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Relatively few studies have evaluated the effects of heterogeneous spatiotemporal pollutant distributions on health risk estimates in time-series analyses

that use data from a central monitor to assign exposures. We present a method for examining the effects of exposure measurement error relating to

spatiotemporal variability in ambient air pollutant concentrations on air pollution health risk estimates in a daily time-series analysis of emergency

department visits in Atlanta, Georgia. We used Poisson generalized linear models to estimate associations between current-day pollutant concentrations

and circulatory emergency department visits for the 1998–2004 time period. Data from monitoring sites located in different geographical regions of the

study area and at different distances from several urban geographical subpopulations served as alternative measures of exposure. We observed associations

for spatially heterogeneous pollutants (CO and NO2) using data from several different urban monitoring sites. These associations were not observed when

using data from the most rural site, located 38 miles from the city center. In contrast, associations for spatially homogeneous pollutants (O3 and PM2.5)

were similar, regardless of the monitoring site location. We found that monitoring site location and the distance of a monitoring site to a population of

interest did not meaningfully affect estimated associations for any pollutant when using data from urban sites located within 20 miles from the population

center under study. However, for CO and NO2, these factors were important when using data from rural sites located Z30 miles from the population

center, most likely owing to exposure measurement error. Overall, our findings lend support to the use of pollutant data from urban central sites to assess

population exposures within geographically dispersed study populations in Atlanta and similar cities.
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Introduction

A common method for assigning exposure in population-

based epidemiological studies of ambient air pollution is to

use measurements obtained from central site ambient

monitors (Wilson et al., 2005). However, uncertainties exist

as to how well these concentrations represent true personal

exposures to different pollutants, under different study

designs and in different geographical settings, and how the

resulting exposure measurement error may affect health risk

estimates in epidemiological analyses.

There are several potential sources of exposure measure-

ment error when using observed ambient measurements

to estimate personal exposures, including (1) instrument

error; (2) error resulting from the placement of a monitor

(reflected by the representativeness of the monitoring site

and spatial variability of the pollutant measured); and (3)

differences between the ambient monitored concentration

and average personal exposure (NRC, 1998). Simulation

studies suggest that the difference between true and measured

ambient pollutant levels most likely has only small effects

on time-series health-risk estimates (Zeger et al., 2000;

Sheppard et al., 2005). However, these studies either

assumed spatial homogeneity in the air pollutant or only

considered a pollutant (PM2.5) with little spatiotemporal

variation.

Total PM2.5 and secondary pollutants, such as ozone (O3),

are often relatively homogeneous over space, in that their

concentration levels as well as the temporal fluctuations in

their concentrations are relatively consistent over metropo-

litan areas. However, other pollutants, including those

emitted by motor vehicles, such as carbon monoxide (CO)

and nitrogen dioxide (NO2), are likely to show spatiotem-

poral heterogeneity, such that their concentration levels and/

or the temporal fluctuations in their concentrations vary over

metropolitan areas (also referred to as spatiotemporal

variability). Spatially heterogeneous pollutants include both

primary pollutants (e.g., CO and nitric oxide (NO)) and
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those formed by a relatively rapid conversion of a primary

pollutant (e.g., NO2).

The potential implications of heterogeneous spatiotempor-

al pollutant distributions on epidemiological findings are

frequently discussed in the literature (Pinto et al., 2004;

Ito et al., 2005; Wilson et al., 2005, 2006), but relatively

few studies have directly evaluated the effects of such

pollutant distributions on health risk estimates in time-series

analyses that use data from a central monitor to assign

exposures. Two recent publications have attempted to do so

for particle exposures by comparing health effect estimates

among models predicting outcome events for several

geographical subpopulations located at different distances

from a central monitoring site (Wilson et al., 2007), and

among models using local (i.e., closest) site monitoring data

in comparison with central monitoring data to assess

exposures for geographical subpopulations (Chen et al.,

2007).

In a daily time-series study of ambient particles and

cardiovascular mortality in Phoenix, Wilson et al. (2007)

found that effect estimates for PM2.5, but not for PM10-2.5,

were lower for models predicting mortality in geographical

subpopulations residing farther from a central monitoring

site compared with analyses of the population residing closest

to the site. Since socio-economic status (SES) of the three

subpopulations increased with increasing distance from the

central site, the authors suggested two factors that influenced

the observed pattern of effects: (1) exposure error (poorer

agreement between local population average exposure and

the centrally monitored PM2.5 concentrations with increasing

distance from the central site); and (2) effect modification by

SES (lesser sensitivity to the effects of PM2.5 with increasing

SES). It has been noted that SES may be a surrogate of

various underlying characteristics that can modify the effects

of ambient air pollution on a population, including suscept-

ibility (e.g., because of poor health in general), health-related

behaviors (e.g., smoking, nutrition), as well as disease

diagnosis and treatment (e.g., less access to healthcare) (Bell

et al., 2005). Individuals with low SES may also have higher

personal exposures to ambient pollution (e.g., by living closer

to roads or other specific pollution point sources or having

lower air conditioning usage) compared with those with

higher SES.

We previously presented the results of a geographical sub-

analysis of cardiorespiratory emergency department (ED)

visits and ambient particle and gaseous pollutants (Sarnat

et al., 2006), conducted as a part of the Study of Particles and

Health in Atlanta (SOPHIA) (Tolbert et al., 2000). Observed

associations between ambient pollutants and ED visits,

particularly for circulatory diseases, were stronger when we

limited the geographical domain of the study population

analyzed to residential areas closer to the central monitoring

sites compared with analyzing the full geographical domain of

the study (Sarnat et al., 2006). These results were expected

under the assumption that data from an ambient monitoring

site provide better markers of exposure for populations

residing in close proximity to the site compared with those

residing farther away. However, in this analysis, associations

were stronger for both spatially heterogeneous pollutants (e.g.,

CO and NO2) and for pollutants with fairly homogeneous

spatial distributions (e.g., PM2.5 and sulfate), suggesting that

decreased exposure measurement error in the geographical

sub-analyses as compared with the full analysis may not have

been the only explanation. It is possible, for example, that

population characteristics that confer sensitivity to air pollu-

tion, such as socio-demographic factors, may have also

affected our findings.

These analyses show the difficulty of disaggregating the

effects of exposure measurement error from the effects of

population characteristics in geographical subpopulation

comparison studies. For example, if we observe stronger

associations between air pollutant concentrations measured

at a central ambient monitoring site and health outcomes in a

population (A) residing close to the monitor compared with a

population (B) residing farther from that monitor, the

pattern could be partly because of (1) reduced exposure

measurement error for population A and/or (2) greater

susceptibility of population A to the pollutant of interest.

Here, we present a method for examining the effects of

exposure measurement error relating to spatiotemporal

variability in ambient air pollutant concentrations on air

pollution health risk estimates in our daily time-series

analyses while controlling the potential modifying effects of

population characteristics. Rather than using data from one

central site and comparing health effect associations across

different geographical subpopulations, our method examines

single geographical subpopulations and compares health

effect associations using pollutant data from different

monitoring sites as alternative measures of exposure. Since

we compare risk estimates within the same population over

the same time period, any observed differences in risk when

using different measures of exposure should not be attributed

to differences in population susceptibility. For example, if we

observe stronger associations for population A using ambient

data from a monitor located in close proximity compared

with those using data from a monitor located farther away,

the difference in associations may be reasonably explained by

differences in exposure measurement error between the two

measures of exposure.

Our method relies on the availability of daily air

monitoring data from multiple monitoring sites over a

sufficiently long time period, as well as a population and

health outcome supplying sufficient cases for geographical

subpopulation analyses. In this analysis, we examined data

from our Atlanta ED study over the 1998–2004 time period,

for which daily CO, NO2, O3, and PM2.5 concentrations

were available from several monitoring sites located through-

out the study area.

Exposure measurement error in time-series studiesSarnat et al.
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Methods

Ambient Air Quality Data
We obtained daily ambient concentration data for 1-h

maximum CO, 1-h maximum NO2, 8-h maximum O3, and

24-h average PM2.5 from all monitoring stations in the

20-county Atlanta study area that operated and collected

daily measurements for one or more of these pollutants

during all or a portion of the study period, 1 August 1998

through 31 December 2004. Data for all pollutants were

available year-round, with the exception of O3, for which

data were generally only available between April and

October. We also obtained daily meteorological data,

including average temperature and dew point temperature,

for the Hartsfield–Atlanta International Airport from the

National Climatic Data Center.

The air monitoring stations, their characteristics, and their

locations in the study area are described in Table 1 and

Figure 1. The monitoring stations included those in the US

Environmental Protection Agency’s (EPA) Air Quality

System (US EPA, 2007), the SouthEastern Aerosol Re-

search and Characterization Study network (ARA, 2007),

and the Assessment of the Spatial Composition in Atlanta

network (Butler et al., 2003). In total, 10 sites provided data

for this analysis, with four to five different sites per pollutant.

On the basis of population density data and proximity to the

Atlanta city center (e.g., within or close to the I-285

perimeter highway that circles the more central parts of the

city), we considered the following sites as urban: Jefferson St.

(JS), Georgia Tech (GT), Confederate Ave. (CA), Roswell

Rd (RR), South Dekalb (SD), Dekalb Tech (DT), Doraville

Health Center (DHC), and Tucker (TU); and the following

sites as rural: Conyers (CN) and Yorkville (YO) (Figure 1).

JS is the site of the Aerosol Research Inhalation Epidemiol-

ogy Study (ARIES) (Hansen et al., 2006) and the EPA

Atlanta Supersites project (Solomon et al., 2003), and has

been considered the primary site for particle pollutants in

earlier publications by this research group (Metzger et al.,

2004; Peel et al., 2005; Tolbert et al., 2007; Sarnat et al.,

2008). In this analysis, we used JS as the default central site

for CO, O3, and PM2.5 and GT as the central site for NO2,

located approximately 1 mile from JS. YO was the most rural

site, at a distance of 38 miles from JS.

To compare descriptive statistics and epidemiological

model results using data from different monitoring sites,

data were matched across sites for each pollutant. For

Table 1. Ambient monitoring sites, including pollutants measured and site characteristics.

Site name

(abbreviation)

Network AQS site

ID

Distance from

JS (miles)

Pollutanta AQS site characterizationb

CO NO2 O3 PM2.5 Location

setting

Land use Monitoring objective

Jefferson St (JS) SEARCH N/A 0 | | |c Urban and

center city

Industrial N/A

Georgia Tech (GT) AQS 131210048 0.92 | Urban and

center city

Commercial Highest concentration

Confederate Ave (CA) AQS 131210055 5.2 | Suburban Commercial Population exposure

Roswell Rd (RR) AQS 131210099 7.2 | Suburban Commercial Highest concentration

South Dekalb (SD) AQS,

ASACA

130890002 9.5 | | |c Suburban Residential Population exposure

(NO2, PM2.5)

Highest concentration (O3)

Dekalb Tech (DT) AQS 130891002 10.4 | Suburban Residential Population exposure

Doraville Health

Center (DHC)

AQS 130892001 11.6 | Suburban Commercial Population exposure

Tucker (TU) AQS 130893001 12.7 | Rural Residential Unknown

Conyers (CN) AQS 132470001 24.1 | | Rural Agricultural Population exposure

(NO2, O3)

Max concentration (O3)

Yorkville (YO) SEARCH,

AQS

132230003 37.6 | |c | |c Rural Agricultural General background

(CO, NO2, O3)

Upwind background (PM2.5)

ASACA, Assessment of the Spatial Composition in Atlanta; AQS, US EPA Air Quality system; SEARCH, SouthEastern Aerosol Research and

Characterization study.
aCheck marks in pollutant columns indicate which sites measured each pollutant.
bAll site characterization entries were obtained from the AQS data mart, with the exception of those for Jefferson St.
cWhen data from multiple instruments were available at the same site, primary instruments were selected and any missing values were modeled using data from

the other instruments, as follows (FRM F federal reference method, PCM F particle composition monitor, TEOM F tapered element oscillating

microbalance): at JS, PM2.5 SEARCH FRM data were filled in with regression-adjusted SEARCH PCM and TEOM data; at SD, PM2.5 AQS FRM data

were filled in with regression-adjusted ASACA TEOM data; at YO, PM2.5 SEARCH FRM data were filled in with regression-adjusted SEARCH TEOM

data; at YO, NO2 AQS data were filled in with regression-adjusted SEARCH data.
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example, if CO measurements from one monitor were

missing for a particular day, the CO measurements from

the other monitors were set to missing for the same day. This

matching process resulted in slightly different time periods

examined for each pollutant: 1 August 1998 to 30 June 2003

for CO, 1 August 1998 to 31 December 2004 for NO2, 1

August 1998 to 31 December 2004 for O3 (warm season

only), and 1 March 1999 to 31 December 2004 for PM2.5.

Emergency Department Data
We obtained individual-level data on ED visits for the 20-

county (7964 sq. mile) Atlanta population through compu-

terized billing records submitted by 41 of 42 acute care

hospitals (Figure 1). For each patient visit, hospitals

provided data on the date of admission, the primary

International Classification of Diseases 9th Revision (ICD-

9) diagnostic code, patient date of birth, gender, race, and 5-

digit residential ZIP code. We defined our outcome of

interest, circulatory disease, using primary ICD-9 diagnosis

codes 390–459. We excluded repeat visits by patients visiting

the same hospital within a single day.

In the overall analytic database, we included ED visits for

patients living within any one of the 225 ZIP codes located

wholly or partially in the 20-county Atlanta study area. We

also created variables to delineate ED visits for specific

geographical subpopulations living within 5 miles of each air

monitoring site, identified using the distance between air

monitoring sites and patient residential ZIP code centroids.

The monitoring site around which each subpopulation was

defined was considered to be ‘‘local’’, or closest, to that

population. The 5-mile radius was chosen on the basis of the

smallest distance from monitoring sites that allowed for

sufficient daily ED visit counts for circulatory disease in

epidemiological analyses. Analyses of the geographical

subpopulations were limited to those around urban monitor-

ing sites because of lack of population within 5 miles of rural

Figure 1. 20-county Atlanta study area with ZIP code level population density (# people/square mile; for 2001), location of air pollutant monitoring
sites (including Jefferson St (JS), Georgia Tech (GT), Confederate Ave (CA), Roswell Rd (RR), South Dekalb (SD), Dekalb Tech (DT), Doraville
Health Center (DHC), Tucker (TU), Conyers (CN), and Yorkville (YO)), and acute care hospitals.

Exposure measurement error in time-series studiesSarnat et al.
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sites. In all, 0–6% of ZIP codes for CO, NO2, and PM2.5

epidemiological analyses, and 34% of ZIP codes for O3

analyses, were counted in more than one geographical

subpopulation.

Census Data
We obtained Census 2000 data to describe the socio-

economic characteristics of the geographic subpopulations.

Using the 5-digit ZIP code tabulation area format, these data

were linked to the hospital records by the residential ZIP

code of each patient. On the basis of earlier research (Krieger

et al., 2003), we used the percentage of persons with income

below the federally defined poverty line (% below poverty

(%BP)) as our primary indicator of SES (census variable

P87) (US CB, 2002). We also examined other measures of

deprivation (% public assistance (%PA)), as well as

educational attainment (% high school graduation (%HS))

and income (median population housing income) as alter-

native metrics of SES.

Analyses
We examined the relationships between ED visits for

circulatory disease and daily measures of air pollutants using

Poisson generalized linear models. As in our earlier analyses

of these data (Metzger et al., 2004; Peel et al., 2005; Tolbert

et al., 2007; Sarnat et al., 2008), the model had the following

form:

logðEðYtÞÞ ¼ aþ bpollutantt þ
X

k
lk DOWk

þ
X

m
xm holidaym þ

X
n
nn hospitaln

þ
X

p
xp seasonp þ gðg1; . . . ; gN; timetÞ

þ gðd1; . . . ; dN; temptÞ þ ðZ1; . . . ; ZN; dewpointtÞ;

where Yt was the count of circulatory ED visits on day t in

the population of interest (i.e., entire population or specific

geographical subpopulation), and pollutantt was the corre-

sponding ambient concentration on day t for the pollutant of

interest from the monitoring site of interest. We used lag 0 as

the exposure measure based on the literature (Ballester et al.,

2006; Wellenius et al., 2006) as well as our data (Metzger

et al., 2004), which suggest acute circulatory responses with

air pollution. Moreover, the use of a single-day lag as

opposed to a multi-day moving average allowed for

minimization of missingness when matching the pollutant

data across monitoring sites. Models included indicator

variables for day of week (DOW) and holidays (holiday), as

well as hospital indicator variables (hospital) to account for

the entry and exit of hospitals during the study period. Long-

term and seasonal trends in case presentation rates (time)

were controlled with parametric cubic splines, g(g1,y,gN; K),
with monthly knots. Owing to the missing wintertime O3

data, O3 models used separate time splines for each year.

Finally, cubic splines were also used to control 3-day moving

average (average of lags 0, 1, and 2 days) temperature (temp)

and dew point temperature (dewpoint), with knots placed at

the 25th and 75th percentiles. With this approach, the first

and second derivatives of g(K) are continuous so that time

trends and meteorology are modeled as smooth functions.

Variance estimates were scaled to account for Poisson

overdispersion.

For the entire population, and for each geographical

subpopulation, our analytical approach focused on compar-

ing results among models incorporating pollution data from

monitoring sites located in different geographical regions of

the study area (e.g., urban vs rural sites) and with different

distances from the geographical subpopulation of interest

(e.g., local vs other sites). This approach allowed us to assess

the effect of monitoring site location and the distance

between monitoring sites and subpopulations on the

estimated associations. Relative risks and 95% confidence

intervals were calculated for interquartile range (IQR)

increases in the site-specific pollutant data used. Interquartile

ranges were used for comparing the results of associations

based on pollutant data from different monitoring sites,

which varied in their range of concentration.

In addition to examining the results for each geographical

subpopulation individually, we calculated overall measures of

association (using weighted averages) to summarize these

results for each pollutant. Specifically, the weighted averages

were used to compare the effects of using local urban vs other

urban monitoring data on the geographical subpopulation

associations, which were difficult to discern from the

individual results. For a given set of geographical subpopula-

tions, we compared the weighted averages of relative risk

estimates obtained using only local monitoring data with

estimates obtained using data from a central urban monitor.

The weighted averages were computed on the log scale using

the inverse of the variance of the estimates as the weights. To

accommodate weighted averages that pooled estimates using

data from different monitoring sites, the weighted average

relative risks and 95% confidence intervals were calculated

using common increments (i.e., 1 ppm for CO, 20 ppb for

NO2, 25 ppb for O3, and 10 mg/m3 for PM2.5) that

approximated urban IQRs.

Epidemiological analyses were carried out using SAS

statistical software, V9.1 (SAS Institute, Inc., Cary, NC,

USA), and mapping was conducted using ArcGIS ArcMAP

V9.2 (ESRI Inc., Redlands, CA, USA).

Results

Air Quality Data
Descriptive statistics and Pearson correlations (Tables 2 and

3) for each pollutant and site, respectively, show that CO and

NO2 levels were spatially heterogeneous across the city, with

respect to both their mean levels as well as site-to-site

Exposure measurement error in time-series studies Sarnat et al.
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temporal correlations, whereas O3 and PM2.5 were more

spatially homogeneous, as found in earlier analyses using

these data (Wade et al., 2006). For example, urban–rural

differences in mean concentrations were distinct for CO and

NO2 (e.g., rural concentrations were a fourth or less of urban

concentrations), whereas concentrations were more similar

across sites for O3 and PM2.5. In addition, Pearson

correlations were moderate (r¼ 0.61–0.80) among urban

sites for CO and NO2, and weak (r¼ 0.09–0.37) between

urban sites and the most rural site, YO. In comparison,

correlations for O3 and PM2.5 were high (r¼ 0.79–0.98)

among all sites. The observed patterns of correlations were

consistent when analyses were stratified by warm and cool

seasons.

Emergency Department and Socio-economic Data
Over the 1998–2004 time period, our database contained

7,616,029 ED visits, including 267,995 visits for circulatory

disease (daily mean¼ 114.3 visits). Table 4 presents mean

daily counts and demographic data for each geographical

subpopulation living within 5 miles of each air monitoring

site. ED visits for circulatory disease were predominantly

made by adults and the elderly (mean age¼ 60.3 years), with

some variation across the geographic subpopulations. Mean

daily visit counts (ranging from 5 to 8 visits/day) and racial

composition (ranging from 10% to 79% black) also varied

across the geographical subpopulations. The visit counts for

patients living within 5 miles of the rural monitors (CN and

YO) were very low (o2 visits/day), which precluded these

populations from being examined in the epidemiological

subpopulation analyses.

Among the urban subpopulations, poverty (%BP) and

public assistance (%PA), and educational attainment (%HS)

and income were highly correlated (r¼ 0.93 and 0.91,

respectively). %BP was negatively correlated with both

%HS (r¼�0.63) and income (r¼�0.85), indicating the

relationship between higher poverty and lower education and

incomes in Atlanta. Using these measures, SES was typically

lowest in the urban center and rural areas and highest in

suburban areas.

Epidemiological Results F Entire Population
The results of epidemiological models predicting ED visits for

circulatory disease in the entire study population are

presented on the far left side of each graph in Figure 2

(closed circles) and in Supplementary Table S1. When using

pollutant data from the central sites (i.e., JS and GT) as

measures of population exposure, we observed significant

Table 2. Descriptive statistics for air pollution data.

Pollutant Na Siteb Mean SD Percentiles

Min 25th 50th 75th Max IQR

1-h max CO (ppm) 1374 JS 1.3 1.2 0.20 0.52 0.87 1.7 7.7 1.1

RR 1.7 0.82 0.20 1.1 1.5 2.1 5.1 1.0

DT 1.4 0.91 0.10 0.7 1.2 1.8 7.7 1.1

YO 0.27 0.11 0.10 0.20 0.24 0.32 1.0 0.12

1-h max NO2 (ppb) 1834 GT 40.6 18.0 1.0 27.0 38.4 51.0 172.0 24.0

SD 34.4 15.3 1.0 23.0 33.0 44.0 139.0 21.0

TU 32.7 13.8 3.0 23.0 32.0 41.0 100.0 18.0

CN 14.5 9.9 1.0 8.0 13.0 19.0 242.0 11.0

YO 10.9 9.3 1.0 5.0 8.0 14.0 70.0 9.0

8-h max O3 (ppb) 1281 JS 52.8 21.6 2.3 37.5 50.3 67.3 130.8 29.8

CA 53.3 22.1 2.9 37.9 51.0 67.3 139.0 29.4

SD 49.4 20.7 2.0 34.9 48.0 62.6 135.3 27.8

CN 51.9 20.0 5.4 37.5 49.8 63.3 129.3 25.8

YO 57.4 18.7 9.1 43.6 55.5 70.4 133.1 26.7

24-h avg PM2.5 (mg/m
3) 1641 JS 16.5 8.1 1.1 10.6 15.0 20.9 65.8 10.3

SD 16.6 8.0 1.0 11.0 15.3 20.6 73.6 9.6

DHC 17.1 8.5 3.0 11.2 15.5 21.0 80.0 9.8

YO 13.6 7.4 1.9 8.3 11.8 17.3 65.6 9.0

IQR, interquartile range.
aAir pollution data were matched across sites for each pollutant. For example, if CO measurements from one monitor were missing for a particular day, the

CO measurements from the other monitors were set to missing for the same day. Therefore, time periods of analysis differed by pollutant: CO¼ 08/01/1998–

06/30/2003, NO2¼ 08/01/1998–12/31/2004, O3¼ 08/01/1998–12/31/2004, non-winter; PM2.5¼ 03/01/1999–12/31/2004.
bAir monitoring sites include Jefferson St (JS), Georgia Tech (GT), Confederate Ave (CA), Roswell Rd (RR), South Dekalb (SD), Dekalb Tech (DT),

Doraville Health Center (DHC), Tucker (TU), Conyers (CN), and Yorkville (YO).
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positive associations between circulatory visits and each

pollutant (range of relative risks: 1.011–1.018 per IQR

increase in pollutant concentration), which are consistent

with those observed in our earlier analyses (Metzger et al.,

2004). The results for CO and NO2 are also consistent with

traffic-related air pollution effects observed in our epidemio-

logical analyses using source-apportioned PM2.5 data (Sarnat

et al., 2008). We found consistent results for all pollutants

when using data from the other urban monitoring sites,

located within 12 miles of the central sites, as measures of

population exposure. When using data from the most rural

site (YO), located 38 miles from the central sites, we also

found consistent results for the spatially homogeneous

pollutants, O3 and PM2.5. We did not find consistent results,

however, for models examining effects associated with

spatially heterogeneous pollutants, CO and NO2, when using

data from YO. For these models, associations were low in

magnitude and consistent with the null hypothesis of no

association.

Epidemiological Results F Geographical Subpopulations
Figure 2 also presents the results of models predicting ED

visits for circulatory disease in the geographical subpopula-

tions (open squares). Compared with the results of models

predicting ED visits for the entire population, these results

had much wider confidence intervals, primarily because of

fewer visit counts contributing to the analyses. Similar to the

results of the entire population analyses, the geographical

subpopulation results showed clear urban–rural differences

when using CO and NO2 data from the different monitoring

sites as different measures of exposure (e.g., associations were

lowest in magnitude when using pollutant data from YO).

To aid in determining whether the distance between

monitoring sites and geographical subpopulations affected

the epidemiologic results within the urban area, we calculated

weighted averages of the geographical subpopulation results

(Figure 2, shaded triangles). The ‘‘local’’ weighted averages

provided overall estimates for the relative risk using the local

site pollution data across the geographical subpopulations for

each pollutant (i.e., overall estimates of the circled results in

Figure 2). We compared these estimates with corresponding

results obtained using each urban site as a central monitor for

the same geographical subpopulations. Weighted average

results of models using local monitoring data were very

similar to those using data from the other urban monitoring

sites suggesting that, within the urban area, distance between

monitoring sites and subpopulations did not affect our

epidemiological results.

Table 3. Pearson correlation coefficients for matched air pollutant data (distance in miles between monitoring sites in parentheses).

Shaded cells indicate within-pollutant (between-site) correlations.
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Discussion

Here, we present the results of time-series analyses of ambient

air pollution and ED visits for circulatory disease in

geographical subpopulations in Atlanta, Georgia, using air

pollution data from monitors located in different regions of

the study area as alternative measures of exposure. In doing

so, we offer a method for evaluating the effects of an

important component of exposure measurement error on air

pollution health risk estimates in time-series analyses.

Specifically, the method addresses the component of

measurement error related to spatiotemporal variability in

ambient air pollution concentrations when using fixed-site

ambient monitoring data to estimate air pollution exposures.

By comparing the results of models that use different

exposure metrics for the same geographical subpopulation,

our method effectively controls the potential modifying

effects of population characteristics.

In our analysis, we assumed that a greater distance

between the air pollution monitor used as the measure of

exposure and the geographical subpopulation would result in

a greater amount of exposure measurement error, particu-

larly for pollutants showing spatiotemporal variability. Thus,

differences in estimated relative risks when different air

pollution monitors are used may serve to illustrate the degree

of exposure measurement error. Classically, if exposure

measurement error is non-differential with respect to a health

outcome, we expect the bias to be towards the null when

using an exposure measure containing error. According to

this model, if the health outcome is caused by the exposure,

using a more refined measure of exposure should result in less

bias towards the null. For example, a model using data from

a local monitoring site as the measure of exposure for a

specific geographical subpopulation may yield higher esti-

mated relative risks than a model using non-local data

because of lower exposure measurement error, assuming that

the correlation between measured ambient concentrations

and unmeasured, true average population exposure is higher

when the distance between the monitoring site and the

population is small (Wilson et al., 2007). Comparing

estimated relative risks is a crude way of evaluating

measurement error, but descriptive comparisons may be

informative. For example, in Figure 2, we compared the

relative risks using different measures of exposure within each

Table 4. Sociodemographic characteristics of the entire population and for each geographic subpopulation.

Populationc # ZIP codes Circulatory ED visitsa SES indicatorsb

Daily N Age Raced %BP %PA %HS Income

Mean (SD) Mean (SD) %B %O # ZIP codese Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Entire 225 114.3 (26.4) 60.3 (18.7) 28.2 6.0

[0.13]f [13.5]

p5mi JS 15 8.3 (3.4) 61.3 (18.9) 64.5 4.9 13 25.3 (14.5) 4.5 (3.7) 79.1 (12.8) $36,544 ($18,011)

[0.5] [14.7]

p5mi CA 16 7.2 (3.2) 58.0 (18.3) 76.9 4.3 13 28.6 (12.8) 5.9 (3.7) 71.9 (11.8) $30,522 ($13,987)

[0.5] [20.8]

p5mi RR 10 5.4 (2.5) 68.8 (19.2) 9.8 7.0 10 8.0 (4.0) 0.7 (0.4) 92.7 (5.4) $67,168 ($21,513)

[0.2] [4.1]

p5mi SD 7 5.8 (2.8) 55.8 (17.5) 79.3 5.1 6 15.3 (7.1) 4.4 (2.3) 75.7 (9.4) $40,096 ($10,385)

[0.4] [34.7]

p5mi DT 11 8.0 (3.7) 57.6 (19.2) 56.7 6.0 10 14.1 (9.6) 3.0 (2.1) 83.6 (10.0) $43,892 ($8992)

[0.3] [38.9]

p5mi DHC 8 4.7 (2.5) 65.1 (18.8) 11.8 9.6 8 9.8 (3.5) 1.2 (0.4) 85.3 (7.8) $56,692 ($12,368)

[0.11] [10.2]

p5mi TU 8 5.3 (2.9) 57.4 (19.6) 33.9 12.6 8 15.2 (10.1) 2.5 (2.4) 78.2 (8.6) $44,807 ($11,410)

[0.13] [23.8]

p5mi CN 3 0.84 (0.95) 62.5 (16.9) 15.7 1.8 1 3.4 (.) 0.7 (.) 88.4 (.) $63,910 (.)

[0.05] [45.1]

p5mi YO 1 0.20 (0.45) 58.6 (18.3) 8.2 1.3 1 13.7 (.) 2.5 (.) 67.5 (.) $35,407 (.)

[0.00] [2.5]

aCirculatory ED visits for the time period 1 August 1998 to 31 December 2004 (N¼ 2345 days).
bSES indicator data from Census 2000: %BP¼ percent below poverty; %PA¼ percent on public assistance; %HS¼percent with high school graduation;

Income¼median population housing income.
cSubpopulations include all patients residing within 5 miles of Jefferson St (JS), Confederate Ave (CA), Roswell Rd (RR), South Dekalb (SD), Dekalb Tech

(DT), Doraville Health Center (DHC), Tucker (TU), Conyers (CN), and Yorkville (YO).
d%B¼mean percent of visits by black patients; %O¼mean percent of visits by Hispanic and other races/ethnicities.
eCensus data are missing for several ZIP codes that are included in ED database.
fSquare brackets indicate percent unknown age and percent unknown race.
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geographical subpopulation (e.g., for CO, we compared the

four results obtained for the JS population, using monitoring

data from JS, RR, DT, and YO). We anticipated that the

distance between the population and the monitoring sites

would provide an indication of the exposure measurement

error and would thus dictate the observed associations for

spatiotemporally heterogeneous pollutants (i.e., CO and

NO2), with strongest associations anticipated for each

population when paired with its closest monitoring site

(circled results in Figure 2).

Our results suggest that the effect of monitoring site

location and the distance between monitoring sites and the

population under study on observed relative risk estimates

depend on the pollutant of interest, as expected. For spatially

homogeneous pollutants (i.e., O3 and PM2.5), relative risk

estimates were generally similar regardless of the monitoring

site used as the exposure measure and regardless of distance

between monitoring site and population. In contrast, for

spatially heterogeneous pollutants (i.e., CO and NO2),

estimated associations varied by monitoring site location,

particularly when the exposure measure included a rural

monitoring site located far (e.g., greater than 30 miles) from

the population center of interest. For example, associations

that were observed using central site data for CO and NO2

were not observed when using data from the most rural site

as the measure of exposure.

Within the urban area, however, distances (e.g., o20

miles) between monitoring sites and geographical subpopula-

tions did not meaningfully affect the estimates for any

pollutant. Weighted averages of associations using local

monitoring data (located within 5 miles of each subpopula-

tion) were similar to those using data from other urban

monitoring sites (located within 10–20 miles of the popula-

tions). If closer residential proximity to an ambient monitor-

ing site provides better exposure assessment, as is often

assumed to be the case (Jerrett et al., 2004; Chen et al., 2007;

Wilson et al., 2007), we would have expected to observe

larger relative risks when using local monitoring data than

non-local monitoring data in the current analysis. These

results suggest that, within urban Atlanta, use of local

monitoring data as opposed to other urban monitoring data

did not significantly modify exposure estimation for our

pollutants of interest.

On the basis of our results, it appears that urban monitors

served as similar surrogates of population exposures to CO

and NO2, and were better surrogates of these pollutants than

rural monitors in our study. For CO and NO2, the

positioning of urban monitors may allow them to pick up

specific sources (e.g., background traffic) that are more

relevant to the health of the population compared with local

effects near rural sites. For O3 and PM2.5, all monitors

yielded very consistent epidemiological results given the fact

that monitor siting criteria varied among our monitoring sites

(Table 1).

It is important to note that the 5-mile radii used to define

subpopulations in this analysis did not allow for highly

refined exposure assessment to specific pollutant components

associated with individual sources, such as traffic, whose

concentrations vary considerably over short distances from

roadways (100s of meters) (Zhu et al., 2002). Significant

spatial variation in CO and NO2 pollutant concentrations

within the 5-mile capture areas may have reduced our ability

to refine exposures sufficiently to observe substantial effects

of residential proximity to monitoring sites on our epide-

miological results. Other studies have indeed found higher

relative risks when using more spatially refined estimates of

exposure compared with using data from central sites (Jerrett

et al., 2005). Moreover, data from certain monitors may not

have been the most representative of corresponding local

populations because of very local effects specific to the

monitor, such as wind or point sources.

Another reason for the lack of consistent differences in

results when using alternative (urban) measures of exposure

may be because of the issue of subject mobility. Local

monitoring data, assigned to patients on the basis of their

residential ZIP codes, may not ultimately have improved

exposure assessment in our study because of time-activity

patterns that take individuals away from their location of

residence for much of the day. Although time–activity studies

show that people spend approximately 70% of their time

inside their homes (Leech et al., 2002), the location of time

spent away from home in Atlanta may be farther compared

with studies of smaller geographic scale. As part of the

Strategies for Metropolitan Atlanta’s Regional Transporta-

tion and Air Quality (SMARTRAQ) study, Frank et al.

(2004) reported the results of an activity-based survey of

8000 households in 2001, with participants recruited from

different land use types, household sizes, and incomes . The

authors found that the per capita daily vehicle miles traveled

from home to work was 16.5 miles, with lower estimates for

central counties (e.g., 12.2–13.8 miles for DeKalb and

Fulton) than for outlying counties (e.g., 31.6 miles for

Paulding). Therefore, our 5-mile radii may not have

sufficiently captured the location of where patients spend

their time throughout the day.

Differences in population characteristics, such as demo-

graphic or socio-economic factors, cannot explain differences

in our epidemiological results when using alternative

exposure measures for the same geographical subpopulation.

They may, however, explain differences in results between

different geographical subpopulations paired with their

respective local sites (e.g., comparing circled results in

Figure 2). Our demographic and SES data suggest that the

geographical subpopulations differed with respect to these

indicators (Table 4), and thus had potentially different

susceptibilities to air pollution. However, we did not find a

consistent link between the measured population character-

istics and magnitude of the local site effect estimates. Our

Exposure measurement error in time-series studiesSarnat et al.
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comparison was limited by having only three results for each

between-subpopulation comparison for each pollutant.

Heterogeneity in the population characteristics within each

geographical subpopulation as well as random variability

because of small sample size may also have limited our ability

to observe any potential effect.

As such, our results differ from other recent findings.

Population characteristics, particularly SES (O’Neill et al.,

2003; Jerrett et al., 2004; Cakmak et al., 2006; Zeka et al.,

2006), have been shown earlier to affect the magnitude of

observed associations between air pollution and health. In a

geographical subpopulation study most similar to the current

one, Jerrett et al. (2004) conducted a ‘‘zonal’’ analysis

for associations between PM and sulfur dioxide and

mortality in Hamilton, Canada, dividing the study area into

five zones (Jerrett et al., 2004). They found that zonal

estimates were 1/3 to 3 times higher than regional (entire

population) estimates for both pollutants. They also found

that the zone with the highest SES showed no effect in

any models, whereas the zone with the lowest SES had the

highest effects.

Our current analysis demonstrates a method for examining

the effects of exposure measurement error relating to

spatiotemporal heterogeneity in air pollutant concentrations

on time-series health effect estimates, while controlling for

population characteristics. In Atlanta, we found that

monitoring site location and the distance of a monitoring

site to a population of interest did not meaningfully affect

estimated associations for any pollutant when using data

from urban sites located within 20 miles from the population

center under study. However, for CO and NO2, these factors

were important when using data from sites located greater

than 30 miles from the population center, most likely because

of exposure measurement error. Our results suggest that data

from a rural site (Yorkville), the most distant site from our

central, downtown monitors, introduced a substantial degree

of exposure measurement error for estimating exposures to

CO and NO2. Using data from the urban monitors led to less

exposure measurement error for our study population, and

we found no important difference between these monitors for

estimating associations for CO and NO2. O3 and PM2.5 data

from any monitoring site appeared to be similarly represen-

tative of population exposure.

These findings lend support to the use of limited ambient

monitoring as a surrogate of population exposures in time-

series settings. However, it is important to note that specific

geographical features, source types, and resulting pollutant

characteristics in Atlanta may influence the generalizability of

our results to other locales. Atlanta provides a large and

relatively flat geographical study area (e.g., a 20-county,

7964 sq. mile) the population of which is distributed in a

concentric pattern around an urban core, with air pollution

largely arising from power plants and traffic sources. The

effect of distance between monitoring sites and subpopula-

tions may be more prominent in areas with more spatial

heterogeneity in pollutant levels than in those observed in

Atlanta (e.g., because of differences in geographical features

and/or geographical distribution of sources).

We did not attempt to examine the total effect of exposure

measurement error in this analysis, which may in part explain

differences in observed relative risks within and between

pollutants. Although we explored the effects of exposure

error among different pollutants, we did so only from the

perspective of ambient spatiotemporal distributions. We did

not consider several other factors that could potentially

influence differences in health effect estimates, including

differential instrument error between monitors and the spatial

variation of pollutant-specific personal-ambient relationships

(e.g., because of differential infiltration patterns).

Overall, the current analysis supports the use of pollutant

data from urban central sites in Atlanta and similar cities to

assess ambient exposures for geographically dispersed study

populations, even for spatially heterogeneous pollutants

(Metzger et al., 2004; Peel et al., 2005; Tolbert et al., 2007;

Sarnat et al., 2008). In addition, our findings suggest the need

to balance the advantages of improved exposure assessment

that may hold if a smaller area is studied, with the increased

variance of estimates that would result, in comparison with

the study of a larger area with more people. Refining

exposure assessment by limiting the population of interest to

obtain more accurate local exposure estimates will increase

the potential for random error, which could mask the

association of interest.
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