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Spatiotemporally resolved air exchange rate as a modifier of acute
air pollution-related morbidity in Atlanta
Jeremy A. Sarnat1, Stefanie Ebelt Sarnat1, W. Dana Flanders1, Howard H. Chang1, James Mulholland2, Lisa Baxter3, Vlad Isakov3 and
Halûk Özkaynak3

Epidemiological studies frequently use central site concentrations as surrogates of exposure to air pollutants. Variability in air
pollutant infiltration due to differential air exchange rates (AERs) is potentially a major factor affecting the relationship between
central site concentrations and actual exposure, and may thus influence observed health risk estimates. In this analysis, we
examined AER as an effect modifier of associations between several urban air pollutants and corresponding emergency department
(ED) visits for asthma and wheeze during a 4-year study period (January 1999–December 2002) for a 186 ZIP code area in metro
Atlanta. We found positive associations for the interaction between AER and pollution on asthma ED visits for both carbon
monoxide (CO) and nitrogen oxides (NOx), indicating significant or near-significant effect modification by AER on the pollutant risk-
ratio estimates. In contrast, the interaction term between particulate matter (PM)2.5 and AER on asthma ED visits was negative and
significant. However, alternative distributional tertile analyses showed PM2.5 and AER epidemiological model results to be similar to
those found for NOx and CO (namely, increasing risk ratios (RRs) with increasing AERs when ambient PM2.5 concentrations were
below the highest tertile of their distribution). Despite the fact that ozone (O3) was a strong independent predictor of asthma ED
visits in our main analysis, we found no O3–AER effect modification. To our knowledge, our findings for CO, NOx, and PM2.5 are the
first to provide an indication of short-term (i.e., daily) effect modification of multiple air pollution-related risk associations with daily
changes in AER. Although limited to one outcome category in a single large urban locale, the findings suggest that the use of
relatively simple and easy-to-derive AER surrogates may reflect intraurban differences in short-term exposures to pollutants of
ambient origin.
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INTRODUCTION
Previous air-pollution exposure panel studies have investigated
the relationships between ambient concentrations and personal
exposures with the goal of validating the use of ambient con-
centrations as surrogates of population exposures.1–4 Findings
from these studies suggest that the fraction of ambient pollution
penetrating and remaining airborne indoors (i.e., infiltration factor)
can vary considerably by home and pollutant. Estimates of
infiltration for fine particulate matter (PM2.5), for example, have
been shown to range from B0.3 to 1.0.5 Results from the RIOPA
study of over 250 measurements in New Jersey, Texas, and
California showed that, on an average, B60% of indoor PM2.5

levels comprised PM2.5 that infiltrated from outdoors.3,6 These
findings are noteworthy as most individuals spend the majority
(B90%) of their time indoors and, consequently, exposures to
ambient air pollutants occur for many people while indoors.7

Understanding the infiltration characteristics of ambient pollu-
tants, therefore, is a necessary step for accurately assessing
personal exposures to ambient pollutants.

Studies conducted under controlled conditions highlight the
importance of home ventilation as a central determinant of
the fraction of pollution infiltrating indoors.8–11 Ventilation is
commonly expressed as the air exchange rate (AER), or the

number of times an indoor air volume is replaced with outdoor air
within an hour, and is related to several factors including building
envelope construction, building age, and specific meteorological
conditions.12–14 Previous indoor and personal exposure assess-
ment panel studies have observed considerable seasonal,
between-home, and between-city variability in residential pollu-
tant infiltration,3,15–17 likely as a result of differences in home
ventilation, or AER, across the homes within each panel.

Variability in home ventilation and pollutant infiltration patterns
across a locale may contribute to intraurban exposure variability,
and thus have considerable implications for epidemiological
studies that use ambient monitors as surrogates of personal
exposures. For studies of acute health effects, for example, day-
to-day or seasonal differences in the fractional contribution of
ambient concentrations to personal exposures may lead to
increased exposure error in studies that use ambient monitoring
sites as surrogate for exposure. Evidence of error can be seen in
inflated SE estimates, reduced model power, or biased estimates
of risk, depending on the distribution of this component of
exposure variability.18,19 Similarly, in chronic epidemiology, the
use of ambient monitor surrogates may introduce bias into the
observed risk estimates if the average exposure–surrogate
relationship varies by city. Several epidemiological studies that
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have modeled pollutant spatial heterogeneity have demonstrated
the importance of characterizing sources of long-term intraurban
exposure variability.20–22 In some of these analyses, the use of
spatially resolved exposure estimates resulted in improved
analytical power over the use of a single ambient monitor,
attributed to a reduction in exposure misclassification.

To date, only a few studies have examined whether variability in
residential ventilation conditions may modify observed acute air
pollution-mediated health risk.6,23–25 In a meta-analysis examining
ozone (O3) exposures and daily mortality over 27 cities, for
example, we found a modest inverse relationship between health
effect estimates and city-specific air-conditioning prevalence, a
surrogate of ventilation.15,25 Differences in residential AER within a
city may be comparable to those between cities, and may thus be
equally or more important to consider as a source of exposure
variability in single-city epidemiological studies. For acute single-
city studies (e.g., time series studies without intraurban
characterization), temporal variations in AER, driven primarily by
changes in several meteorological factors that affect indoor–
outdoor air mass movement, adds further complexity to AER as a
source of exposure variability. To examine these issues, we
estimated spatiotemporal variability in residential AER within the
metropolitan Atlanta area with the goal of testing the hypothesis
that geographical and temporal sources of exposure variability
explain heterogeneity in estimated epidemiological associations
between air pollution and acute asthma emergency department
(ED) visits.

METHODS
We examined associations between several urban air pollutants
and corresponding ED visits for asthma and wheeze (‘‘asthma’’;
International Classification of Diseases 9th revision codes: 493,
786.07) during a 4-year study period (January 1999–December
2002) for a 186 ZIP code area in metro Atlanta. For this analysis, we
selected asthma visits exclusively, as associations between several
pollutants and this outcome category have been previously shown
to exhibit robustly positive and significant epidemiological
associations in Atlanta.26,27 As such, these models were optimal
for an initial assessment of potential effect measure modification.

The pollutants of interest were carbon monoxide (CO) and
nitrogen oxides (NOx), which we believe are primarily surrogates
of local, traffic pollutant sources in Atlanta; O3, a regional pollutant
with typically elevated annual concentrations in the southeast;
and fine PM2.5, which in Atlanta comprises a mixture of both
regional pollutants (i.e., sulfate) as well as local source contribu-
tions (i.e., elemental carbon). A spatial surface of daily ambient
pollutant concentrations for the geographical study domain was
generated using a hybrid modeling approach that fused spatially
interpolated background pollutant concentrations and the local-
scale air quality model AERMOD output for the 186 ZIP code
centroids. AERMOD is a Gaussian plume dispersion model that
utilizes information on local emission sources (from the 2002
National Emissions Inventory) and local meteorological conditions
(from the Atlanta Hartsfield International Airport and ambient
monitoring sites) to estimate spatially resolved daily pollutant
concentrations. Thus, for every day during the time series,
we generated a pollutant estimate for each ZIP code centroid,
used in the health effect models as the exposure metric for
subjects living within the ZIP code. For Atlanta, we found that
output from this model was more representative of pollutant
spatial distributions observed from the multisite network than
stationary ambient monitoring alone while providing complete
coverage for the modeling domain. Details of this modeling
approach and comparisons with alternative methods for assigning
population exposures for Atlanta are presented in a companion
paper.28

Estimating AER
For this analysis, we used a relatively simple AER estimation
technique based on publicly accessible data (e.g., Census records,
meteorological station measurements), which could increase its
use broadly in epidemiological settings as compared with more
time- and field-intensive approaches. Specifically, we modified a
method derived from surveys assessing US building ventilation
and leakage characteristics.12,29,30 This method is based on empi-
rical relationships between direct and indirect predictors of AER
collected from field surveys, and includes parameters that can vary
spatially and temporally across a geographical area.12,14,15,31–34

Spatially varying AER predictors that do not exhibit daily changes
for a given home include the year a structure was built, as well as
its size.12,33 Newer homes are generally more tightly sealed with
lower AERs because of modern methods for constructing and
sealing building envelopes.13,30 Similarly, larger houses typically
have higher AERs compared with smaller houses, as they contain a
greater surface area for leaks to develop.12 A second component
of AER consists of factors that exhibit variation over time. These
include opening and closing windows and ambient indoor
temperature gradients,34,35 which induce movement across
building envelopes via the ‘‘stack effect’’ and wind speed.36

Spatially, we estimated AERs at the ZIP code level to correspond
to the spatial resolution of the ED visit data. For the 186 ZIP codes
in the Atlanta study area, we first estimated mean ‘‘normalized
leakage (NL) area’’ for homes. NL is a unitless value that describes
leakage area per exposed envelope area for different building
types. Most single-family homes have NL values between 0.2 and
2.0.12 We used empirically derived regression equations to
estimate the NL values in the study domain.12 These equations
are based on relationships between home size (in m2) and age (in
year it was built), and differ according to whether a residence is
classified as either a conventional or low income home and
expressed as:

Normalized leakage for low income homes

¼ e11:1þ � 0:0537�median year builtð Þþ ð� 0:0418�m2Þ ð1Þ

Normalized leakage for conventional homes

¼ e20:7þ � 0:0107�median year builtð Þþ ð� 0:0022�m2Þ ð2Þ
The weighted contribution of Eqs. (1) and (2) to total ZIP code

NL was based on the fraction of low income residences within a
given ZIP code, using 1999 census data on median household
incomes. Households with a 1999 median household income less
than one-half the median (median: $41,994) were classified as low
income.37 Information for ‘‘median year built’’ by ZIP code was
also obtained from 1999 census data.

Median home size by ZIP code is not published in the US
census. To address the limitation, we used data from the 2004
American Housing Survey for metropolitan Atlanta pertaining to
the distribution of ZIP code-resolved median rooms per residence,
along with empirical values for mean area per room to estimate
median household area by ZIP code.38 For residences with fewer
than three rooms, interpolated values were estimated using linear
regression.

Predictors of AER that may vary temporally include indoor–
outdoor temperature differences, which can induce infiltration via
stack effect air movement and wind speed.39 After estimating NL,
we estimated daily AERs by ZIP code as:12

AER¼ NL
1000�H

2:5
H

� �0:3

S ð3Þ

where NL is the normalized leakage values estimated using
Eqs. (1) and (2), H is building height (in m). For floor areas492 m2,
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H was estimated at 3 m, as has been the convention used in
other published analyses using this algorithm.30 For these models,
‘‘S’’ is an infiltration rate defined as function of various physical
factors:

S¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2

s � Tin� Toutð Þþ f 2
w�u2

q
ð4Þ

where ‘‘Tin’’ is an assumed constant indoor temp of 290 K; ‘‘Tout’’ is
a mean daily ambient temperature reading obtained from
Hartsfield-Jackson Airport (in K); ‘‘u’’ is the mean 24-h wind
speed (in m/s), also obtained from Hartsfield-Jackson Airport; ‘‘fs’’
is a stack coefficient estimated as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Rfac

2

3
� 1� X2

fac

2� R2
fac

� �
 !3

2

�grav� H
Tref

vuut ð5Þ

where ‘‘Rfac’’ is the fraction of total leakage from floors and ceilings
and assumed to be 0.5 for these analyses; ‘‘Xfac’’ is the difference
between the leakage from a ceiling compared with that from a
floor and assumed to be 0.25; ‘‘grav’’ is the earth’s gravitational
force¼ 9.8 m/s2; and ‘‘Tref’’is a reference temperature of 298 K;
and ‘‘fw’’ is a wind coefficient estimated as:

Cfac�ð1� RfacÞ1=3�Afac�
H
10

� �Bfac

ð6Þ

where ‘‘Cfac’’ is a parameter developed by the Lawrence Berkeley
National Laboratory related to wind shielding from obstructions
around a home. Values for Cfac range from 0.11 for homes with
large obstructions around its perimeter to 0.34 for residences with
no surrounding obstructions. Here, we assumed a Cfac value of
0.19. Afac and Bfac represent the geophysical terrain around a
residence. For the current analyses, we assumed a terrain
consistent with urban, industrial, or forest areas, and Afac and
Bfac values of 0.67 and 0.25, respectively.

Twenty-four hour average daily wind speed measurements and
ambient temperatures were obtained from a meteorological
station located at Hartsfield-Jackson airport and applied across
all study homes. Therefore, the temporal variability across ZIP
codes in their respective daily AER estimates (i.e., expressed as ZIP
code-specific coefficients of variation (CVs)) are identical. More-
over, our use of this simplifying assumption likely resulted in lower
spatiotemporal variability in the data than that truly exists, where
spatial changes in temperature and true wind speed on individual
homes is undoubtedly more variable.

Health Effect Analyses
Epidemiological analyses of the ED data were conducted using a
spatially resolved time series approach. The association between
daily measures of air pollution and daily counts of asthma ED visits
in each ZIP code was modeled using Poisson generalized linear
models.

logðEðYktÞÞ¼ aþ bpollutionkt þ
X

k

lk ZIPkt þ
X

m

lmDOWkt

þ
X

n

vnhospitalnt þ g g1; . . . ; gN timetð Þ

þ
X

o

xol0tempot þ Z1dewptt þ Z2dewpt2
t þ Z3dewpt3

t

þ d1tempt þ d2temp2
t þ d3temp3

t þ g1spring

þ g2summerþ g3autumn

ð7Þ

where Ykt is the count of asthma-related ED visits in ZIP code k
on day t. For each pollutant (pollution), a 3-day moving average (of
0-, 1-, and 2-day lags) was used as the a priori lag structure. Each
model included the daily, modeled ZIP code-specific pollutant
concentrations derived using the hybrid modeling approach
described above. The geographical area (ZIP), from which ED
counts were spatially aggregated, was represented by indicator
variables and modeled as fixed effects. The models included
dummy variables for season (spring, summer, autumn), day of
week, and holidays (DOW). Hospital dummy variables (hospital)
accounted for the entry and exit of hospitals during the study
period. Long-term trends and seasonality in case presentation
rates (time) were controlled with parametric cubic splines,
g(g1,y,gN; x), with monthly knots. Meteorological effects were
modeled using indicator variables for lag 0 maximum temperature
(for each degree Celsius) and a cubic term for the moving average
of dew point (lags 0, 1, and 2). Cubic terms for the moving average
of minimum temperature (lags 1 and 2) were also included for
meteorological control.

Both daily- and long-term trends in AER may influence
exposures to ambient pollution and subsequent health risk.
Correspondingly, we examined the potential effect of AER on the
pollutant-specific epidemiological associations using models:
(a) stratifying by median AERs, (b) including AER-pollutant product
terms, and (c) through tertile analyses based on both the pollutant
and AER distributions.

Stratified Analyses
As an assessment of the potential influence of spatial differences
in AERs on the overall model results, we conducted stratified
analyses by categorizing ZIP codes as being ‘‘low’’ or ‘‘high’’ AER
areas (defined by the ZIP code-specific median AER being above
or below the 50th percentile) (‘‘stratified models’’). For these
models, ZIPs with median AERso0.247 h� 1 were categorized as
being ‘‘low AER’’ ZIPs, as those with median AERs40.247 h� 1

were ‘‘high AER’’ ZIPs. We then ran separate time series models
(Eq. (1)) for each of the AER strata. As these strata reflect central
tendencies and include no daily indicators of change in AERs,
heterogeneity among the strata in RRs can be interpreted as
representing long-term differences in pollutant risks by AERs.

The AER estimates contain several parameters that may serve as
surrogates of other potential confounders (i.e., home size as a
surrogate of socioeconomic status (SES)). To address this potential
bias, we conducted analyses further stratifying low and high AER
ZIP codes into low and high poverty substrata. From data of
census 2000, we used percentage below poverty as our primary
indicator of aggregate-level SES in the AER analyses, based on
previous research in this field.37 Using this approach, we might
expect that potential confounding of AER by SES would be
minimized within a given poverty-AER strata.

Interaction Term Analyses
Similar to our primary analytical approach examining potential
AER effect modification, we supplemented Eq. (1) with an AER
main effect as well as a pollutant–AER interaction term along with
all other covariates. For these analyses, as the models included ZIP
code as a fixed effect, model coefficients functionally describe
effect modification due to within-ZIP code temporal trends in air
pollution solely. As such, the results controlled for potential
confounding in baseline risks from spatially varying factors
(e.g., between-ZIP differences in SES).

Tertile Analyses
Finally, to further examine the direction and strength of
association in the exposure–response relationships across the
range of observed values, we estimated the joint effects of AER
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and pollution by their tertiles. For these models, we classified each
day during the 4-year time series as being either a low, moderate,
or high pollutant day based on the distribution of the respective
pollutants, as well as a low, moderate, or high AER day. Thus, each
day and the corresponding asthma ED visits fell into a 3� 3
pollutant-AER matrix. We then included nine indicator terms for
each of the pollutant and AER tertile combinations along with the
other covariates as independent variables in Eq. (1).

RESULTS
Between 1999 and 2002, the grand median AER across 186 ZIP
codes in the metropolitan Atlanta area was 0.25 h� 1 and ranged
from 0.168 to 0.371 h� 1 for individual ZIP codes (Figure 1). Daily
pollutant concentrations and variability were typical during this
4-year period for Atlanta (Table 1). The within-ZIP code CV in AERs
owing to temporal changes was 36.7%, compared with a
between-ZIP code CV in median daily AERs of 17%. Each of the
pollutant distributions were weakly, yet negatively temporally
correlated with corresponding AER (Table 2), which was expected
because of the joint countervailing effects of wind speed on
increasing AERs (Eq. (5)), while also increasing horizontal disper-
sion and atmospheric dilution leading to reduced ambient
pollutant concentrations. As expected, given their shared primary
emission sources, NOx and CO were strongly correlated with each
other (mean rS¼ 0.93; Table 2). O3 was also moderately and
positively correlated with PM2.5 (mean rS¼ 0.51).

We examined correlations between several ambient tempera-
ture metrics and corresponding daily AER to assess the potential
that observed variability in AERs may be truly reflecting variability
in this potential confounder of air-pollution health effects. Despite
the inclusion of ambient temperature as an input parameter
within the AER estimation algorithm (Eq. (5)), observed AERs were
generally weakly and negatively correlated with 3-day moving
averages, maximum, and minimum temperatures (Spearman’s r
(rS)¼ � 0.16, � 0.29, and � 0.19, respectively). The inverse corre-
lations suggest that as ambient temperature extremes deviated
from our assumed indoor temperature constant (20 1C), AERs
decreased. This finding is not consistent with our a priori
expectations of enhanced stack effect-induced infiltration occur-
ring when Tin–Tout is presumably maximized during the summer
months. As these correlations were generally weak, however, it is
unlikely that the AER estimates were serving as direct surrogates
of ambient temperature.

Epidemiological Results
Models including only univariate pollutant terms and the other
covariates (‘‘overall models’’) without any AER estimates (Eq. (1))

showed positive associations between each of the four pollutants
and asthma ED visits with RRs ranging from 1.008 (for CO) to 1.046
(for O3; Table 3). These results are consistent with our previous
findings of significant associations between numerous pollutant
metrics and asthma ED visits in Atlanta.26,27

Typically, stratified analysis results showed that magnitudes of
association were higher for ZIP codes with higher AERs than those
with low AERs for all the pollutants, with the exception of O3

(Table 3). For CO and NOx, there were significant associations for
ZIP codes with high AER, and null findings for low AER ZIPs. For O3,
in contrast, the observed RR for the low AER strata was also
significant and nearly three times that of the RR for ZIP codes in
the high AER strata (RRs¼ 1.066 and 1.028, respectively).

Correlation analyses examining the linear association between
median AERs by ZIP code and ZIP code-level percent-below-
poverty showed strong, positive correlations (rS¼ 0.76; N¼ 186
ZIP codes, Figure 2), suggesting that one of these terms may
potentially serve as a confounder of the other in the stratified
analyses, given their strength of covariance. This was expected as
the empirical estimates of ZIP code-resolved NL were derived
using median income data (Eqs. (2) and (3)). RRs between each of
the pollutants and asthma ED visits were consistently higher for
the low AER ZIPs compared with the high AER ZIPs for strata
characterized as having high poverty levels. In contrast, there was
not a uniform trend in the magnitudes of association for the low
poverty ZIPs. For CO and NOx, RRs in these low poverty ZIPs were
higher for the high AER strata compared with the low strata. For
O3 and PM2.5, there was an inverse trend, with slightly higher RRs
observed for the low AER ZIP codes.

In contrast to the stratified models, the interaction term models
included ZIP code as a fixed effect, with model coefficients
functionally describing temporally trends solely. Potential con-
founding from spatially varying SES, which appears to be a realistic
concern for the spatially stratified models, is thus minimized using
this modeling approach. There were positive associations for the
interaction between AER and pollution on asthma ED visits for
both CO and NOx (interaction term P-value¼ 0.07 and 0.04,
respectively), indicating significant or near-significant effect
modification by AER on the pollutant risk-ratio estimates
(Table 4). In contrast, the interaction term between PM2.5 and
AER on asthma ED visits was negative and significant
(P-value¼ 0.012), with significant, positive main effects for both
PM2.5 and AER. Finally, O3 was strongly associated with asthma ED
visits in models including AERs (P¼ 0.002), although we observed
no associations between asthma, and either an AER main effect or
the interaction term between O3 and AER.

Results from the tertile analyses showed that RRs for NOx and
CO were consistently highest when daily AERs were within the
highest tertile of their distribution and lowest when AERs fell
within the lowest tertile, across each of the pollutant concentra-
tion tertiles (Figure 3). As expected from the overall model results,
RRs for these pollutants, while holding AERs constant, were also
highest on days when pollutant concentrations were highest. In
contrast, and consistent with the previous interaction-term model
results, the tertile analyses did not indicate effect modification by
AER for O3. For a given tertile in O3 concentrations, RRs did not
vary by AER but did increase substantially, within AER tertile, with
increasing O3 concentration. We note, however, that these results
may have been influenced by much reduced sample size when
the full data set was partitioned into nine different sub categories
for this analysis.

The PM2.5 and AER model results were mixed and exhibited
similar trends as NOx and CO (i.e., increasing RRs with increasing
AERs while holding PM2.5 concentrations constant) within the low
and moderate PM2.5 tertiles only. Conversely, observed RRs
increased with decreasing AERs for days binned within the
highest tertile of PM2.5 concentrations. The RR on days when PM2.5

concentrations were typically highest (419.2mg/m3) and AERs
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Figure 1. Histogram of the estimated median air exchange rates
(AERs) across the 186 ZIP codes.

AER as a modifier of acute air pollution risk
Sarnat et al

609

& 2013 Nature America, Inc. Journal of Exposure Science and Environmental Epidemiology (2013), 606 – 615



lowest (o0.23 h� 1), for example, was twice as high that compared
with days with high PM2.5 and high AERs (40.31 h� 1; RR¼ 1.056,
CI: 1.019–1.095; and 1.021, CI: 0.98–1.063, respectively.

We examined frequency distribution patterns within the
pollutant-AER tertiles to provide an initial graphical assessment
of the potential of seasonal confounding within the tertile analysis
epidemiological results (Figures 4–6, CO not shown). As expected,
distinct seasonal differences in pollutant levels existed for O3 and
NOx, with the highest O3 and lowest NOx days typically occurring
during the warmer summer months. For most of the pollutants,
however, monthly frequencies for specific pollutant-AER pairings
did not vary substantially by AER tertile. For example, high NOx
and high AER observations occurred during roughly the same
months throughout the year (i.e., at greater frequencies during
cooler months) as did high NOx and low AER days (Figure 4).

DISCUSSION
Our results provide an initial indication that accounting for daily
variability in AER within a single-city time series model may
explain heterogeneity in longitudinal asthma ED risk associated
with several common urban pollutants. Although limited to one
outcome category in a single urban locale, the findings suggest
that the use of relatively simple and easy-to-derive AER surrogates
reflect intraurban differences in short-term exposures to some
pollutants with ambient origins. For the spatially heterogeneous,
predominantly traffic-related pollutants CO and especially NOx,
ZIP codes with typically higher AERs were generally found to have
higher RRs for asthma ED visits. Moreover, assessed temporally
across ZIP codes, NOx- and CO-related asthma ED visits tended to
be significantly higher on days when AERs were also higher. Tertile
analyses for NOx and CO showed that this apparent effect
modification occurred across all concentrations of the observed
NOx and CO distributions.

There was also general concordance in the interpretation of the
NOx and CO results between the stratified and interaction-term
epidemiological models, despite the fact that these modeling
approaches describe different aspects of AER and its potential
influence on exposure and health risk with varying sample size.

For both models, higher AER was associated with greater pollutant
effects and is a finding that is consistent with our a priori
hypotheses that higher AER values result in greater infiltration of
outdoor air indoors, thus leading to higher personal exposures to
pollutants of ambient origin. ZIP code stratification by median AER
over several years may reflect long-term AER spatial pattern,
whereas the interaction term models reflect temporal changes in
within-ZIP code AERs primarily. Despite the general consistency,
however, the stratified epidemiological results should be inter-
preted cautiously as median AERs were shown to be highly
correlated with poverty indices. Differences ostensibly associated
with AER strata, therefore, may in fact be due to SES differences.
Even after we conducted substratification to address this by
accounting for within-ZIP code percent-below-poverty values, it is
likely that residual confounding in these models may still exist. A
visual examination of Figure 2, for example, reveals apparent
patterns of correlation between percent-below-poverty and
median AER even within some of the stratified quadrants,
indicating that further control for SES may be necessary.

To our knowledge, the interaction term findings for CO and
NOx, and to a lesser degree PM2.5, are the first to provide an
indication of short-term (i.e., daily) effect modification of gaseous
and PM pollution-related risks associated with daily changes in
AER. As such, the results are broadly similar to previous studies
that have hypothesized and reported higher mean air-pollution
risks for locations with higher overall AERs or pollutant infiltration
efficiencies.2,6,23–25,40,41 In contrast to our findings, for these
previous studies differences in infiltration and AERs were inferred
from broad surrogate indicators of these processes. Janssen et al.,2

for example, found that city-specific air-conditioning prevalence
estimates in 14 US locations were inversely associated with city-
specific effect estimates of PM10 on hospital admissions for
chronic obstructive pulmonary disease and cardiovascular disease.
Cities with a greater percentage of homes with central air-
conditioning had significantly lower relative risks than cities with
less central air-conditioning. For this study, the authors assumed
that homes with central air-conditioning had lower AERs as
compared with homes that used open windows for ventilation. A
more recent analysis included actual estimates of city-specific
AERs to examine modification of short-term O3 mortality risk.23

AER-adjusted O3 exposure coefficients were strongly correlated
with observed mortality rates, which suggest that between-city
differences in AER, which was greater than seen within our multi-
ZIP code Atlanta study domain, partially explained corresponding
differences in actual exposures to O3. The AERs used were derived
using results from a probabilistic survey of 209 US homes, where
hourly pollutant infiltration rates were measured and frequency
distributions calculated for 80% of the US housing stock.13 Daily
and within-city variability in AER, however, was not directly
examined as a predictor of heterogeneity in risk.

In contrast to these previous studies as well as our a priori
expectations, we observed no evidence suggestive of O3–AER
effect modification, despite the fact that O3 was a strong,

Table 1. Summary of daily AER values and pollutant concentrations in Atlanta between January 1999 and December 2002 across 186 ZIP codes.

Observations
(N)

Units Mean SD 5th
Percentile

25th
Percentile

50th
Percentile

75th
Percentile

95th
Percentile

Minimum Maximum Inter-quartile
range

AER 271,746 hr� 1 0.265 0.108 0.128 0.188 0.245 0.321 0.474 0.027 1.040 0.132
CO 270,816 p.p.m. 0.46 0.39 0.16 0.22 0.33 0.55 1.20 0.07 7.48 0.33
NOx 271,374 p.p.b. 30.1 33.5 3.1 8.0 18.5 40.1 94.4 0.7 517.8 32.1
PM2.5 229,896 mg/m3 15.2 7.1 6.6 10.0 13.6 18.7 28.7 2.5 78.2 8.7
O3 270,816 p.p.b. 41.9 18.6 16.4 27.7 39.3 53.8 76.2 3.5 132.7 26.1

Abbreviations: AER, air exchange rate; CO, carbon monoxide; NOx, nitrogen oxides; O3, ozone; PM, particulate matter.

Table 2. Mean Spearman’s correlation coefficients among pollutant
concentrations and AERs.

CO NOX PM2.5 O3 AER

CO 0.93 0.44 � 0.03 � 0.26
NOX 0.40 � 0.03 � 0.25
PM2.5 0.51 � 0.26
O3 � 0.19

Abbreviations: AER, air exchange rate; CO, carbon monoxide; NOx,
nitrogen oxides; O3, ozone; PM, particulate matter.
Mean values averaged across 186 ZIP codes.
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independent predictor of asthma ED visits in our analysis.
Weschler42 recently hypothesized that ambient O3 is closely
associated with by-products (e.g., carbonyls and dicarbonyls) of
O3-initiated chemistry occurring indoors. These by-products vary
directly with outdoor O3, yet are weakly associated with AER. Thus,
assuming a causal role in the link between the by-products and
asthma ED visits, it is possible that our null results for O3–AER
modification reflect this or some other indirect exposure–response
pathway.

Although unexpected, a more plausible explanation for the O3

findings may be that the relatively small within-ZIP code range of
the estimated AERs in Atlanta during this study period was not
sufficiently variable to elicit measurable differences in O3 fate and
transport, infiltration, and subsequent exposure. Correspondingly,
epidemiological models including interactions involving AERs
would be no more parsimonious than models without this
interaction term. The differential impact of AER on pollutant-
specific penetration efficiency is well supported in theory and

practice,5,10,11,16,43 and based on the steady-state solution to the
pollutant mass-balance equation positing ambient pollutant
infiltration, and subsequent exposures, to be a function of AER
and a series of pollutant-specific removal and decay constants.
Thus, the impact of the observed intertertile increase in AERs
(B0.1 h� 1) on highly reactive indoor O3 may have been limited,
as even at the high range of observed AERs during this study O3

infiltration within an indoor microenvironment may be low
relative to other pollutants. Conversely, the variability of AERs
within this range could have led to biologically meaningful
differences in exposures to less reactive pollutants, such as
NOx, CO, and PM2.5. It is also plausible that, for most people,
exposures to O3 specifically occur while outdoors,44 and range
from 24% to 57% of total daily exposures.42 Therefore, variability
in AERs affecting exposures to O3 while indoors may have
minimal influence on total daily exposures to this pollutant.
Replicating this analysis in cities known to have greater ranges in
AERs throughout the year may provide greater power to detect
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Figure 2. Scatterplot of ZIP code-level median air exchange rates
(AERs) and percent below poverty, with lines denoting 50th
percentile strata cut-points.

Table 3. Associations between pollutant concentrations and asthma ED visits, overall and stratified by ZIP code-level air exchange rate and poverty
status in Atlanta: 1999–2002.

Overall Low poverty High poverty

N RR (95% CI) N RR (95% CI) N RR (95% CI)

CO Overall 270,816 1.008 (1.000–1.016) 136,864 1.002 (0.990–1.014) 133,952 1.012 (1.001–1.022)
(IQR¼ 0.33 p.p.m.) Low AER 135,408 1.004 (0.991–1.016) 106,288 0.999 (0.985–1.013) 29,120 1.026 (0.997–1.055)

High AER 135,408 1.010 (0.999–1.020) 30,576 1.014 (0.986–1.043) 104,832 1.009 (0.998–1.021)

NOx Overall 271,374 1.010 (1.000–1.019) 137,146 1.002 (0.988–1.016) 134,228 1.015 (1.002–1.027)
(IQR¼ 32 p.p.b.) Low AER 135,687 1.003 (0.989–1.017) 106,507 0.997 (0.981–1.013) 29,180 1.032 (0.999–1.066)

High AER 135,687 1.013 (1.001–1.026) 30,639 1.024 (0.991–1.058) 105,048 1.012 (0.998–1.025)

O3 Overall 270,816 1.050 (1.024–1.075) 136,864 1.068 (1.030–1.107) 133,952 1.032 (0.998–1.067)
(IQR¼ 26 p.p.b.) Low AER 135,408 1.069 (1.031–1.108) 106,288 1.068 (1.026–1.112) 29,120 1.054 (0.971–1.145)

High AER 135,408 1.033 (0.999–1.068) 30,576 1.063 (0.977–1.157) 104,832 1.029 (0.993–1.068)

PM2.5 Overall 229,896 1.018 (1.003–1.033) 116,184 1.010 (0.989–1.031) 113,712 1.019 (0.999–1.039)
(IQR¼ 8.7mg/m3) Low AER 114,948 1.013 (0.992–1.035) 90,228 1.011 (0.987–1.035) 24,720 1.026 (0.978–1.078)

High AER 114,948 1.018 (0.998–1.039) 25,956 1.007 (0.958–1.059) 88,992 1.016 (0.995–1.038)

Abbreviations: CO, carbon monoxide; NOx, nitrogen oxides; O3, ozone; PM, particulate matter; RR, risk ratio.

Table 4. Associations between pollutant concentrations and asthma
ED visits including interaction terms with air exchange rates in Atlanta:
1999–2002.

Estimate 95% LCL 95% UCL w2 P-value

CO � 0.0071 � 0.0501 0.0358 0.11 0.75
AER � 0.0406 � 0.163 0.0817 0.42 0.52
CO–AER 0.1419 � 0.0099 0.2936 3.36 0.07
NOx � 0.1084 � 0.6203 0.4034 0.17 0.68
AER � 0.0348 � 0.1486 0.079 0.36 0.55
NOx–AER 1.9055 0.0797 3.7312 4.18 0.04
PM2.5 0.0058 0.0025 0.0091 11.87 0.0006
AER 0.281 0.093 0.469 8.59 0.003
PM2.5–AER � 0.0145 � 0.0259 � 0.0032 6.27 0.012
O3 2.2561 0.8176 3.6946 9.45 0.002
AER 0.0597 � 0.1111 0.2304 0.47 0.49
O3–AER � 1.511 � 5.5843 2.5624 0.53 0.47

Abbreviations: AER, air exchange rate; CO, carbon monoxide; ED,
emergency department; NOx, nitrogen oxides; O3, ozone; PM, particulate
matter.
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potential AER effect modification for pollutants like O3 than our
Atlanta results.

Our overall pollutant–AER interaction term models also
indicated opposite effect modification trends for PM2.5 as
compared with NOx and CO, with generally higher risks seen for

days with lower AERs. Although somewhat anomalous, however,
this finding was consistent with the tertile analysis results, which
showed that this divergent finding was largely driven by strong
inverse-effect modification trends on days when ambient PM2.5

concentrations were highest. In particular, on days when PM2.5
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Figure 3. Associations between pollutant concentrations and asthma emergency department (ED) visits by tertile of pollutant concentration
and air exchange rate (AER) values in Atlanta: 1999–2002. Shading indicates magnitude of association corresponding to the values listed in the
legend.
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concentrations were below the upper tertile of its distribution
(i.e.,o19.2 mg/m3), similar positive trends associated with AER
existed as those observed for NOx and CO.

No compelling explanation for these countervailing trends
exists at the highest PM2.5 concentrations; however, it is worth
noting that there was a difference in the monthly frequency
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pattern between the high and both moderate and low AERs
tertiles across this highest PM2.5 tertile (Figure 5). Generally, there
was a greater prevalence of high PM2.5–low AER days occurring
during the non-summer months compared with the other tertile
pairings, which could indicate unspecified seasonal confounding
in the tertile analyses for high PM2.5 days. It has been suggested,
for example, that differences in ambient PM2.5 across the different
New Jersey cities may lead to differential infiltration efficiencies
that, in turn, may account for differences in observed epidemio-
logical RRs.6 Alternatively, it is possible that the mean time spent
outdoors is greater in Atlanta during these non-summer months,
leading to reductions in measurement error associated with the
use of outdoor monitors as surrogates of population exposures in
time series epidemiological analyses. It follows that during these
months we might expect to see RRs that were less attenuated to
the null than results affected by a greater degree of measurement
error.19 Importantly, the monthly frequency distribution patterns
for the other PM2.5 tertiles, as well as for NOx and O3 were similar
across the AER strata (Figures 4 and 6, respectively), suggesting
that effect modification attributed to AER is unlikely confounded
by other seasonal factors within these models.

In the interaction term models, we also examined the potential
for confounding from meteorology. In acute air-pollution time
series studies, meteorological confounding is a common concern,
given the temporal covariance patterns between many pollutants
and weather-related factors, such as ambient temperature.
Although the method we used to estimate AER does include
ambient temperature, we showed that the correlation between
temperature and AER was weak. This is not surprising as
temperature was one of the several terms used to characterize
AER, and it was expressed as a non-linear term within the
algorithm. Similarly, these findings do not appear to be biased by
other unspecified seasonal confounding. Temperature and relative
humidity terms were also included as covariates within our
standard epidemiological models as a general means of control-
ling for potential confounding of air pollution-related effect
estimates.

A key limitation to the current analysis lies in the use of
estimated, rather than actual AERs, and we did not validate this
estimation approach within the scope of current study. The central
tendency of the estimated AERs we used in the current analysis
although possible (median AER¼ 0.25 h� 1), is substantially lower
than AER estimates from other US locations and for analyses that
predict Atlanta AERs specifically.13,23,30,31 Persily et al.,13 for
example, estimated annual mean AERs for Atlanta to be
0.43 h� 1, which did not factor in fraction of time when windows
were open. Chen et al.23 assumed a default estimate of the
difference in AERs when windows were open compared with
when closed to be 1.5 h� 1 in modifying the Persily et al.13

estimate to derive an average annual air-exchange rate for
residences in Atlanta of 0.48 h� 1. Notably, we acknowledge that
this estimate is difficult to ascertain. For the purposes of our
epidemiological analyses, however, discrepancies in the absolute
AERs are less important than whether the modeled
spatiotemporal variability within- and between-ZIP codes is
accurate from a relative sense. If the current method accurately
expresses day-to-day variability of AERs within a given ZIP code,
then epidemiological models examining the strengths of
associations for the main effects, covariates, and effect
modification terms within the model are also likely to be unbiased.

Other factors that may have led to low overall AER estimates
were several simplifying assumptions. These assumptions include
fraction of low income vs conventional housing stock within a ZIP
code. The empirical function for calculating NL (Eqs. (2) and (3)) is
heavily dependent on this assumption, with overestimates of low-
income housing stock resulting in substantially attenuated AERs.
We do not have any prior reason to believe that the fractional
contribution used in the current analysis is inaccurate; however,

alternative methods for quantifying the presence of low income
stock within a given ZIP code may provide a more precise
indicator of housing stock composition and, perhaps, lead to
revised total estimates of AER throughout the modeling domain.
Similarly, for this empirical-statistical method of AER estimation,
NL was based on associations that were collected on homes
throughout the United States, which may not necessarily be
representative of the Atlanta housing stock. Analyses simulating
the robustness of our results to functions derived using alternate
values can clarify the suitability of this approach for use in cities
like Atlanta and the need to derive alternative functions.

Finally, we used uniform values for the model meteorological
and terrain-type terms, which is unquestionably a broad
simplification. Temperature gradients throughout the city, includ-
ing those induced via urban heat islands, were not included in this
model and may lead to greater between-ZIP code variability in
AERs as well as increased AERs for ZIP codes affected by
microscale elevations in ambient temperature. As with the lack
of information regarding open windows status, it is difficult to
both model and predict the distribution of this source of
variability, as well as estimate how this may have affected the
epidemiological model results. For our main, within-ZIP temporal
modeling approach (Eq. (1)), however, we believe that the impact
of errors associated with this assumption is likely minimal.

In conclusion, we believe that these results provide an initial
indication that the use of short-term indicators of changes in daily
AER may explain heterogeneity in observed short-term risk from
air pollution. Admittedly, our approach and resulting findings may
not be generalizable to other locations or other pollutant–
outcome associations. We specifically used AER indicators based
on data that were relatively easy to obtain and include within an
established analytical framework, thereby facilitating replication of
this approach in other settings. Collectively, our results contribute
to a growing understanding of the role of AER as a factor affecting
ambient pollutant infiltration, intraurban exposure variability, and
possible exposure misclassification in health risk estimates in
acute single-city time series studies of air pollution.
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