of interest (eg, one pregnancy trimester
is as long as one season). A smooth function of time that does
not control for seasonal trends could be implemented; however,
seasonal birth patterns may vary by socioeconomic status, as
individuals occupying low socioeconomic positions tend to have
fewer spring births.36 37 This is problematic, because air
pollutants have seasonal variation, and the risks of several
adverse pregnancy outcomes are related to socioeconomic
status.38 Confounding by socioeconomic status may therefore
be a concern for temporal analyses that do not control for

season. Unfortunately, controlling for season may remove
residual variability in pollution levels that is of interest. If so,
the likely consequence is a loss of statistical power, which
occurs because the target and substitute populations have
similar pollution levels. This trade-off is characteristic of
temporal analyses; the most satisfying substitute population
(ie, one which is similar to the target population with respect to
location and season) is likely to be similar to the target
population with respect to the ambient pollution level as well.

CONFOUNDING IN SPATIAL–TEMPORAL ANALYSES
Among published studies of relationships between ambient air
pollution and adverse pregnancy outcomes, the most common
analytic approach has been spatial–temporal.1–6 Examples
include Bobak,39 Maisonet et al,40 Slama et al41 and Ritz et al.42

In these analyses, target and substitute populations differ with
respect to location, time or both location and time. Spatial–
temporal analyses are appealing because they utilise variation in
air pollution levels over both space and time, thereby offering
the potential for improved statistical power relative to either a
spatial analysis or a temporal analysis. A major disadvantage of
spatial–temporal analyses, however, is that all of the previously
described concerns about confounding for both spatial analyses
and temporal analyses pertain to spatial–temporal analyses.
Consequently, the potential for confounding in a spatial–
temporal analysis is greater than in either a spatial or temporal
analysis.

DISCUSSION
We have described issues related to confounding for analyses of
ambient air pollution and adverse pregnancy outcomes. No
analytic approach precludes confounding, and in practice it is
impossible to know if a particular association (or lack thereof) is
confounded. Compensating for differences between target and
substitute populations is difficult, and given that the true
effects of ambient air pollution on the risks of adverse
pregnancy outcomes, if they exist, are likely to be small,
concerns that study results might be confounded should be
anticipated. Although we cited specific studies for each analytic
approach, we have refrained from highlighting the plausibility
of confounding in any particular study, as our goal is not to
critique but rather to describe the conceptual issues that relate
to confounding in epidemiological studies of air pollution and
adverse pregnancy outcomes.

In temporal analyses, smooth functions of time are com-
monly used to control for confounding by risk factors with
gradual trends. Although residual confounding is a concern,
smoothing functions seem well suited to account for these
trends. Ideally, risk factors with abrupt temporal variation
should be measured and controlled for; if these fluctuations are
associated with abrupt changes in air pollution levels, then the
association of interest will be confounded. Seasonal control may
entail a trade-off between controlling for potential confounding
and statistical power, and investigators should consider this
when planning the analysis.

Spatial analyses usually rely on measured risk factors to
compensate for differences between the target and substitute
populations. Confounding can occur if risk factors that are
correlated with pollution levels are unmeasured or measured
with error. Many studies have relied on birth certificates, which
contain information on a limited number of risk factors, some
of which are likely measured with error. Supplementary data
collection may be useful; in one recent study, investigators
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collected additional information on risk factors for preterm
birth.42 The authors did not find that these risk factors
confounded associations between ambient air pollution and
preterm birth.42 However, even with additional information, full
control for the effects of many plausible confounders, such as
socioeconomic status or maternal health consciousness, may be
difficult.

As an alternative to measured risk factors, a smooth function
of location could be used to control for confounding in spatial
analyses.43 As in temporal analyses, the adequacy of this
approach depends on the smoothness of the variation in risk;
residual confounding might be present if risks change abruptly
from one location to the next. Contemplation of the smooth-
ness of the variation in risk, and of the likelihood that abrupt
changes in risk are correlated with ambient pollution levels, is
useful for assessing the plausibility of confounding. In our
opinion, ambient air pollution levels are generally more likely to
be correlated with abrupt spatial changes in risk than abrupt
temporal changes in risk. Whereas overall differences between
US urban neighbourhoods might be well characterised using a
smooth function of location, it would be challenging to capture
potentially important within-neighbourhood differences, such
as abrupt changes in socioeconomic status according to
residential proximity to traffic.26 27 Conversely, for temporal
analyses, it is more difficult to envision plausible scenarios in
which abrupt temporal changes in risk would be systematically
associated with ambient air pollution levels (apart from a
natural or manmade disaster). For example, influenza outbreaks
might cause short-term increases in risk. Provided that season is
appropriately controlled for in the analysis, there is little reason
to suspect that the outbreaks would be systematically
correlated with ambient air pollution levels.

The three analytic approaches we have described share a
common goal, to estimate the causal effects of pollution on
pregnancy outcomes, and share a common need, to adequately
control for confounding. Each approach faces different chal-
lenges with respect to the likely sources of confounding and the
ability to control for that confounding due to differences in the
type, availability and quality of information required.
Thoughtful consideration of these differences should help

investigators select the analytic approach that best promotes
the validity of their research.
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