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Application of alternative spatiotemporal metrics of ambient
air pollution exposure in a time-series epidemiological study
in Atlanta
Stefanie Ebelt Sarnat1, Jeremy A. Sarnat1, James Mulholland2, Vlad Isakov3, Halûk Özkaynak3, Howard H. Chang1,
Mitchel Klein1 and Paige E. Tolbert1

Exposure error in studies of ambient air pollution and health that use city-wide measures of exposure may be substantial for
pollutants that exhibit spatiotemporal variability. Alternative spatiotemporal metrics of exposure for traffic-related and regional
pollutants were applied in a time-series study of ambient air pollution and cardiorespiratory emergency department visits in
Atlanta, GA, USA. Exposure metrics included daily central site monitoring for particles and gases; daily spatially refined ambient
concentrations obtained from regional background monitors, local-scale dispersion, and hybrid air quality models; and spatially
refined ambient exposures from population exposure models. Health risk estimates from Poisson models using the different
exposure metrics were compared. We observed stronger associations, particularly for traffic-related pollutants, when using spatially
refined ambient concentrations compared with a conventional central site exposure assignment approach. For some relationships,
estimates of spatially refined ambient population exposures showed slightly stronger associations than corresponding spatially
refined ambient concentrations. Using spatially refined pollutant metrics, we identified socioeconomic disparities in concentration–
response functions that were not observed when using central site data. In some cases, spatially refined pollutant metrics identified
associations with health that were not observed using measurements from the central site. Complexity and challenges in
incorporating modeled pollutant estimates in time-series studies are discussed.
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INTRODUCTION
Numerous epidemiological time-series studies have shown positive
associations between the major ambient air pollutants (including
ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), PM10

and PM2.5 (particulate matter with aerodynamic diameter o10 and
o2.5 microns, respectively)) and cardiorespiratory conditions using
mortality, hospital admissions, and emergency department (ED)
visit data.1,2 These studies frequently use data from fixed-site
ambient monitors as surrogates of population exposures to
ambient pollutants. This practice may be considered reasonably
valid for pollutants that have limited spatiotemporal heterogeneity
(in particular, those of secondary origin, such as O3 and PM2.5

sulfate (SO4)).3 Exposure misclassification may be substantial,
however, for traffic-related pollutants (e.g., CO, NOx, and PM2.5

elemental carbon (EC)), whose concentrations vary considerably
over short distances from roadways,4 and that exhibit a high
degree of spatiotemporal variability.3,5,6 Exposure misclassification
may also arise due to population characteristics, such as time-
activity patterns, that reduce the representativeness of ambient
concentrations for exposures to ambient pollution. In these cases,
the use of an ambient population-wide concentration measure as
an exposure surrogate may lead to increased analytical uncertainty
and potentially biased estimates of health risk.7

The issue of exposure misclassification due to spatiotemporal
heterogeneity is particularly pertinent given the growing body of

research focusing specifically on the link between traffic-related
emissions and adverse health.8,9 It is conceivable that uncertainty
and bias in health risk estimates may vary for subpopulations living
at differing distances from an ambient monitor or in regions of the
study area that are not well-represented by the monitor. In some
locations, for example, populations of low socioeconomic status
(SES) live closer to sources of air pollution and further from
regulatory monitoring sites compared with the general population,
which may result in the potential for differential exposure miscla-
ssification by subpopulation.10,11 Air quality models that produce
spatially refined air pollution concentrations at a large number of
receptor locations may provide a means of addressing these
sources of uncertainty and limitations. There have been several
studies linking modeled mid- to long-term ambient concentration
estimates with adverse health outcomes.8,12–15 However, few
previous epidemiological studies have applied spatially refined
modeled estimates of daily ambient concentrations in studies of
acute morbidity.16,17

Considering that on average people spend approximately 90% of
their time indoors and that ambient pollutant infiltration indoors
varies by pollutant and building type, human exposures to ambient
pollutants may vary from measured ambient concentrations.18,19

In addition to spatial refinement of ambient concentrations, incor-
poration of exposure prediction into epidemiological analyses
may be relevant for better approximation of true etiological
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relationships. Exposure models, such as EPA’s APEX (Air Pollution
Exposure) and SHEDS (Stochastic Human Exposure and Dose
Simulation) models account for these likely determinants of
personal exposures to ambient air pollution.20–22 Other than
limited feasibility studies,23,24 to our knowledge there have been
no population-based studies of air pollution and acute morbidity
that have considered spatially refined estimates of ambient
exposures.

To address these research gaps, we developed and evaluated
alternative metrics for ambient traffic-related and regional
pollutants for use in the Study of Particles and Health in Atlanta
(SOPHIA), an extensive time-series study examining ambient air
pollution and acute morbidity via ED visits in Atlanta, GA, USA.
Despite the large 20-county study area (approximately 6100
square miles), we have previously observed associations of both
cardiovascular and respiratory outcomes with spatially variable
pollutants (e.g., CO, NO2, and PM2.5 EC) when using central moni-
toring data.25–29 In a simulation study examining the impacts of
measurement error on our findings, however, we estimated that
error due to spatial variability may result in reductions in observed
relative risks (RRs) by 43–68% for primary pollutants (including CO,
NOx, and PM2.5 EC) compared with only 16% for secondary
pollutants (including O3 and PM2.5 SO4).30

For the current project, we developed a suite of daily spatially
refined pollutant metrics in an effort to directly reduce exposure
measurement error in our epidemiological study. In a companion
paper in this journal issue, we detail the development of these
metrics and conduct extensive characterization.31 For the current
paper, we applied the metrics in epidemiological analyses.
Specifically, we examined the impact on observed associations
when (1) using spatially refined estimates of ambient concen-
trations compared with our conventional approach of using
central site measurements and (2) using spatially refined estimates
of ambient population exposures compared with spatially refined
ambient concentrations. We hypothesized that the use of
spatially refined metrics would provide greater ability to detect
epidemiological associations of interest than urban central site
monitors, particularly for heterogeneous, traffic-related pollutants.
We also explored whether our refined metrics aid in identify-
ing disparities in associations across geographically defined
socioeconomic subpopulations.

MATERIALS AND METHODS
ED Visit Data
For SOPHIA, computerized billing records for all ED visits between
1 January 1993 and 31 December 2004 were collected from 41 of
42 EDs in the 20-county Atlanta area. Relevant data elements for
this analysis included admission date, primary International
Classification of Diseases 9th Revision (ICD-9) diagnostic code,
and residential ZIP code. We selected visits occurring during the
period 1 January 1999 to 31 December 2002 to correspond with
the availability of the exposure metrics of interest. For this time
period, 39 hospitals provided usable data, with 24 hospitals
providing data for the full study period (o1 month of data
missing) and 14 hospitals providing data for part of the study (Z4
months of missing data) (Figure 1).

There were 187 residential ZIP codes located partially or wholly
within the 20-county Atlanta area, in effect during the study
period and with complete US Census 2000 information. Air quality
(i.e., APEX) modeling was conducted for 169 of these ZIP codes
(Figure 1). Therefore, only patients residing in one of the 169 ZIP
codes were included in the analytic database; this excluded data
from 18 ZIP codes located in the outskirts of the study area and
reduced the analytical ED visit database by o1% compared with
the full database of 187 ZIP codes.

The individual-level data were aggregated to daily counts for
each ZIP code for the following outcome groups, identified using
primary ICD-9 codes: (1) respiratory disease (RD; which included
visits for upper respiratory infection (ICD-9 codes: 460–465, 466.0,
477), bronchiolitis (ICD-9 codes: 466.1, 466.11, 466.19), pneumonia
(ICD-9 codes: 480–486), chronic obstructive pulmonary disease
(ICD-9 codes: 491, 492, 496), and asthma/wheeze (ASW; ICD-9
codes: 493, 786.07)); (2) ASW, a subset of the RD group; and (3)
cardiovascular disease (CVD; which included visits for ischemic
heart disease (ICD-9 codes: 410–414), cardiac dysrhythmia (ICD-9
code: 427), congestive heart failure (ICD-9 code: 428), peripheral
and cerebrovascular disease (ICD-9 codes: 433–437, 440, 443–445,
451–453)).

Exposure Metrics Data
This project focused on the development of five alternative
indicators of exposure to ambient traffic and regional pollutants

Figure 1. Map of 20-county Atlanta study area and locations of hospitals providing emergency department visit data during 1999–2002.
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(Figure 2). The metrics estimated daily 24-h average CO, NOx, PM2.5,
PM2.5 SO4, PM2.5 EC, and 8-h maximum O3 ambient concentrations
and ambient population exposure distributions at each of the 169
ZIP code centroids. By modeling pollutant levels at ZIP code
centroids, we assumed that the at-risk population density was flat
within each spatial unit. A full description and characterization of
the monitoring and modeling inputs and outputs are provided in a
companion paper in this journal issue31 and are described only
briefly here.

Metric i: Central Site (CS). Ambient monitoring data for the 1999–
2002 period were analyzed from various sources, including the
Southeastern Aerosol Research and Characterization (SEARCH)
network, the Environmental Protection Agency’s Air Quality System
(AQS), and the Assessment of Spatial Aerosol Composition in
Atlanta (ASACA) network. For metric i, we selected a single central
monitoring site for each pollutant, as was done in our previous
analyses25,26,32 (Supplementary Figure S1). For each pollutant, we
then assigned the daily central site value to each ZIP code centroid
(i.e., same daily values for each ZIP code) for the study period.

Metric ii: Regional Background (BG). We estimated spatially
resolved regional background ambient concentrations, associated
with synoptic patterns and photochemical transformations, for
each of the pollutants using a modified version of our previously
developed distance-squared weighting approach for ambient
monitoring data.33 In the current application, hourly data from
six NOx monitors, four CO monitors, 14 O3 monitors, five PM2.5

monitors, and two PM2.5 composition monitors (which included
the central sites used for metric i, Supplementary Figure S1) over
the 1999–2002 study period were standardized, interpolated, and
de-standardized using modeled annual means and SDs to provide
estimates of regulatory ambient concentrations resolved to ZIP
code centroids. For O3 and PM2.5 SO4, these concentrations were
taken directly as estimates of regional background concentrations.
To obtain regional background levels of four primary pollutants
(CO, NOx, PM2.5, and PM2.5 EC), we removed the average fraction at
each ZIP code attributed to local sources as predicted by local-
scale modeling (see Metric iii).

Metric iii: AERMOD. Local-scale pollutant concentrations, asso-
ciated with local-scale variations of emissions and meteorology,

were estimated using the AERMOD (American Meteorological
Society/Environmental Protection Agency Regulatory Model)
dispersion model (version 09292). This model utilized information
on local emission sources from the 2002 National Emissions
Inventory, roadway emissions using detailed road network
locations and traffic activity from the Atlanta Regional Commission
Travel Demand Model (version 2008) using an improved
methodology,34 and local meteorological conditions from the
Atlanta Hartsfield International Airport and the Jefferson St. site to
estimate daily pollutant concentrations for CO, NOx, PM2.5, PM2.5

SO4, and PM2.5 EC at each ZIP code centroid. Because O3 is formed
by photochemical processes and has no direct emissions, O3

concentrations were not modeled with AERMOD.

Metric iv: Hybrid. Daily estimates of total concentrations at each
ZIP code centroid were obtained using a hybrid model that
summed the local pollutant impacts obtained from AERMOD
(Metric iii) and regional background levels obtained from BG
(Metric ii) for CO, NOx, PM2.5, PM2.5 SO4, and PM2.5 EC. For O3,
regional background (Metric ii) levels were considered represen-
tative of total concentrations.

Metric v- APEX and SHEDS. Two different, but highly compatible,
US EPA exposure models (APEX—the Air Pollutants Exposure
model and SHEDS—the Stochastic Human Exposure and Dose
Simulation model) were used to predict ambient exposure
distributions for the population at each ZIP code, depending on
availability of pollutant and Atlanta-specific inputs for each model.
Exposure distributions for CO and NOx were estimated using the
APEX35,36 and those for O3, PM2.5, PM2.5 SO4, and PM2.5 EC were
estimated using the SHEDS.20–22 The models were initially run at
the census tract level, and outputs were aggregated to the ZIP
code level for use in epidemiological analyses. The models used
microenvironmental stochastic simulation algorithms to estimate
the daily distribution of exposures for 100 simulated people per
census tract considering all microenvironments (e.g., outdoor,
indoor, commuting) in which individuals spend time. In this
application, the APEX and SHEDS models utilized data on spatially
resolved ambient concentrations from the hybrid model (Metric
iv), time–location–activity data from the US EPA’s Consolidated
Human Activity Database,37 spatiotemporally varying local air
exchange rates,38 and census tract-level home-to-work commu-
ting data.36,39 The models included infiltration of ambient
pollution to indoor microenvironments, but did not include the
contribution from indoor source emissions. As such, the exposure
estimates represent exposure of individuals to ambient pollution
resulting from the time spent in various microenvironments. In the
current analysis, we considered the daily mean (APEXMEAN,
SHEDSMEAN), 50th percentile (APEXP50, SHEDSP50), and 95th
percentile (APEXP95, SHEDSP95) values from the predicted
exposure distribution profiles for each pollutant.

Census Data
We obtained Census 2000 five-digit ZIP code tabulation area
(ZCTA) data to describe area-level SES of the study population. We
considered percentage of the population below the federal
poverty line (% below poverty) as our primary SES indicator of
interest; race (% black), educational attainment (% high school
graduation), and income (median household income) were used
in descriptive analyses. These data were linked to the ED visit
records by the residential ZIP code of each patient.

Epidemiological Models
We used Poisson generalized linear models to examine associa-
tions between daily measures of air pollution and daily counts of

(iv) Hybrid

(i) Ambient
Monitoring Data Emissions Data

Spatially-Resolved
Concentrations

Spatially-Resolved
Exposures 

(ii) Regional
Background (iii) AERMOD

(v)
APEX/SHEDS

Figure 2. Schematic of the five exposure metrics.
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ED visits. The basic form of the model was:

logðEðYktÞÞ ¼ aþ bpollutionkt

þ
X

klkZIPkþ
X

mlmDOWmt

þ
X

nnnhospitalntþ gðg1;:::; gN;timetÞþ
X

oxoIOtempot

þ Z1dewpttþ Z2dewpt2
t þ Z3dewpt3

t þ d1tempt

þ d2temp2
t þ d3temp3

t

where Ykt is the count of ED visits in ZIP code k on day t for the
outcome of interest. For each pollutant (pollution), 3-day moving
averages (of 0-, 1-, and 2-day lags) were used as the a priori lag
structure for assessing RD and ASW ED visits, and same-day (lag 0)
pollution levels were used when assessing the CVD ED visits.
The geographical area (ZIP) from which ED counts were spatially
aggregated was represented by indicator variables, to control for
spatially varying factors and enable the analysis to rely solely on
temporal contrasts; this also stringently controlled for spatial
autocorrelation in the baseline ED visits across the ZIP codes. The
models included dummy variables for day of week and holidays
(DOW). Hospital dummy variables (hospital) accounted for the
entry and exit of hospitals during the study period, which impact
ED visit counts over time. Long-term trends and seasonality in
case presentation rates (time) were controlled with parametric
cubic splines, g(g1,y,gN; x), with monthly knots. Meteorology was
controlled using indicator variables for lag 0 maximum tempera-
ture (for each degree Celsius) and a cubic term for the moving
average of dew point (lags 0, 1, and 2). For respiratory outcomes,
we also included cubic terms for the moving average of minimum
temperature (lags 1 and 2) and a dummy variable for season. For
cardiovascular outcomes, we included cubic terms for the moving
average of maximum temperature (lags 1 and 2). Variance
estimates were scaled to account for Poisson overdispersion.
These modeling decisions (e.g., choice of a priori lags and
meteorological control) were derived largely from our previous
analyses of these data.28,29

We compared associations for each pollutant-outcome combi-
nation among the five exposure metrics. In order to make valid
comparisons, exposure metrics were also matched for missing
values. For example, if data for a certain pollutant (e.g., CO) were
missing for one exposure metric (e.g., CS) for a specific date, the
data for that pollutant for all other exposure metrics were also set
to missing for that date; the resulting sample size was the same for
all epidemiological models for the same pollutant. We conducted
analyses to examine the sensitivity of our results to this matching.
We also conducted SES-stratified analyses, with stratum cut-points
determined by the median value of % below poverty, to explore
whether the spatially refined exposure metrics aid in identifying
disparities in air pollution–health associations across socioeco-
nomic subpopulations.

To compare the magnitude of effects across the different
exposure metrics of the same pollutant, we scaled relative risks
(RR) and 95% confidence intervals (CI) to interquartile range (IQR)

increases in pollutant concentrations, determined from the distri-
bution of all measurements across all ZIP codes and days separa-
tely for each metric. Standardizing the RRs by metric-specific IQRs
(rather than a standard unit) allowed for more comparable
comparisons of effects among exposure metrics that had very
different distributions for the same pollutant. All epidemiological
analyses were conducted in SAS V9.3 (SAS Institute, Cary, NC, USA),
and mapping was conducted using ArcMap V10.0 (ESRI, Redlands,
CA, USA).

RESULTS
Study Area Population and ED Visit Outcomes
Based on Census 2000, the population of the 169 ZIP codes was
4,207,873. Across ZIP codes, the population was on average 26%
(range: 0–98%) black, 10% (range: 1–77%) below poverty, 81%
(44–98%) with high school graduation, and had an average
median household income of $51,530 (range: $14,094–$113,773).
Our ED visit database included 453,069 visits (mean of 310.1 visits/
day) for RD and 101,177 visits (mean of 69.3 visits/day) for CVD
(Table 1). Daily outcome counts by ZIP code were low on average;
34.3%, 95.3%, and 93.5% of ZIP codes had a mean of o1 count/
day for RD, ASW, and CVD, respectively. For RD, another 34.3% of
ZIP codes had a mean of 42 counts/day. ZIP codes with highest
mean daily counts were spread out over the study area, in part
following trends in total population per ZIP code (Figure 3). Daily
ED visits for the respiratory outcomes, RD and ASW, were modera-
tely correlated with each other, with Spearman’s correlation
coefficients ranging from 0.26 to 0.65 across the ZIP codes; the
respiratory outcomes were weakly correlated with CVD (Table 2).

Exposure Metrics Summary
Table 3 presents a summary of the exposure metrics data before
and after the matching procedure. Matching increased the
missingness substantially for some pollutants (e.g., for PM2.5

SO4) but enabled the sample size and days included to be the
same across pollutant-specific exposure metrics.

For the traffic-related pollutants (i.e., CO, NOx, PM2.5 EC), central
site concentrations were generally higher than those estimated
using the BG, AERMOD, and hybrid metrics. This was expected
given that the central sites were located in the heavily trafficked
urban area of Atlanta, whereas the other metrics incorporated
concentration estimates from the entire study area. CO and NOx
exposures estimated using APEX were on average higher than the
hybrid concentrations, likely due to the fact that the APEX model
accounted for proximity to low, moderate, and high traffic activity
roads in modifying the hybrid ambient CO and NOx concentra-
tions that were used as APEX inputs.31

For the regionally distributed pollutants (i.e., O3, PM2.5, PM2.5

SO4), central site concentrations were similar on average to those
estimated using the BG and hybrid metrics (note, as discussed
in the Materials and Methods section, hybrid levels were not

Table 1. Summary of the ED visit data for the three outcome groups of interest, overall and by ZIP codea for 20-county Atlanta, 1999–2002.

Total ED visits Mean daily ED visits

Overall By ZIP code Overall By ZIP code

Median Min Max Median Min Max

Respiratory disease 453,069 2,143 55 11,656 310.1 1.5 0 8.0
Asthma/wheezeb 84,526 373 6 2,724 57.9 0.3 0 1.9
Cardiovascular disease 101,177 551 8 2,101 69.3 0.4 0 1.4

a169 ZIP codes included.
bAsthma/wheeze group was a subset of the respiratory disease group.

Alternative exposure metrics in health study
Sarnat et al

596

Journal of Exposure Science and Environmental Epidemiology (2013), 593 – 605 & 2013 Nature America, Inc.



calculated for O3). AERMOD estimates for PM2.5 and PM2.5 SO4

were substantially lower compared with the corresponding BG
estimates, as these pollutants arise mostly from regional
(secondary) sources and not local (primary) sources. Ambient
exposures estimated via SHEDS were lower for these pollutants on
average than concentrations estimated using the BG and hybrid
models, largely because the SHEDS model accounts for infiltration
and removal losses of pollutants in indoor environments.21,31

Figure 4 presents the frequency distribution of ZIP code-specific
Spearman’s correlation coefficients relating each exposure metric
to CS concentrations. For O3, PM2.5, and PM2.5 SO4, temporal
correlations were high (r40.8) among all exposure metrics (except
for AERMOD) and CS concentrations for each ZIP code. The results
suggest that CS concentrations for these pollutants may
adequately reflect temporal fluctuations in pollutant concentra-
tions in all the ZIP codes in the study area,31 which is characteristic
of pollutants that exhibit high levels of spatiotemporal homo-
geneity. The distributions of correlation coefficients for the traffic-
related pollutants (CO, NOx, and PM2.5 EC) were wider, suggesting
that the observed pattern of temporal variability at central sites
for CO, NOx, and PM2.5 EC may not reflect temporal patterns
occurring in all the ZIP codes.

Epidemiological Results
Use of Central Site vs Spatially Refined Ambient Concentrations.
When using our conventional approach of central site exposure
assignment, we observed four significant (at a 0.05 significance
level) positive associations: CVD with CO, RD with O3, and ASW
with O3 and PM2.5 EC (Figure 5, Supplementary Table S1). Broadly,
we observed a pattern of stronger associations (larger RRs and/or

Figure 3. Total population (a) and mean daily ED visit counts across 169 ZIP codes in Atlanta during 1999–2002 for respiratory disease (b),
asthma/wheeze (c), and cardiovascular disease (d).

Table 2. Spearman’s correlation coefficients among daily ED visit
counts for the outcome groups of interest for Atlanta, 1999–2002a.

Respiratory
disease

Asthma/
wheeze

Cardiovascular
disease

Respiratory disease 0.43 (0.26–0.65) 0.02 (� 0.07–0.35)
Asthma/wheeze 0.55 0.00 (� 0.07–0.18)
Cardiovascular
disease

0.27 0.14

aBottom half of the table presents overall correlations across all ZIP code-
days (N¼ 246,909); top half of the table presents median (range) of
correlations within the 169 ZIP codes.
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narrower CIs) for most relationships when using spatially refined
ambient concentrations obtained through BG, AERMOD, and/or
hybrid approaches. For example, the four significant associations
observed when using CS data were similar or slightly stronger
when incorporating the spatially refined metrics (e.g., CVD-CO

from CS: 1.012 (95% CI: 1.003–1.021) compared with CVD-CO from
hybrid: 1.011 (95% CI: 1.005–1.018)). Several additional significant
associations were observed when using the spatially refined
metrics that were not observed when using CS data, including:
ASW with CO, NOx, and PM2.5; CVD with NOx and PM2.5 EC; and RD

Figure 4. Frequency of Spearman’s correlations between daily pollutant levels from the central site and each of the alternative exposure
metrics across the 169 ZIP codes. Exposure metric definitions: BG¼ regional background; AERMOD¼American Meteorological Society/
Environmental Protection Agency Regulatory Model; HYBRID¼hybrid of BG and AERMOD model outputs. Note: because O3 is formed by
photochemical processes and has no direct emissions, O3 concentrations were not modeled with AERMOD, and therefore HYBRID levels were
also not calculated for O3.

Figure 5. Associations between cardiorespiratory ED visits and central site and spatially refined ambient concentrations. Pollutant lag
structures: 3-day moving average (of lags 0, 1, and 2) pollutant concentrations for respiratory disease and asthma/wheeze outcomes; lag 0 for
cardiovascular outcomes. Exposure metric definitions: CS¼ central site; BG¼ regional background; AERMOD¼American Meteorological
Society/Environmental Protection Agency Regulatory Model; HYBRID¼hybrid of BG and AERMOD model outputs. Note: because O3 is formed
by photochemical processes and has no direct emissions, O3 concentrations were not modeled with AERMOD, and therefore HYBRID levels
were also not calculated for O3.
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with PM2.5 EC (e.g., ASW-CO from CS: 0.999 (95% CI: 0.987–1.010)
compared with ASW-CO from hybrid: 1.010 (95% CI: 1.001–1.019)).

Results of analyses on unmatched pollutant values (results not
shown) were largely similar to those using data for matched
pollutant values, particularly for CO, NOx, and O3. Some
differences in magnitude and significance of associations were
noted for PM2.5, PM2.5 SO4, and PM2.5 EC, for which sample sizes
between matched and unmatched data sets were most different.

Use of Spatially Refined Ambient Concentrations vs Ambient Popu-
lation Exposures. For most relationships, associations were similar
or slightly weaker when using ambient population exposure
estimates from the SHEDS models compared with ambient
concentrations from the hybrid model (Figure 6, Supplementary
Table S2). However, associations of ASW with CO and NOx were
modestly stronger using APEX predictions than using hybrid data
(e.g., ASW-CO from hybrid: 1.010 (95% CI: 1.001–1.019) compared

Figure 6. Associations between cardiorespiratory ED visits and spatially refined ambient concentrations and population exposures. Pollutant
lag structures: 3-day moving average (of lags 0, 1, and 2) pollutant concentrations for respiratory disease and asthma/wheeze outcomes; lag 0
for cardiovascular outcomes. Exposure metric abbreviations: BG¼ regional background (used for O3, where background levels were taken to
represent total ambient concentrations and for which HYBRID levels were not calculated); HYBRID¼ hybrid of BG and AERMOD model
outputs; APEX¼Air Pollution Exposure model (using mean, 50th percentile (P50), and 95th percentile (P95) values from the predicted
exposure distributions); SHEDS¼ Stochastic Human Exposure and Dose Simulation model (using mean, 50th percentile (P50), and 95th
percentile (P95) values from the predicted exposure distributions).

Figure 7. Spatial distribution of 20-county Atlanta percentage of below poverty from the Census 2000 five-digit ZIP code tabulation area data,
presented for strata used in epidemiological analyses.
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with ASW-CO from APEXMEAN: 1.016 (95% CI: 1.006–1.026)).
Results of models examining the 50th and 95th percentile values
from the APEX and SHEDS daily exposure distributions were very
similar to those obtained using the daily mean values.

Assessment of Socioeconomic Subpopulations. We examined
Census 2000 data on % below poverty to describe SES patterns
in the study area and their relationship with our outcomes and
pollutants of interest. Poverty levels varied widely over the 169 ZIP
codes with a median value of 8% (range: 0.8–76.7%) and were
correlated with other SES indicators (Spearman’s r of � 0.70 with
% high school graduation and � 0.89 with median household
income). Percentage below poverty showed weak correlations
with mean daily ED visit counts by ZIP code (Spearman’s r of 0.09,
0.13, and � 0.14 for RD, ASW, and CVD, respectively) and weak-to-
moderate correlations with mean hybrid pollutant levels by ZIP
code (Spearman’s r of 0.18, 0.21, 0.31, 0.13, 0.31, and 0.14 for CO,
NOx, O3 (using BG metric), PM2.5, SO4, and EC, respectively),
suggesting moderately higher pollution levels in ZIP codes with
higher poverty. The spatial distribution of % below poverty, when
stratified by its median value of 8%, showed a general pattern of
high poverty in the inner and outer study areas and a ring of lower
poverty in the middle suburban area (Figure 7).

We assessed and compared patterns of effect modification by %
below poverty when using the different exposure metrics and
present results for a subset of pollutants (CO, PM2.5 EC, and O3)
(Figure 8). In general, observed associations when using central
site data showed little difference by SES strata. However, for
traffic-related pollutants (CO, PM2.5 EC) when using spatially
refined data, associations for the low SES group were consistently
stronger than the high SES group—trends expected based on air
pollution–health disparities literature.40–42 For O3, the results
showed different patterns across poverty strata, but interpretation
of results remained similar (i.e., observed associations were
significant in both the strata). Patterns of results across SES
strata for NOx and PM2.5 were largely similar to those for CO and
PM2.5 EC; results for PM2.5 SO4 were mostly consistent with the
null, with no clear pattern across SES strata (results not shown).

DISCUSSION
In this study, we developed and evaluated five alternative
exposure metrics for a study of ambient air pollution and acute
morbidity in Atlanta, GA, USA. These results add to the limited
number of studies that have compared alternative estimates of
measured and modeled exposures within a single study.14,15

Figure 8. Associations between cardiorespiratory ED visits and CO, EC, and O3 for each exposure metric, stratified by percentage of below
poverty. Pollutant lag structures: 3-day moving average (of lags 0, 1, and 2) pollutant concentrations for respiratory disease and asthma/
wheeze outcomes; lag 0 for cardiovascular outcomes. Exposure metric abbreviations: CS¼ central site; BG¼ regional background;
AERMOD¼American Meteorological Society/Environmental Protection Agency Regulatory Model; HYBRID¼hybrid of BG and AERMOD
model outputs; APEXMEAN¼ air pollution exposure model (using mean values from the predicted exposure distributions); SHEDS¼
Stochastic Human Exposure and Dose Simulation model (using mean values from the predicted exposure distributions). Note: because O3 is
formed by photochemical processes and has no direct emissions, O3 concentrations were not modeled with AERMOD, and therefore HYBRID
levels were also not calculated for O3.
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Traffic emissions comprise a major source of ambient air pollution
in Atlanta.43 Consistent with results reported for other locations,5,6

our previous work has shown that traffic-related pollutants exhibit
a high degree of spatiotemporal variability in Atlanta,3 and in
simulation studies we have found that exposure misclassification
may be substantial for these pollutants when using fixed
site ambient monitoring data as the measure of exposure in
epidemiological analyses.30,44 Here, we applied an approach to
directly reduce exposure measurement error in our epidemio-
logical study with application of exposure metrics that were
designed to enhance the spatial resolution of our ambient air
concentration data, particularly for traffic-related pollutants (CO,
NOx, PM2.5 EC).

We observed patterns of association across the incrementally
refined exposure metrics that were largely consistent with our a
priori expectations. We observed greater estimated effects when
using the spatiotemporally refined ambient concentrations and
exposures compared with the use of central site monitoring data;
this pattern was observed for most pollutants but was particularly
evident for CO and NOx with respiratory outcomes. In keeping
with the traditional time-series framework, our analyses were
based on temporal comparisons, so any differences in observed
associations between exposure metrics for a given relationship
were due to the additional spatial resolution of temporal
variability in pollutant levels. Although previous studies have
used modeled mid- to long-term exposure estimates in epide-
miological analyses,8,12–15 few studies have explored the use of
spatially refined exposure metrics in studies of acute morbidity
that rely on temporal (and not spatial) variability as the driving
exposure contrast.16,17 Inadequate spatial resolution in a temporal
analysis may cause bias and reduced significance due to both bias
in the concentration estimates and lack of perfect correlation over
time of concentrations in different areas of the study region.30,44,45

Our exposure metric time-series for each ZIP code centroid
showed a range of correlation patterns with the central site
measurements, particularly for the traffic-related pollutants
(Figure 4). We anticipated that the temporal variability of the
refined exposure metrics would better reflect the true temporal
variability of ambient concentrations or ambient population
exposures for a given ZIP code than would data from the central
site. Thus, we expected a reduction in exposure misclassification
when using the spatiotemporally refined exposure metrics as
compared with central site monitoring data, particularly for traffic-
related pollutants (e.g., CO, NOx, PM2.5 EC). As a means of
comparison, we also considered pollutants of secondary origin,
particularly O3 and PM2.5 SO4, which each exhibit little spatio-
temporal variation in Atlanta,3 and for which refined estimates of
exposure may not be as critical. For these pollutants, associations
were generally similar among the exposure metrics.

It is important to note that the different exposure metrics
applied here describe different aspects of air quality. Although the
CS and hybrid metrics estimated total pollutant concentrations,
the BG metric estimated regional background concentrations, and
the AERMOD metric estimated concentrations from local sources.
Thus, when comparing observed associations among use of BG,
AERMOD, and hybrid metrics, we ultimately compare the effects of
different aspects of air quality. This was particularly evident when
assessing the ASW-PM2.5 SO4 association, for which the only
positive association was for PM2.5 SO4 from AERMOD. Although in
total ambient air, PM2.5 SO4 is largely from regional sources,
AERMOD PM2.5 SO4 provides estimates of primary sulfate from
diesel vehicles and thus may be a surrogate for diesel emission
impacts. This was evident by strong correlations (Spearman’s
rZ0.89) between AERMOD PM2.5 SO4 and other AERMOD
measures (CO, NOx, PM2.5, and PM2.5 EC). In comparison, the
correlation between hybrid PM2.5 SO4 and other hybrid traffic-
related pollutant measures was substantially lower (Spearman’s
ro0.30 with CO, NOx, and PM2.5 EC; r¼ 0.77 with PM2.5).

Our observed RRs for most of the relationships were small (RRs
per IQRE1.01) but consistent with levels of association observed
among other time-series studies of acute morbidity, including
those from our other published studies.25,26,28 For several
relationships, associations were modestly stronger when using
hybrid than when using central site data; out of the 18 pollutant–
outcome associations considered, four significant positive associa-
tions were observed when using central site-exposure assignment;
these associations plus six additional significant positive associa-
tions were observed when using the spatially refined BG or hybrid
data. Enhanced detection of effects with such refined exposure
metrics, when verified further, will be important for better
ascertaining air pollution-related health risks in future epidemio-
logical investigations. As the Atlanta population density is highest
towards the study area center and location of central monitoring
sites, the observation of only modest increases in observed risk
ratios in overall analyses is a reasonable finding. Indeed, the main
benefit of spatially resolved time-series data may be for
application in spatially stratified analyses.

It is possible that spatial refinement in ambient concentrations
and exposures may enable more accurate estimates of associa-
tions among population subgroups, which could ultimately inform
targeted intervention efforts. For example, an increasing number
of studies suggest that higher pollution–health associations exist
among those with high poverty/deprivation,46 low educational
attainment,47 and low income.48–51 Inconsistencies in the
epidemiological literature examining air pollution and SES are
apparent, however, with some studies finding only weak or no
impact of these factors on pollution–health associations.16,52–55

Lack of agreement among study findings may be due to a variety
of factors, including factors related to exposure measurement
error. Most studies examining air pollution–SES interactions have
utilized city- or county-wide air pollution metrics as the measure
of exposure.41 Disparities in monitoring representation among
socioeconomic subsets in some locales may lead to differential
exposure misclassification by subpopulation when relying on
monitoring data for exposure assignment.10,11 The presence of
differing levels of exposure error across subgroups could lead to
differential bias in observed air pollution health associations
across subgroups that could ultimately result in an appearance of
heterogeneity in the effect measure or to a masking of true
heterogeneity (if groups with truly higher risk ratios have a
stronger degree of bias to the null).

In our current analysis, we anticipated that use of spatially
refined metrics would reduce the potential for differential
exposure measurement error between geographically defined
subpopulations and that this would enable identification of
disparities in associations between groups. We observed that
groups defined by SES had similar concentration-response
functions when using central site data as the measure of exposure.
These results could suggest either no difference in air pollution
health risk between groups or perhaps the presence of exposure
measurement error in one or both the groups that impact the
pattern of observed associations. When using the spatially refined
exposure metrics, our results indicated that low SES groups had
considerably stronger concentration-response functions than the
high SES groups, as is consistent with current air pollution–health
disparities literature.40–42 The difference in the SES-stratified
results between the use of central site and spatially refined
metrics supports the notion that the refined exposure metrics
improved exposure estimation for the low socioeconomic
subpopulation, at least to the degree that allowed for
anticipated gradients in air pollution health risk to be observed.

There are several limitations of our analysis and corresponding
interpretation of results. We conducted a semi-quantitative
comparison of health risk estimates obtained from using different
measures of exposure. In making certain assumptions (e.g., that
refining the spatiotemporal resolution of our exposure estimates
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will result in a lower amount of exposure measurement error),
differences in estimated RRs when different exposure metrics are
used may serve to illustrate differences in exposure measurement
error between exposure metrics. If exposure measurement error is
classical and non-differential with respect to a health outcome, we
expect the bias to be towards the null when using an exposure
measure containing error. According to this model, if the health
outcome is caused by the exposure, using a more refined measure
of exposure should result in less bias towards the null. Comparing
estimated RRs is an indirect means of evaluating measurement
error. As such, our comparisons may be considered exploratory
and hypothesis generating. Conducting a more direct assessment
of exposure misclassification for each of the exposure metrics,
quantifying the nature and magnitude of uncertainties, and
propagating them through to the epidemiological results was not
possible given the scope of the current project but is of interest
for future applications.

There were also limitations to the exposure modeling
approaches that likely introduced error. We increased the spatial
refinement in pollutant concentration estimates by utilizing
AERMOD—the inputs to AERMOD included limited temporally
varying input related to local emission sources and limitations of
fine-scale meteorological inputs. Temporal variability in the
predicted pollutant concentrations were, in turn, mainly driven
by meteorological inputs and thus may have been attenuated
compared with true temporal patterns of ambient pollution. This
may have reduced the precision of the estimated coefficients in
the epidemiological analyses. Even given these limitations,
however, the results of epidemiological models using AERMOD
and hybrid outputs corresponded with our expectations.

With regards to spatial refinement, the AQ modeling was
conducted at the ZIP code centroid receptor locations. It is
possible that these point receptors may experience pollutant
concentrations that are not representative of an entire ZIP
code. For example, if pollutant levels within a ZIP code are
spatiotemporally heterogeneous, exposure assignment based on
ZIP code centroids will likely contain errors that are analogous to
the use of central site data to represent an entire study
area. Spatial averages of multiple receptor locations (e.g., by
census tract or block group resolution) in each spatial unit may
have provided more representative estimates and will be
considered in future work.

In the epidemiological models, estimates of population
exposures (i.e., from APEX and SHEDS) produced modestly
stronger estimates of effect than ambient concentrations for
select relationships (e.g., CO and NOx with ASW). However, for
most other relationships observed associations were similar or
slightly weaker when using APEX or SHEDS data compared with
ambient concentration data. As APEX and SHEDS model exposure
factors, such as pollutant infiltration and population mobility
patterns, and are derived to estimate population exposure more
accurately, we anticipated that use of these modeled data would
aid in identifying air pollution–health associations by reducing
exposure measurement error. The propagation of modeling errors
through these complex exposure models, which incorporate
multiple model inputs and algorithms with varying degrees of
uncertainty (e.g., uncertainties in predicting roadway emissions,
atmospheric dispersion near roadways, microenvironmental infil-
tration factors, etc.), may have hampered the ability to discern the
benefits gained by using refined exposure metrics, in comparison
to much simpler monitoring-based measurement data. Although
time-activity diaries, exposure factors, and non-residential micro-
environmental infiltration factors were selected to be representa-
tive for the study area, these may not have been fully accurate
locally, spatially, or temporally. Development of approaches that
incorporate exposure uncertainties in health models56–58 will be
key to furthering the application of these approaches to air
pollution epidemiology.

In addition, we considered the daily mean and 50th and 95th
percentile values from the predicted exposure distributions in
each ZIP code in our epidemiological models. As such, we did not
utilize the distributional aspect of the exposure data, and as a
result our modeling is still subject to ecological bias (assigning a
common exposure value to the entire population of each ZIP
code).59 Moreover, as these models predict exposures for a
simulated population, it is not directly possible to understand
how the exposure distribution for the simulated population
relates to that experienced by the ED visit patient population
and which patients received which exposures. Future analyses
are planned that will consider subsets of the simulated and
ED visit populations (e.g., by age and gender) that may make
the exposure profiles from APEX and SHEDS more tailored to our
outcomes.

Finally, a few unexpected associations were observed. For
O3, associations with CVD ED visits were different between use
of CS (RR¼ 0.999, P-value¼ 0.919) and BG (RR¼ 1.018,
P-value¼ 0.058) data, despite the strong correlation (40.90)
between these metrics. For EC, associations tended to be strongest
when using the BG metric. It is possible that the results were
sensitive to slight differences between the daily ZIP
code-level exposure metrics due to the low ED visit counts per
day per ZIP code (e.g., 93.5% of ZIP codes had a mean of o1 count/
day for CVD); this is a limitation for all the reported results.

In summary, we developed and evaluated five alternative
exposure metrics for a study of air pollution and acute morbidity
in Atlanta, GA, USA. In doing so, we importantly addressed two
key areas of benefit to environmental health related to exposure
assessment in epidemiological models—incorporation of spatial
refinement and prediction of population exposures. We observed
that incorporation of spatially refined ambient concentration data
enabled greater detection of air pollution–health associations than
did central site exposure assignment, particularly for traffic-related
pollutants and in geographically defined socioeconomic subpo-
pulations. We anticipate that the results of this research will be
useful in improving exposure assessment in future air pollution
epidemiology studies, by providing alternative methods as well as
by providing a further understanding as to the situations that
might require refined exposure metrics. Overall, these outputs will
help to reduce uncertainty in health risk assessments of ambient
air pollution, which in turn will increase the efficiency and
effectiveness of federal and state/local air quality management
strategies.
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