
Recent interest in the health effects of particu-
late matter (PM) has focused on identifying
sources of PM that pose the greatest health
risks. Because it is likely that not all PM is
equally toxic, epidemiologic models that incor-
porate source-resolved PM may provide a step
toward targeting the most important causal
agents and refining traditional mass-based PM
standards. Quantifying health risks associated
with sources such as biomass burning, power
plants, gasoline and diesel emissions, rather
than individual pollutants, may also capture
complex multipollutant interactions that more
accurately reflect the etiologic relationships
between PM and adverse health. Few epidemi-
ologic studies, however, have included source-
apportionment data in their examinations of
PM health effects (Ito et al. 2006; Laden et al.
2000; Mar et al. 2000, 2006; Ozkaynak and
Thurston 1987; Schreuder et al. 2006). The
limited application of source apportionment

may be attributable partly to uncertainties
regarding optimal methods for conducting PM
source apportionment, as well as the lack of
suitable air quality data for analysis. 

Source-apportionment methods used in
previous studies have generally relied on factor
analytic approaches. For example, Laden et al.
(2000) grouped elemental PM concentrations
from six U.S. cities into a small numbers of
categories, or “factors” (Laden et al. 2000).
Significant associations were found between
mortality and the traffic and coal combustion
factors, with the largest effect size for the traf-
fic factor. No significant associations were
observed for the oil and soil factors. 

A series of recent analyses examined the
associations between source-resolved PM esti-
mates and mortality in Washington, DC, and
Phoenix, Arizona, using several different mul-
tivariate factor analytic methods in each city
(Hopke et al. 2006; Ito et al. 2006; Mar et al.

2006; Thurston et al. 2005). In these analyses,
source apportionment was conducted on sam-
ples collected twice a week, using absolute
principal components analysis (PCA),
UNMIX (a multivariate receptor model), and
positive matrix factorization (PMF). Results
showed that variability among the methods
was small when compared with overall source-
apportionment model uncertainty, and sug-
gested that these apportionment methods may
be useful in discerning source-specific health
effects. The authors note the relatively limited
sample size for these data sets and their inabil-
ity to robustly identify certain source cate-
gories (e.g., specific mobile source types).
Questions also remain concerning the general-
izability of these findings to other locations
with different aerosol compositions, the mar-
ginal benefit of using source-apportioned data
over single-species tracers, and whether analy-
ses using other source-apportionment meth-
ods, notably chemical mass balance (CMB),
will show the same pattern of agreement. 

Here we present and compare results from
epidemiologic analyses of emergency depart-
ment (ED) visits and source-resolved PM2.5
(PM with aerodynamic diameter ≤ 2.5 μm;
fine PM) obtained using PMF, modified
CMB, and a single-species tracer approach.
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BACKGROUND: Interest in the health effects of particulate matter (PM) has focused on identifying
sources of PM, including biomass burning, power plants, and gasoline and diesel emissions that
may be associated with adverse health risks. Few epidemiologic studies, however, have included
source-apportionment estimates in their examinations of PM health effects. We analyzed a time-
series of chemically speciated PM measurements in Atlanta, Georgia, and conducted an epidemio-
logic analysis using data from three distinct source-apportionment methods.

OBJECTIVE: The key objective of this analysis was to compare epidemiologic findings generated
using both factor analysis and mass balance source-apportionment methods.

METHODS: We analyzed data collected between November 1998 and December 2002 using
positive-matrix factorization (PMF), modified chemical mass balance (CMB-LGO), and a tracer
approach. Emergency department (ED) visits for a combined cardiovascular (CVD) and respiratory
disease (RD) group were assessed as end points. We estimated the risk ratio (RR) associated with
same day PM concentrations using Poisson generalized linear models.

RESULTS: There were significant, positive associations between same-day PM2.5 (PM with aero-
dynamic diameter ≤ 2.5 µm) concentrations attributed to mobile sources (RR range, 1.018–1.025)
and biomass combustion, primarily prescribed forest burning and residential wood combustion,
(RR range, 1.024–1.033) source categories and CVD-related ED visits. Associations between the
source categories and RD visits were not significant for all models except sulfate-rich secondary
PM2.5 (RR range, 1.012–1.020). Generally, the epidemiologic results were robust to the selection of
source-apportionment method, with strong agreement between the RR estimates from the PMF
and CMB-LGO models, as well as with results from models using single-species tracers as surro-
gates of the source-apportioned PM2.5 values.

CONCLUSIONS: Despite differences among the source-apportionment methods, these findings sug-
gest that modeled source-apportioned data can produce robust estimates of acute health risk. In
Atlanta, there were consistent associations across methods between PM2.5 from mobile sources and
biomass burning with both cardiovascular and respiratory ED visits, and between sulfate-rich sec-
ondary PM2.5 with respiratory visits.

KEY WORDS: acute, Atlanta, cardiovascular, chemical mass balance, emergency department visits,
fine particulate matter, positive matrix factorization, respiratory, source apportionment, tracer.
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This analysis is the first to compare epidemio-
logic findings generated using both factor
analysis and mass balance source-apportion-
ment methods. The data used in this analysis
were collected in Atlanta, Georgia, a unique
location for conducting this type of health-
effects study given the existence of an extensive
time-series of daily speciated PM2.5 meas-
urements and corresponding hospital records.
These data have been previously characterized
in several source-apportionment and epidemio-
logic analyses (Kim et al. 2004; Marmur et al.
2005; Metzger et al. 2004; Peel et al. 2005).
We compare results across methods and assess
the robustness of health risk estimates for car-
diopulmonary ED visits. The implications of
using one or several methods for understanding
the sources of PM2.5-mediated health risks are
also addressed. 

Methods

Source-apportionment methods, including
PMF, an extended CMB method, and single-
species tracers, were applied to PM2.5 concen-
trations collected daily at an urban Atlanta
site, Jefferson Street, between November 1998
and December 2002. The Jefferson Street site
is located 4 km northwest of downtown and
has served as a primary measurement site for
the Southeastern Aerosol Research and
Characterization Study (SEARCH), the
Aerosol Research Inhalation Epidemiology
Study (ARIES), and several ongoing epidemi-
ologic studies as part of the extensive Studies
of Particles and Health in Atlanta (SOPHIA)
(Hansen et al. 2006; Metzger et al. 2004; Peel
et al. 2005; Wade et al. 2006). Detailed par-
ticulate speciation was conducted to obtain
particulate ionic, trace metals, and tempera-
ture-resolved carbonaceous concentrations, via
ion chromatography, X-ray fluorescence, ther-
mal-optical reflectance (TOR), respectively.
The source-resolved PM2.5 was subsequently
used in daily time-series analyses to estimate
the risk ratio (RR) of respiratory disease (RD)
and cardiovascular disease (CVD) ED visits. 

Source apportionment of the Atlanta
aerosol. Several source-apportionment studies
have been conducted on speciated PM2.5 data
collected at Jefferson Street. For the current
analyses, PM2.5 source apportionment was
conducted using PMF with temperature-
resolved carbon fractions (Kim et al. 2004); an
extended CMB approach using the Lipschitz
global optimizer (LGO) program, CMB-LGO
(Marmur et al. 2005); and single-species
source-indicative tracers. The PMF and
CMB-LGO analyses on the current data set
were conducted, independent of each other,
by researchers from Clarkson University and
the Georgia Institute of Technology, respec-
tively. Complete descriptions of the specific
source-apportionment methods have been
published elsewhere (Kim et al. 2004, 2003a,

2003b; Marmur et al. 2005), but brief sum-
maries for each method are presented below. 

PMF. PMF is a factor analytic method
that distinguishes correlation patterns among
speciated PM2.5 measurements in a given
location. As such, it does not rely on a priori
knowledge concerning chemical profiles of
sources to generate source contribution esti-
mates. An often-noted limitation of using fac-
tor analysis methods is the inability to link
observed factors in the analysis directly with
actual sources. Because these methods are
based on statistical patterns of correlations,
rather than empirical chemical source profiles,
naming the factors as specific sources is some-
what subjective. 

CMB-LGO. CMB receptor models are a
common tool for apportioning ambient levels
of pollutants among the major contributing
sources. CMB combines the chemical and
physical characteristics of particles measured at
sources and receptors to quantify the source
contributions to the receptor. The quantifica-
tion is based on the solution to a set of linear
equations that express each receptor’s ambient
chemical concentration as a linear sum of
products of source-profile abundances and
source contributions. In the enhanced CMB-
LGO model, source-indicative sulfur dioxide/
PM2.5, carbon monoxide/PM2.5, and nitrogen
oxides/PM2.5 ratios are used as constraints, in
addition to the commonly used particulate-
phase source profiles. A limitation of CMB
approaches is the assumption that profiles
characterized at the source remain unchanged
between source and receptor. For this compari-
son, both estimated source contributions from
CMB-LGO and factor contributions from
PMF will be referred to as “source categories.” 

Tracer method. Species that are character-
istic of a given source profile and present in
samples above their respective limits of detec-
tion may, in some cases, serve as suitable trac-
ers of that source. Several source-indicative
tracers were selected a priori, based on results
from previously published studies (Koutrakis
et al. 1992; Laden et al. 2000). For the current
analyses, silicon was used as a tracer for soil,
potassium for biomass or wood burning, zinc
as a tracer for gasoline vehicles, elemental car-
bon (EC) for diesel sources, organic carbon
(OC) for the CMB-LGO source “other OC,”
sulfate ion (SO4

2–) for sulfate-dominated sec-
ondary aerosol, nitrate ion (NO3

–) for nitrate-
dominated secondary aerosol, and selenium for
primary emissions from coal-fired power plants
(Reddy et al. 2005). None of these elements
should be considered unique to a given source.

To facilitate comparisons within and
among the methods, most analyses were
restricted to days when estimates for all source
categories were available. Over the time
period analyzed, a total of 1,018 daily
measurements were included in the analyses

[492 measurements during the cool season
(October 15–April 14); 526 measurements
during the warm season (April 15–October
14)]. Sensitivity analyses conducted compar-
ing the restricted and complete data sets and
their corresponding epidemiologic results
showed little difference in the RR estimates
and resulting interpretation. 

Emergency department data. Information
on individual-level ED visits was collected via
electronic billing data from acute care hospitals
serving the 20-county Atlanta metropolitan
area. For the period November 1998 through
December 2002, a subset of the ongoing
SOPHIA study period, 27 of 42 hospitals serv-
ing the area were able to provide useable elec-
tronic data. We categorized ED visits into a
combined RD case group using the following
primary International Classification of
Disease, 9th Revision (ICD-9; World Health
Organization 1975) diagnostic codes: asthma
(493, 786.09), chronic obstructive pulmonary
disease (491, 492, 496), upper respiratory
infection (460–466, 477), and pneumonia
(480–486). A combined CVD group was also
created that combined the following primary
ICD-9 codes: ischemic heart disease
(410–414), cardiac dysrhythmias (427), con-
gestive heart failure (428), and peripheral vas-
cular and cerebrovascular disease (433–437,
440, 443–444, 451–453). ED visits for each
outcome group were aggregated by day for use
in epidemiologic analyses. Repeat visits within
a day by a specific patient were counted as a
single visit.

Data analysis. Source impact compar-
isons. We compared source impacts within
and between source-apportionment methods.
Pollutant data were non-normally distributed,
so we used Spearman’s correlation coeffi-
cients. Many of the analyses were conducted
using seasonally stratified data, given the dif-
ferences in pollutant concentrations, distribu-
tion, and meteorology occurring in warm
compared with cool seasons. 

Epidemiologic analyses. We estimated the
relative risk of daily RD and CVD ED visits
associated with 24-hr integrated source impacts
using Poisson generalized linear models
(McCullagh and Nelder 1989). These analyses
are similar to those used in our previous analy-
ses of Atlanta data (Metzger et al. 2004; Peel
et al. 2005). The basic form of the model is

log[E(Yt)] = α + β source categoryt
+ Σκ λk DOWkt
+ Σm υm hospitalmt
+ g(γ1,…, γN; timet )
+ g(σ1,…, σN; tempt )
+ g(η1,…, ηN; dewpointt ), [1]

where Yt is the count of ED visits on day t for
the outcome of interest. The model also
included indicator variables for day of week
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and holidays (DOW), and hospital indicator
variables (hospital ) to account for the entry and
exit of hospitals into and from the database
during the study period. Long-term trends in
case presentation rates (time) were controlled
using semiparametric cubic splines, g(γ1,…,
γN; x) with monthly knots in both CVD and
RD models. Cubic splines were used to control
mean temperature (temp) and mean dewpoint
temperature (dewpoint), with knots placed at
the 25th and 75th percentiles. The first and
second derivatives of g(x) were continuous
allowing time trends and meteorology to be
modeled as smooth functions. Variance esti-
mates were scaled to account for Poisson
overdispersion. In this study, we calculated all
RRs for an increase of the approximate
interquartile range (IQR) of the source cate-
gory of interest. Relationships were examined
with 8 of the 9 CMB sources and 10 of the 11
PMF factors. Relationships with the CMB
ammonium bisulfate source and the PMF bus
and highway factor were not obtained because
of instability resulting from the large number
of days in which there were no estimated
source contributions from these categories. 

In our previous analyses (Metzger et al.
2004; Peel et al. 2005), we observed associa-
tions for both cardiovascular and respiratory
ED visits with same-day levels of total PM2.5.
Because an objective of the current analysis was
to disaggregate the source-specific health effects
associated with total PM2.5, for each exposure
variable (source category) in this analysis, the
zero-day lag was chosen as the a priori exposure
window. Secondary analyses also included
models stratified by warm (April 15–October
14) and cool (October 15–April 14) seasons. 

Results 

The CMB-LGO and PMF analyses quantified
impacts from 9 sources and 11 factors, respec-
tively, for the Atlanta PM2.5 concentrations
(Table 1). Complete summary statistics for the
measured PM2.5 concentrations and source cat-
egories are presented in Table 2. Six compara-
ble source categories—gasoline vehicles, diesel
vehicles, biomass burning or wood smoke, soil,
sulfate-rich secondary aerosols, and nitrate-rich
secondary aerosols—were identified by both
methods. Despite the similar category names
and the fact that many of the source categories
are driven by similar species, differences exist in
the chemical profiles used by each method
[Supplemental Material, Table 1 (online at
ht tp : / /www.ehponl ine .org/members/
2008/10873/suppl.pdf)]. To assist in the iden-
tification of the factors as source types for
PMF, the explained variation provides an indi-
cation of which sources are most responsible
for explaining the variation in each particular
chemical species used in the PMF analysis. A
description of explained variation and the
results for these data are presented in the

Supplemental Material [Table 2 (online at
http://www.ehponline.org/members/2008/
10873/suppl.pdf)].

A substantial fraction of the Atlanta
PM2.5 was identified as sulfate-rich secondary
aerosol, comprising approximately 40% of
the total PM2.5 mass during the study period
(Table 2, Figure 1). Both the PMF and
CMB-LGO models identified separate diesel
and gasoline engine source categories. Both
methods indicated that roughly 20% of the
PM2.5 mass in Atlanta originated from these
two mobile source categories, although PMF
apportioned a greater fraction of the total

PM2.5 mass to diesel as compared with CMB-
LGO (13 vs. 9%, respectively). There were
other differences regarding the identification
of specific categories, such as primary PM2.5
from coal-fired power plants, identified in
CMB-LGO only, and cement, railroad,
bus/highway, and metals-processing factors,
identified in PMF only.

Associations within and between source-
apportionment methods. Several source cate-
gories within each method were correlated
with each other, as expected given the strong
influence of meteorologic factors on pollutant
temporal patterns [Supplemental Material,

Epidemiologic analyses using source-apportioned fine PM
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Table 1. Source-apportionment category names by method. 

PMF factors CMB-LGO sources Tracer

Gasoline Gasoline PM2.5 Zn
Diesel Diesel PM2.5 EC
Wood smoke Biomass burning PM2.5 K
Soil Soil PM2.5 Si
Secondary sulfate I Ammonium sulfate PM2.5 sulfate
Secondary nitrate Ammonium nitrate PM2.5 nitrate
Secondary sulfate II — —
Metal processing — —
Railroad — —
Bus and highway — —
Cement kiln — —
— Power plants (1°) PM2.5 Se
— Other OC PM2.5 OC
— Ammonium bisulfate

Comparable source categories are listed on the same row. 

Table 2. Mean, median, and selected percentiles (10th, 90th) of daily PM2.5 source contributions by season
from the ARIES monitoring station at Jefferson Street, Atlanta, GA (November 1998–December 2002). 

Cool season (n = 492 days) Warm season (n = 526 days)
Mean 10th Median 90th Mean 10th Median 90th

Total PM2.5 15.8 7.5 14.3 25.5 18.2 9.1 17.0 29.0
PMF diesel 2.6 0.5 1.8 6.3 1.9 0.3 1.5 3.9
CMB diesel 1.5 0.4 1.2 3.3 1.4 0.5 1.2 2.6
PM2.5 EC 1.7 0.6 1.4 3.3 1.4 0.6 1.3 2.5
PMF gasoline 1.7 0.3 1.2 3.6 1.1 0.3 0.9 2.3
CMB gasoline 1.5 0.5 1.3 2.9 1.0 0.3 0.9 1.9
PM2.5 Zn (ng/m3) 15.7 4.6 11.7 30.2 10.9 3.3 8.5 20.2
PMF wood smoke 1.6 0.5 1.3 2.8 0.8 0.1 0.7 1.4
CMB biomass burning 1.1 0.5 1.0 2.0 0.9 0.4 0.8 1.7
PM2.5 K (ng/m3) 63.0 24.3 53.9 114.2 52.7 23.2 43.3 93.5
PMF soil 0.3 0.0 0.3 0.7 0.8 0.2 0.6 1.3
CMB soil 0.2 0.0 0.1 0.4 0.4 0.1 0.3 0.7
PM2.5 Si (ng/m3) 67.7 24.3 54.1 123.5 110.9 32.9 89.0 186.3
PMF secondary sulfate I 4.4 1.4 3.7 8.4 8.7 3.0 7.6 16.4
CMB ammonium sulfate 4.2 1.6 3.7 7.5 8.2 3.3 7.3 14.3
PM2.5 SO4

2– 3.4 1.5 0.6 5.8 6.0 2.3 5.2 10.8
PMF secondary nitrate 1.4 0.4 1.2 2.6 0.6 0.2 0.5 1.1
CMB ammonium nitrate 2.0 0.6 1.7 3.6 0.9 0.4 0.7 1.6
PM2.5 NO3

– 1.4 0.5 1.2 2.6 0.7 0.3 2.9 1.2
CMB power plantsa 0.1 0.0 0.1 0.3 0.1 0.0 0.1 0.3
PM2.5 Se (ng/m3) 1.4 0.4 1.1 3.0 1.2 0.4 0.9 2.7
CMB other OC 2.6 0.9 2.1 4.8 2.5 1.1 2.3 4.2
PM2.5 OC 4.6 1.9 3.9 8.0 4.0 2.1 3.7 6.4
CMB ammonium bisulfate 0.4 0.0 0.0 1.5 0.4 0.0 0.0 1.1
PMF secondary sulfate II 1.4 0.0 1.3 2.6 1.7 0.4 1.5 3.2
PMF cement kiln 0.4 0.1 0.3 0.8 0.4 0.1 0.3 0.8
PMF bus and highway 0.1 0.0 0.0 0.3 0.1 0.0 0.0 0.2
PMF railroad 0.5 0.1 0.5 0.9 0.7 0.2 0.7 1.3
PMF metal processing 0.8 0.1 0.6 1.8 0.7 0.1 0.6 1.5

Values reported in milligrams per cubic meter unless otherwise specified. Cool season is October 15–April 14; warm sea-
son is April 15–October 14. Secondary sulfate II contains a greater organic fraction than secondary sulfate I, which is
mainly sulfate and ammonia.
aReflects impacts from primary power plant emissions solely.



Table 3a–b (online at http://www.ehponline.
org/members/2008/10873/suppl.pdf)]. In
general, the PMF factors were more orthogonal
(i.e., less correlated) than the CMB-LGO
sources, which was expected given that PMF
factors are identified in part on the basis of their
lack of collinearity. Moderate temporal correla-
tion (i.e., Spearman’s r > 0.40–0.60) existed
between the gas, diesel, and biomass burning
source categories in CMB-LGO. Similarly,
moderate correlation existed among the gas,
diesel, and wood smoke PMF categories. 

Correlations between PMF and CMB-
LGO source estimates were generally strong
for the six comparable categories that were
identified by both methods (Table 3). For the
diesel, biomass burning or wood smoke, soil,
and sulfate-rich and nitrate-rich secondary
aerosol source categories, correlations
exceeded 0.80 during both seasons, except for
the warm season correlation between PMF

and CMB-LGO soil (rS = 0.69). The gasoline
source category was a notable point of con-
trast, with only weak to moderate correlations
between the methods during both seasons
(rS = 0.45 and 0.24 in cool and warm seasons,
respectively). Mean absolute deviations
between values estimated by both sources
were generally < 1 μg/m3, which for specific
source categories represented large relative dif-
ferences [Supplemental Material, Table 4
(online at http://www.ehponline.org/members/
2008/10873/suppl.pdf)]. Differences between
methods were typically greatest for gasoline
and soil impacts relative to their respective
means, with the sulfate- and nitrate-rich sec-
ondary aerosols exhibiting the least relative
deviation. 

Many of the elemental species were also
strongly correlated with specific source cate-
gories, supporting their a priori selection as
source tracers (Table 4). This was not true for

all tracer species. For example, Zn was
strongly correlated with CMB gasoline source
contributions (rS = 0.96), but only moder-
ately to weakly correlated with the PMF gaso-
line estimates (rS = 0.42). Se was not a strong
tracer for power plant source contributions
(rS ≈ 0.4), likely because of its relatively low
signal-to-noise ratio. 

Associations with RD and CVD visits.
Thirty-seven of 42 hospitals in the metropoli-
tan Atlanta area provided data on > 4.5 million
emergency department visits for the time period
included in these analyses. There was an average
(± SD) of 324 ± 123 (range, 105–1,061) and
75 ± 17 (range, 32–123) visits per day for RD
and CVD visits, respectively. In the restricted
data set, same-day increases in total PM2.5 (i.e.,
a 0-day lag) were significantly associated with
increases in CVD visits [RR = 1.022; 95%
confidence interval (CI), 1.007–1.038], but
not RD visits (RR = 1.005; 95% CI,
0.996–1.015). In the nonrestricted data set for
this time period, PM2.5 was also significantly
associated with RD visits (RR = 1.016; 95%
CI, 1.007–1.024) for a 0-day lag.

Associations between the same-day con-
centration of the PM2.5 source categories and
RD visits were consistent with the null for all
models using PMF, CMB-LGO, and the
tracers, except for the source categories
characterizing sulfate-rich PM2.5 [Figure 2;
Supplemental Material, Table 5 (online at
ht tp : / /www.ehponl ine .org/members/
2008/10873/suppl.pdf)]. An IQR increase in
sulfate-rich secondary PM2.5, formed mainly
from primary power plant precursors, was
associated with 1.2–2.0% increases in respira-
tory visits. In contrast, we found a significant
negative association between respiratory visits
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Figure 1. Fractional contribution to PM2.5 from (A) PMF and (B) CMB-LGO source categories at Jefferson
Street, Atlanta, GA (November 1998–December 2002). 
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Table 3. Spearman’s correlation coefficient between PMF and CMB-LGO source categories during the cool season (10/15–4/14) and warm season (4/15–10/14)
(November 1998–December 2002).

PMF
Wood Secondary Secondary Secondary Metal Bus and

CMB Gas Diesel smoke Soil sulfate I nitrate sulfate II processing Railroad highway Cement kiln

Cool season
Gas 0.45 0.72 0.12 0.61 0.20 0.29 0.00 0.69 –0.15 0.44 0.37
Diesel 0.57 0.88 0.16 0.45 0.20 –0.09 0.04 0.43 0.13 0.46 0.21
Biomass burning 0.23 0.33 0.89 0.28 0.25 –0.21 0.03 0.20 0.10 0.27 0.30
Soil 0.67 0.73 0.29 0.83 0.31 0.14 0.10 0.42 –0.26 0.33 0.25
Ammonium sulfate 0.20 0.31 0.30 0.40 0.85 0.04 0.21 0.16 –0.03 0.00 0.15
Ammonium nitrate 0.13 0.26 –0.03 0.29 0.18 0.89 0.11 0.27 –0.18 0.14 0.15
Power plants (1°) –0.08 0.01 0.38 0.04 0.00 0.01 0.20 –0.01 0.13 –0.01 0.76
Ammonium bisulfate –0.13 –0.12 –0.12 –0.08 0.09 0.28 –0.01 –0.05 –0.06 0.02 –0.10
Other OC 0.80 0.76 0.11 0.45 0.16 –0.10 0.16 0.27 –0.01 0.30 0.07

Warm season
Gas 0.24 0.58 0.06 0.44 0.24 0.31 0.17 0.62 0.02 0.25 0.56
Diesel 0.28 0.81 0.15 0.30 0.34 0.22 0.23 0.31 0.29 0.27 0.46
Biomass burning 0.23 0.34 0.94 0.19 0.04 –0.09 0.14 0.06 –0.01 0.06 0.39
Soil 0.60 0.62 0.49 0.69 0.29 0.16 0.20 0.21 –0.25 0.02 0.44
Ammonium sulfate 0.10 0.40 0.00 0.27 0.96 0.25 0.41 0.21 0.11 –0.03 0.26
Ammonium nitrate 0.15 0.44 –0.05 0.28 0.28 0.87 0.12 0.29 0.05 0.17 0.27
Power plants (1°) 0.11 0.30 0.37 0.28 0.28 0.01 0.19 0.17 0.06 0.11 0.66
Ammonium bisulfate 0.10 0.02 0.07 0.09 0.26 –0.05 0.06 –0.10 –0.16 –0.09 0.00
Other OC 0.61 0.68 0.11 0.30 0.43 –0.04 0.48 0.04 0.06 0.10 0.26

Secondary sulfate II contains a greater organic fraction than secondary sulfate I, which is mainly sulfate and ammonia. 



and primary emissions from coal-fired power
plants in CMB-LGO. 

Visits to the ED for CVD were signifi-
cantly and positively associated with CMB-
LGO diesel, gas, biomass burning, and other
OC source categories [Figure 3, Supplemental
Material, Table 5 (online at http://www.
ehponline.org/members/2008/10873/suppl.
pdf)]. IQR increases in these sources were
associated with RR estimates ranging from
1.014 (other OC) to 1.033 (biomass). PMF
diesel, gas, wood smoke, and metal processing
categories were also significantly and posi-
tively associated with CVD visits, with the
magnitude of RRs per IQR ranging from
1.013 (metal processing) to 1.025 (diesel).
Similarly, EC and K, selected as single-species
tracers for the diesel and biomass burning
source categories, were also significantly asso-
ciated with CVD visits. 

Analyses comparing the observed RR esti-
mates for source categories identified by all
three methods indicated strong agreement
among the three source-apportionment meth-
ods. Scatterplots of the RR values from
CMB-LGO predicting the RR values from
PMF, the RR values from PMF predicting the
RR values from the tracer method, and the RR
values from CMB-LGO predicting the RR val-
ues from the tracer method showed approxi-
mate one-to-one associations (Figure 4).
Variability in observed RR estimates within the
CMB-LGO model output, for example,
explained 87% of the corresponding variability
in the PMF-based RRs. 

There was some indication that associa-
tions with CVD outcomes were stronger dur-
ing the cooler months in Atlanta, whereas
associations with respiratory visits were
stronger during the warmer months from
models stratified between cool and warm
months [Supplemental Material, Table 6
(online at http://www.ehponline.org/
members/2008/10873/suppl.pdf)]. Pollutant
variables found to be associated with ED vis-
its throughout the year were PMF diesel, EC,
CMB-LGO gas, Zn, and the three biomass
combustion source categories (i.e., CMB-
LGO biomass burning, PMF wood smoke,
and K). Diesel and gas sources, from both
PMF and CMB-LGO, which were not associ-
ated with respiratory visits in the overall mod-
els, were associated with significant increases
in respiratory visits (1.2–2.1% per IQR) dur-
ing the warm season.

Discussion

The current results indicate that specific sources
are associated with PM2.5-related health effects
in Atlanta. Additionally, these findings raise
new questions concerning the current limita-
tions and resulting value of the source appor-
tionment–epidemiology approach. During this
4-year time-series in Atlanta, there were clear,

positive associations between same-day PM2.5
concentrations attributed to OC-dominated
source categories, such as mobile sources and
biomass burning, and ED visits for CVD-
related causes. Respiratory visits were also asso-
ciated with sulfate-rich secondary PM2.5 and,
during the warmer months, with mobile
source–related source impacts. Each of these
results was robust to the selection of source-
apportionment method, with strong agreement
between the RR estimates from the PMF and
CMB-LGO models, as well as with results from
models using single-species tracers as surrogates
of the source-apportioned PM2.5 values.
Together, these findings indicate a link between
these sources or specific chemical components
from these sources and acute, adverse cardio-
pulmonary responses in Atlanta. 

Despite the substantial methodologic
differences and sources of uncertainty that
differentiate PMF from CMB-LGO, the epi-
demiologic model results were strikingly simi-
lar in direction and magnitude. This analysis
was the first, to our knowledge, to compare
epidemiologic results incorporating both

factor analytical and chemical mass balance
source impacts as exposure terms. Several pre-
vious studies examined results generated from
factor analytic–epidemiologic models exclu-
sively and found generally consistent esti-
mates across methods (Ito et al. 2006; Mar
et al. 2006; Schreuder et al. 2006; Thurston
et al. 2005). Ito et al. (2006), for example,
examined time-series mortality risks associ-
ated with PM2.5 apportioned impacts from
four PCA/UNMIX and two PMF models in
Washington, DC. These models identified up
to nine factors, with sea salt, oil combustion,
and soil having the greatest between-method
heterogeneity in factor estimates with sec-
ondary sulfate having the least. Analysis of
variation showed that variability across source
types was approximately 10 times that of vari-
ability across methods. In Atlanta, as well,
source contribution estimates from PMF and
CMB-LGO differed most for soil and least
for secondary sulfate, yet showed generally
strong agreement. 

It is likely that some homogeneity
among the risk estimates across methods was
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Table 4. Spearman’s correlation coefficients between single species tracers, CMB, and PMF by season.

Cool season Warm season
correlation with correlation with

Source category Tracer CMB PMF CMB PMF

Gas Zn 0.96 0.42 0.94 0.19
Diesel EC 0.96 0.95 0.96 0.88
Wood smoke/biomass burning K 0.99 0.82 0.98 0.62
Soil Si 0.83 0.82 0.96 0.92
Secondary sulfate I/ammonium sulfate SO4

2– 0.87 0.97 0.96 0.99
Secondary nitrate/ammonium nitrate NO3

– 0.94 0.95 0.95 0.92
Power plant Se 0.39 — 0.50 —
Other OC OC 0.91 — 0.89 —

Cool season is October 15–April 14; warm season is April 15–October 14. 

Figure 2. RRs and 95% CIs per IQR increase from same-day lag models for the association of ED visits for
all respiratory disease with daily source-apportioned ambient PM2.5 (Atlanta, GA, November
1998–December 2002). 
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attributable to the fact that in Atlanta, many
of the PMF factors and CMB-LGO source
impacts were driven by similar species (e.g., K
with biomass burning or wood smoke, Si with
soil, ionic sulfate with secondary sulfate). This
fact also explains a key observed finding that
the epidemiologic model results using source
indicative tracers generated similar RRs to
those from the CMB-LGO and PMF models.
Together, the results raise the question of
whether source-indicative tracers provide an
accurate and less analytically intensive alterna-
tive to conducting source apportionment. We
recommend a cautious approach in using trac-
ers exclusively, however, because many of
these species are emitted from numerous
sources (e.g., K, used here as a tracer for bio-
mass burning or wood smoke, is also found in
soil) and it is likely that the same species may
not serve as tracers to the same sources in dif-
ferent locations (e.g., Zn, an additive to lubri-
cating oil, is indicative of gasoline vehicles in a
non-heavily industrial city as Atlanta, but is
also associated with industrial metals process-
ing in some locations). An alternative
approach, therefore, would be to conduct a
sensitivity analysis of source-apportionment
results, to mathematically identify and quan-
tify the effect of each species on the apportion-
ment process source-indicative tracers for a
given local source (Marmur et al. 2006, 2007).
Such an analysis is very useful in determining
the most influential tracers for each source cat-
egory in a given location, and can assist in
selecting specific tracers to be investigated as
part of an epidemiologic analysis. Although
correlations between sources and species can
provide such initial estimates, these are
descriptive rather than conclusive.

Using both factor analytical and chemical
mass balance methods in the same analysis
may partially compensate for weaknesses in
each method. For example, the process of
naming factors and linking them with specific
sources in PMF analyses is generally subjec-
tive. This is not true for CMB-LGO, which
only includes sources in a model for which a
known source profile exists, though collinear-
ity and exclusion of sources might cause “mis-
placement” of emissions between the various
sources examined. Conversely, CMB processes
are constrained by information available for
specific source profiles. If information about a
specific source profile does not exist, it will not
be apportioned as its own source impact
within the CMB model. PMF, conversely,
empirically examines temporal patterns to
identify factors that fit the data set. Typically,
modelers will employ several means of opti-
mizing the number of factors selected, includ-
ing the physical validity of the model (Reff
et al. 2007). The mathematical identification
of factors within a data set, therefore, may
highlight sources that are potentially missing
from a CMB model in a given location.
Therefore, more certainty is associated with a
source category that is identified by both PMF
and CMB-LGO. 

During this time period in Atlanta, there
were consistent associations between PM2.5
emitted from both gasoline and diesel sources
and CVD and, to a lesser degree, respiratory
ED visits. A recent study examining health
effects associated with 19 PM2.5 components
in six California counties also found substan-
tially elevated mortality risks associated with
EC and Zn with CVD and respiratory mor-
talities (Ostro et al. 2007). As such, the

Atlanta results contribute to growing observa-
tions that mobile source PM2.5 is, in part, a
key agent responsible for acute cardiovascular
outcomes in many locations (Adar et al.
2007; Bigert et al. 2003; Finkelstein et al.
2004; Hoek et al. 2002; Mills et al. 2005;
Ostro et al. 2007; Pekkanen et al. 2000;
Peters et al. 2001, 2004; Riediker et al. 2004;
Salvi et al. 1999; Schwartz 2001; Schwartz
et al. 2005; Sioutas et al. 2005). Although the
exact biological mechanisms responsible for
traffic-mediated cardiovascular effects remain
uncertain, several plausible hypotheses have
emerged related to autonomic system and
inflammatory response pathways (Brook et al.
2004; Donaldson et al. 2001; Pope et al.
2004; Stone and Godleski 1999). 

Sulfate-rich secondary PM2.5, formed
largely from photochemical reactions involv-
ing SO2 from primary power plant emissions,
was the only source category significantly
associated with respiratory visits in the pri-
mary models. Although other studies have
reported similar effects examining particulate
sulfate concentrations (Burnett et al. 1997;
Fairley 1999; Schwartz et al. 1996), evidence
to support this finding is still inconclusive
(Reiss et al. 2007). The sulfate finding is
interesting given the observed negative associ-
ation between respiratory visits and primary
PM2.5 from power plants. Moreover, there
was almost no correlation between secondary
sulfate aerosol and primary power plant
source contributions, reflecting the different
atmospheric processes controlling these pri-
mary and secondary source impacts. Given
the lack of correlation and different composi-
tion of these source impacts [Supplemental
Material, Table 2 (online at http://www.
ehponline.org/members/2008/10873/suppl.
pdf)], the difference in the observed health
response is not surprising. 

The negative association between primary
coal-fired power plant emissions and health
outcomes should not be viewed as protective.
Primary emissions from coal-fired power plants
have the most significant impact on the
Jefferson Street monitoring site under very spe-
cific conditions (i.e., when the wind is blowing
from a power plant that is 7 km away, and
when the mixed layer is high enough to entrain
those emissions). However, the width of the
power plant plume beyond 7 km is quite nar-
row, and a rather small fraction of the sampled
area is being affected at that same time. On the
other hand, having relatively stronger winds
and a higher mixed depth will decrease many
other primary emissions. 

Associations of PM2.5 components and
sources with ED visits for CVD were typically
stronger during the cooler months, and associ-
ations of respiratory visits stronger during the
warmer months, which is consistent with find-
ings from our previous Atlanta analyses

Sarnat et al.
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Figure 3. RRs and 95% CIs per IQR increase from same-day lag models for the association of ED visits for
all CVD with daily source-apportioned ambient PM2.5 (Atlanta, GA, November 1998–December 2002). 
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(Metzger et al. 2004; Peel et al. 2005). The
impact of season on specific source impacts
may be explained by atmospheric conditions
that predominate during specific times of the
year. During the cooler months, reduced pho-
tochemistry and greater atmospheric stability
typically leads to the enhanced impact from
local sources of primary PM2.5, such as that
from gasoline and diesel vehicles. Conversely,
photochemistry during the warmer months
will enhance the contribution of secondary
PM2.5 from regional sources, such as sulfate-
rich secondary aerosols and secondary organic
aerosol. Biomass burning or wood smoke was
the sole source category that showed consistent
year-round associations that, in the current
analyses, were with CVD visits. This may be
explained by the fact that, among the sources
examined, it is one of the few that has consid-
erable local (e.g., residential or industrial wood
burning) and regional contributions (e.g., pre-
scribed agricultural burning) (Marmur et al.
2006; Zheng et al. 2007). Alternatively, these
results could reflect seasonal variation in risk
factors not associated with air pollution, for
which the analyses are not adequately account-
ing. Respiratory illnesses, for example, are
higher in the cold and flu season, which makes
potential air pollution effects more difficult to
ascertain during the cold season. Heat stress is
a risk factor for CVD illnesses and may lead to
a reduced ability to detect air pollution effects
in the warm season. 

In Atlanta, biomass burning, due to pre-
scribed forest management burning in the
summer and residential wood burning in the
winter, contributed a sizeable fraction of the
PM2.5. Associations between PM2.5 attributed
to biomass burning and CVD visits were
somewhat unexpected, however. Several pre-
vious PM epidemiologic studies examining
PM2.5 from this source have found little or no
effect on CVD outcomes (Ito et al. 2006;
Mar et al. 2006; Schreuder et al. 2006), yet
fairly consistent associations related to a vari-
ety of respiratory end points (Larson and
Koenig 1994; Schreuder et al. 2006; Zelikoff
et al. 2002). A few studies have noted similar
associations that lend plausibility to the
Atlanta findings. Ostro et al. (2007) recently

presented results showing significant associa-
tions between ambient K concentrations and
CVD-, but not respiratory-, related mortality
in California. Additionally, several controlled
experiments have shown relationships
between wood smoke inhalation and markers
of acute systemic inflammatory response in
animal and human models (Barregard et al.
2006; Barrett et al. 2006). Barrett et al.
(2006) found increased levels of serum amy-
loid A, a cardiovascular risk factor, as well as
other markers of plasma coagulability in 13
human subjects exposed to PM wood smoke
concentrations over a 4-hr duration. Evidence
also suggests that pulmonary inflammation,
more commonly associated with biomass
burning, may precede a systemic autonomic
and inflammatory response as a potential step
in the biological pathway of PM-mediated
cardiovascular health effects (Brook et al.
2002; Gold et al. 2000). 

The CVD response associated with PM2.5
from biomass burning or wood smoke was
similar in significance and lag structure to that
attributed to the diesel source category. It is
possible that the compounds responsible for
the observed mobile source-related CVD
effects may also be present in Atlanta biomass
emissions, and that meteorology-induced tem-
poral correlations between the sources led to
similar observed responses. Indeed, controlled
speciation studies of wood smoke and motor
vehicles have identified multiple shared particle
and gas-phase organic compounds in their
emissions (Schauer and Cass 2000; Zheng
et al. 2002). A previous analysis of measure-
ment sites in the southeastern United States,
including Atlanta, for example, found that
both gasoline vehicles and biomass burning
jointly contributed to the local distributions of
several polycyclic aromatic hydrocarbon con-
centrations (i.e., indeno[cd]pyrene and
indeno[cd]fluoranthene) (Zheng et al. 2002).
Broadly, the observed CVD responses for
many of the source categories characterized by
high organic content may reflect the presence
of shared compounds in the emissions or simi-
lar particle attributes, such as oxidation poten-
tial, common to organic carbon species.
This interpretation may also explain the strong

association between the non-source-appor-
tioned total OC concentration and CVD visits. 

Multivariate modeling to control for
potential confounding is particularly chal-
lenging with source-apportionment variables,
given the differential uncertainties associated
with each source category. In the current
analysis, for example, the results showing pos-
itive associations with PM2.5 from gasoline
sources may represent a true association with
PM2.5 from this source or the gas source may
be serving as a surrogate for exposure to
PM2.5 from a co-varying source, such as
PM2.5 from diesel, biomass burning, or other,
secondary organic aerosol. In this setting, the
effects of source variables measured with
greater error will be transferred, in part, to
those variables with less measurement error
(Schwartz and Coull 2003; Zeger et al. 2000).
Additionally, multiple sources often contain
common pollutant constituents, further com-
plicating the interpretation of parameter esti-
mates obtained from multisource models.
Finally, methods for adjusting model parame-
ters based on empirical uncertainty estimates,
such as regression calibration, are question-
able because each source category is an aggre-
gate of numerous pollutants each with their
own error distribution and covariances. 

Future analyses using data with greater
pollutant resolution, especially in the organic
fraction, may elucidate some of the outstand-
ing issues raised in the current analysis.
Organic fingerprints of specific sources exist
for a subset of these data (Zheng et al. 2000,
2007) and will contribute toward our ability
to disaggregate OC-dominated source
impacts. Planned analyses involving individ-
ual ED case groups will be helpful in disag-
gregating nuances in health response that we
found when using the aggregated health out-
come categories. Specific PM2.5 sources or
components, for example, may be associated
with certain health responses but not others
(e.g., congestive heart failure compared with
ischemic heart disease) due to etiologic differ-
ences among these subcategories. Despite the
limitations of current source-apportionment
methodology, these findings collectively sug-
gest that one can use variables describing
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Figure 4. Agreement of estimated RRs (0-day lag) for all RD and CVD between (A) CMB and PMF (R2 = 0.87), (B) CMB and single-species tracers (R2 = 0.76), and (C)
PMF and single-species tracers (R2 = 0.87). Observations are taken from the comparable source categories.
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sources in epidemiologic models to obtain esti-
mates of PM2.5 acute health effects. Moreover,
combining multiple source-apportionment
methods adds information that compensates for
limitations of relying on any single method. 
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