Chapter 49

Temporally and Spatially Resolved Air Pollution
in Georgia Using Fused Ambient Monitor Data
and Chemical Transport Model Results

Sheila A. Sororian, Heather A. Holmes, Mariel Friberg, Cesunica Ivey,
Yongtao Hu, James A. Mulholland, Armistead G. Russell,
and Matthew J. Strickland

Abstract Health data geo-coded with residential coordinates are being used to
investigate the relationship between ambient air quality and pediatric emergency
department visits in the State of Georgia over the time period 2000-2010. Two
types of ambient air quality data — observed concentrations from ambient monitors
and predicted concentrations from a chemical transport model (CMAQ) — are being
fused to provide spatially resolved daily metrics of five air pollutant gases (CO,
NO;, NOy, SO, and O3) and seven airborne particulate matter measures (PM;g,
PM; 5, and PM; 5 constituents SO42~, NOs;~, NH4t, EC, OC). The observational
data provide reliable temporal trends at and near monitors, but limited spatial
information due to the sparse monitoring network; CMAQ data, on the other hand,
provide rich spatial information but less reliable temporal information. Four data
fusion techniques were applied to provide daily spatial fields of ambient air pollutant
concentrations, with data withholding used to evaluate model performance. Two of
the data fusion methods were combined to provide results that minimized bias and
maximized correlation over time and space with withheld data. Results vary widely
across pollutants. These results provide health researchers with complete temporal
and spatial air pollutant fields, as well as with temporal and spatial error estimate
fields that can be incorporated into health risk models. Future work will apply these
methods to five cities for use in ongoing air pollution health studies and to examine
strategies for incorporating land use regression variables for spatial downscaling of
data fusion results.
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49.1 Introduction

Large population studies of human health effects associated with air pollution
can take advantage of both temporal and spatial variation in ambient air quality
levels when such estimates are available. As a part of the Southeastern Center
for Air Pollution and Epidemiology (SCAPE), we are examining relationships of
health outcomes with ambient air pollution resolved temporally to a daily level and
resolved spatially to a 4 km and smaller scale. Presented here is an approach for
estimating daily spatial fields of air pollution in the State of Georgia for use in an
investigation of the relationship with pediatric emergency department visits, geo-
coded with residential coordinates, that builds on previous work [2].

49.2 Methods

Observed concentrations of five air pollutant gases (CO, NO,, NOy, SO, and
0O3) and seven airborne particulate matter measures (PM;g, PM,s, and PM;s
constituents SO4>~, NO3;~, NH4 ™, EC, OC) were obtained from EPA’s Air Quality
System (AQS), the Southeastern Aerosol Research Characterization (SEARCH) [3],
and the Assessment of the Spatial Aerosol Composition in Atlanta (ASACA) [1]
networks for Georgia for the 2000-2010 time period. The number of monitors and
daily metrics calculated are listed in Table 49.1. Locations of monitors are shown
in Fig. 49.1. The observational data provide reliable temporal trends at and near
monitors [6], but limited spatial information due to the sparse monitoring network.
Predicted hourly concentrations from CMAQ were obtained for the Georgia domain
at the 12 km scale for 2002-2008 [5] and at the 4 km scale for 2009-2010
[4]; daily metrics were computed from these datasets. The CMAQ data provide
rich spatial information but less reliable temporal information. Four data fusion
techniques are applied and evaluated for 2010. Two methods use regression models
of observational and CMAQ annual mean data for scaling (Eq. 49.1). One of these
methods involves daily kriging of the ratio of the observation (OBS) to its annual
mean and then rescaling by the predicted annual mean (C*;, Eq. 49.2). The second

Table 49.1 Ambient air pollutant metrics and monitors

I-hmax  1-h 1-h 24-h avg 24-h avg 24-h speciated
8-h max 03 NOszOX max CO max SOZ PM10 PM2A5 PM2A5
North GAmt 3 0 0 2 3 2 2
Metro Atlanta 14 7 5 5 8 16 6
Piedmont 4 0 0 2 1 5 2
Upper coastal 4 0 0 1 4 7 2
Lower coastal 2 0 0 3 3 4 2
Total 27 7 5 13 19 34 14
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Fig. 49.1 Map of Georgia showing regions and major cities, major roadways, and locations of

speciated PM; 5 and ozone monitors

of these methods involves rescaling the CMAQ data (C*,, Eq. 49.3). The other two
methods involve kriging error on a multiplicative (C*5, Eq. 49.4) and additive (C*4,
Eq. 49.5) basis. Data withholding was used to evaluate model performance. Two of
the methods were then selected and combined to provide results that minimized bias

and maximized correlation over time and space with withheld data.

(C*) = a,, (CMAQ)?
C* = (OBS/ (OBS));;, x (C*)
Cy = CMAQ x (C*) / (CMAQ)
C; = CMAQ <+ (CMAQ/OBS),;,

C} = CMAQ — (CMAQ — OBS),,,,

(49.1)

(49.2)

(49.3)

(49.4)

(49.5)
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49.3 Results

The four data fusion methods yield similar spatial fields (e.g. Fig. 49.2). However,
the methods that involved daily kriging of error (Eqgs. 49.4 and 49.5) were less
stable, performing less well in terms of both bias and correlation for most pollutants.
Therefore, the methods that involved using the annual mean model (Eq. 49.1)
were selected. The first approach involving kriging daily observation ratios (OBS
method) yields results with a spatial structure of CMAQ and perfectly correlated
temporally with observations at monitor locations. As the distance from monitors
increases, the Pearson correlation coefficient decreases (exponential correlogram
model: R; = e¥P where D is a weighted distance to monitors). The second approach
that involves rescaling CMAQ predictions (CMAQ method) yields results that have
similar correlations with observations across monitors (average Pearson correlation
coefficient of Ry). Thus, the OBS method performs best near monitors and the
CMAQ method performs best far from monitors.

The OBS and CMAQ methods were combined to provide the best overall
prediction. A correction was added to the CMAQ method prediction to correct for
seasonal bias. The daily spatial fields generated by the OBS and CMAQ methods
were averaged by weighting based on their temporal correlation coefficients (R; and
R»). Thus, at monitor locations the OBS data fusion method prediction was used
and far from monitors the CMAQ data fusion method was used. Combined data
fusion method results minimize bias and maximize temporal correlation over space.
Results shown in Fig. 49.3 show the percent biases and temporal correlations in

Fig. 49.2 Predicted 1-h max NO; fields by four data fusion methods, 9/21/10
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Fig. 49.3 Percent bias (left) and Pearson correlation coefficient (right) for CMAQ method
predictions, 2002-2008. Bars represent averages and error bars represent standard deviations
across all monitors. The number of monitors for each pollutant is given in parentheses

the CMAQ method predictions for the 2002—2008 time period using 12 km CMAQ
data. When combined with OBS method predictions, temporal correlations increase
near monitors.

Results vary widely across pollutants. Estimates of primary pollutants largely
from mobile sources (i.e. CO, NO,, NOy, and EC) rely largely on CMAQ data
because they are spatially heterogeneous and have low spatial autocorrelation,
whereas estimates of largely secondary pollutants (i.e. Oz, SO42~, NO3~, NH4™)
and pollutants of mixed origin (PM, PM, s and OC) rely to a greater extent on
observations because they are spatially more homogeneous and have high spatial
autocorrelation. SO,, largely from coal combustion, is the most difficult pollutant to
estimate due to the inability of monitors to capture and CMAQ to predict accurately
point source plume dispersion.

These results provide health researchers with complete temporal and spatial air
pollutant fields, as well as with temporal and spatial error estimate fields that can be
incorporated into health risk models. Future work will apply these methods to five
cities for use in ongoing air pollution health studies and to examine strategies for
incorporating land use regression variables for spatial downscaling of data fusion
results.
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