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Abstract

Background: Development of exposure metrics that capture features of the multipollutant environment are
needed to investigate health effects of pollutant mixtures. This is a complex problem that requires development of
new methodologies.

Objective: Present a self-organizing map (SOM) framework for creating ambient air quality classifications that group
days with similar multipollutant profiles.

Methods: Eight years of day-level data from Atlanta, GA, for ten ambient air pollutants collected at a central
monitor location were classified using SOM into a set of day types based on their day-level multipollutant profiles.
We present strategies for using SOM to develop a multipollutant metric of air quality and compare results with
more traditional techniques.

Results: Our analysis found that 16 types of days reasonably describe the day-level multipollutant combinations
that appear most frequently in our data. Multipollutant day types ranged from conditions when all pollutants
measured low to days exhibiting relatively high concentrations for either primary or secondary pollutants or both.
The temporal nature of class assignments indicated substantial heterogeneity in day type frequency distributions
(~1%-14%), relatively short-term durations (<2 day persistence), and long-term and seasonal trends. Meteorological
summaries revealed strong day type weather dependencies and pollutant concentration summaries provided
interesting scenarios for further investigation. Comparison with traditional methods found SOM produced similar
classifications with added insight regarding between-class relationships.

Conclusion: We find SOM to be an attractive framework for developing ambient air quality classification because
the approach eases interpretation of results by allowing users to visualize classifications on an organized map. The
presented approach provides an appealing tool for developing multipollutant metrics of air quality that can be
used to support multipollutant health studies.

Keywords: Air pollution, Classification, Cluster analysis, Kohonen Map
Background
The multipollutant approach to air pollution-related health
research has a variety of objectives [1,2]; however, there is
a common interest in the development of multipollutant
exposure metrics that facilitate investigation of health ef-
fects associated with ambient air pollution mixtures [3].
This presents considerable challenges for health investiga-
tors, and several methodological strategies appear in the
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literature [1,3,4]. One prospective solution under active in-
vestigation is to use classifications or groupings as a means
to characterize aspects of the multipollutant environment
[5-8]. This is appealing to health investigators because
classification of complex multipollutant data into specific
categories can elucidate combinatorial patterns of interest
and can be used to compare risk of an adverse health out-
come observed within one air quality classification to that
observed in another. Moreover, this is helpful statistically
because classifications reduce the dimensionality of the
data thus permitting one to assess effect sizes between
classes rather than assessing effects associated with each
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potential combination of pollutant levels. Of course, an
important consideration here is to how to define the
classification groups, or in this setting, contrasts in
multipollutant ambient environments [3,9].
Defining classifications are normally determined under

two broad scenarios – when a priori grouping information
is available and when it is not. For example, multipollu-
tant combinations could be discriminated using prior
knowledge of hypothesized biological pathways of effect
[10] (e.g., inflammation) or known emissions sources
(e.g., traffic) [11]. Alternatively, investigators without a
priori information are turning to statistical methods
that construct groupings by ‘learning’ from the data
[5,7,8,12,13]. These approaches encompass a number
of techniques that focus on the discovery of patterns
and trends in data and can be categorized as being either
‘supervised’ or ‘unsupervised’ [14]. In supervised analyses
the objective is to use an outcome measure in order to
develop classification groupings that associate with or
predict the outcome. With unsupervised approaches,
there is no outcome measure and the objective is to
identify groups in the data. This approach is often used
to perform cluster analysis or data segmentation and thus
groups are often referred to as clusters or modes. Once
identified, groups are regarded as classes of observations
which may provide potentially useful categories for further
research. Such approaches show promise toward using
classification for ambient air quality mixtures research;
however, many challenges remain [1,3].
A starting point for a multipollutant characterization

is to ask which combinations of pollutants are observed
in the environment, how frequently they occur, and how
long they persist. These issues are important because
certain combinations may be more toxic than others.
Therefore, such information could prove invaluable in
addressing potential health effects and control strat-
egies. The nature of unsupervised classification makes
it well suited to address such questions; however,
there are some concerns that results can be too general
(i.e., classes are broadly defined) as most applications
seek parsimonious solutions to the problem at hand
[1,5]. Generally, a small number of groups is desired
for simplicity of interpretation; however, health re-
search presents a problem framework where describing
ambient air quality with as much accuracy as possible
is important for valid epidemiological studies. There-
fore restricting health investigations to only a small
number of scenarios has the potential for overlooking
a rarer combination with strong impact on health [1].
Moreover, given the setting (e.g., multi-city analyses,
hundreds of pollutants, sub-hourly measures, etc.), ambi-
ent air quality may not be well characterized by a few
generalized scenarios. Such situations warrant exploration
of techniques that are less governed by parsimony.
In this study, we present the self-organizing map (SOM)
as a tool to create ambient air quality classifications be-
cause the method offers the benefit of a visual medium
(the ‘map’) that can be useful for understanding classifica-
tion results [15]. To illustrate, we apply SOM to eight years
of day-level data from Atlanta, GA, for ten ambient air
pollutants collected at a central monitor location in order
to produce a variety of classes that represent subgroups of
days with similar multipollutant profiles. Such classes can
help identify potential pollutant combinations of interest
and constitute a starting point for the development of sci-
entific hypotheses and further study of health effects asso-
ciated with ambient air quality mixtures.

Methods
Our analytic aim is to formulate a discrete set of classes
that represent high-density sub-regions in the multipol-
lutant data space where days exhibit similar pollution
patterns. In effect, this allows us to discover day-level
multipollutant combinations that appear most frequently
in our data. In this section we present our data, discuss
data preparation, outline the self-organizing map algo-
rithm, and describe our approach for applying SOM for
developing multipollutant air quality metrics.

Data
Our data contain multipollutant time-series of daily
concentration summaries for ten air pollutants sampled
during the years 2000 to 2007 at a US EPA Air Quality
System (AQS) monitoring station in Atlanta, GA (Figure 1).
Temporal metrics chosen for this analysis followed
National Ambient Air Quality Standards in an effort
to identify multipollutant day types of potential health
relevance. Pollutant included 1-hr maximum carbon
monoxide (CO) in ppm, 1-hr maximum nitrogen dioxide
(NO2) and nitrous oxides (NOx) in ppb, 8-hr maximum
ozone (O3) in ppb, 1-hr maximum sulfur dioxide (SO2) in
ppb, and five 24-hr average PM2.5 components in μg/m3:
elemental carbon (EC), organic carbon (OC), nitrate (NO3),
ammonium (NH4), and sulfate (SO4). This suite of ambient
pollutants were chosen because measurements are fairly
typical for many locations in the US and Western Europe.
We note that these temporal metrics reflect a profile of
day-level pollutant summaries for general air quality not
simultaneous measurements of the air pollution mix at
any single point in time during the day. See Table 1 for
summary statistics.

The self-organizing map (SOM)
The SOM is an unsupervised method for multi-dimensional
data reduction and display [15]. The goal of SOM is to
compress information while preserving the topological
relationships of the data. This is achieved by combining
nonlinear projection and cluster methods to produce an
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Figure 1 Air pollution monitor data collected in Atlanta, GA, from 2000 to 2007. Panel (a) Map of study region and air monitor location.
Panel (b) Time series for pollutants collected at air monitor station.

Table 1 Summary Statistics of daily multipollutant data used to develop multipollutant day types in Atlanta during
2000-2007

Variable Mean Standard deviation Variance Minimum Maximum Metric

CO (ppm) 1.0 0.8 0.58 0.1 5.9 1-hr Max

NO2 (ppb) 40.3 15.5 239.18 4.4 172.0 1-hr Max

NOx (ppb) 115.9 107.2 11498.48 5.0 996.0 1-hr Max

O3 (ppb) 41.8 20.4 424.94 2.0 132.1 8-hr Max

SO2 (ppb) 14.2 14.5 218.23 1.0 129.5 1-hr Max

PM2.5 EC (μg/m3) 1.4 0.9 0.93 0.1 9.3 24-hr Avg

PM2.5 OC (μg/m3) 4.0 2.3 5.25 0.4 30.9 24-hr-Avg

PM2.5 NH4 (μg/m
3) 2.0 1.2 1.43 0.2 8.7 24-hr Avg

PM2.5 NO3 (μg/m
3) 0.9 0.8 0.68 0.0 7.4 24-hr Avg

PM2.5 SO4 (μg/m
3) 4.5 3.1 9.99 0.5 23.2 24-hr Avg
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‘ordered vector quantization graph’. We find the approach
to be a somewhat hybrid technique between multidimen-
sional scaling (MDS) and k-means clustering as the result
is a low-dimensional projection (the ‘map’) of class profiles
(often called ‘clusters’, ‘prototypes’, or ‘nodes’ in SOM
literature) that are arranged in a way that preserves the
configuration of the original data space (the ‘organizing’)
[14]. The resulting ‘map’, which is a projection of multidi-
mensional space not geographic space, reveals interrela-
tionships between classes and has proven beneficial in a
variety of environmental settings [16,17]. The method has
been shown to perform well in comparisons with trad-
itional approaches [18,19]. To date, SOM applications in
the field of air pollution have primarily focused on source
apportionment with mixed success [20-22]; however, our
objective here is more similar to clustering approaches to
multipollutant environments [5,6,8] and thus our applica-
tion of SOM is tailored accordingly.

SOM algorithm
Applying SOM requires two components – the input
data matrix and the output map (Figure 2). Here, the input
matrix is our multipollutant data set, Z:

Z ¼
Z11 ⋯ Z1p

⋮ ⋱ ⋮
Zn1 ⋯ Znp

2
4

3
5 ð1Þ

where n denotes the number of sampling days and p the
number of pollutants. Each day is represented by a row
Figure 2 A 6×5 self-organizing map (SOM) with rectangular
topology. Dashed lines highlight the principal axes (I and II), and
dark grey tones identify activation of nodes in neighborhoods on
the map for a training iteration t, with t1 < t2.
Zi within Z. The output collection of classes are displayed
as nodes on the “map”, M:

M ¼
m1y ⋯ mXY

⋮ ⋰ ⋮
m11 ⋯ mx1

2
4

3
5 ð2Þ

with each class m represented as a profile at location [x, y]
on the map (Figure 1). Note X × Y determines the number
of classes k and the arrangement (e.g., 1D or 2D) of
M. The shape of M can be specified as either rectangular
or hexagonal. Each m is characterized by a vector wm:

wm ¼ μm1; μm2;…; μmp

h i
ð3Þ

where μ are ‘learned’ coefficients that define profile m.
Operationally, our SOM implements the following

steps. First, given M, map initialization occurs with each
m being assigned a preliminary wm from a random selec-
tion of Zi’s. Then, sequential learning begins where, for each
iteration t, the algorithm randomly chooses a day’s profile

Z tð Þ
i from Z and then computes a measure of dissimilarity

between the observation Z tð Þ
i and each w tð Þ

m . Next, SOM
provisionally assigns a best matching node m* (t) whose

wm* is most similar to each Z tð Þ
i . Next, map development

occurs via the Kohonen learning process:

w tþ1ð Þ
m ¼ w tð Þ

m þ α tð ÞNm�i tð Þ �Z tð Þ−w tð Þ
m

h i
ð4Þ

where α is the learning rate, Nm*i is a neighborhood
function that spatially constrains the neighborhood of
m* on M, and �Z is the mean of pollutant values on days
provisionally assigned to the nodes within the neighbor-
hood set. The learning rate controls the magnitude of
updating that occurs for t. The neighborhood function,
which activates all nodes up to a certain distance on M
from m*, forces similarity between neighboring classes
on M. Eq. (4) updates coefficients within a neighborhood
of m*, where the impact of the neighborhood decreases
over iterations.
SOM results are dependent on both α and N and thus

mappings are sensitive to these parameters30. We note
that for classification α should start as a small number and
be specified to decrease monotonically (e.g., 0.05 to 0.01) as
iterations increase [23]. Similarly, the range of N should
start large (e.g., 2/3 map size) and decreases to 1.0 over a
predetermined termination period (e.g., 1/3 of iterations),
which allows fine adjustment of the classes to occur.
Training continues for the number of user-defined it-

erations. Kohonen recommends the number of steps
be at least 500 times the number of nodes on the map.
Once training is complete, results include final coefficient
values for each class profile wm, classification assignments
for each day Zi, and coordinates for class nodes on M. The
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final step is to visualize the class profiles by plotting the
map. For additional details please refer to the SOM book
by Kohonen [15].

Applying SOM for multipollutant air quality
characterization
In this section we describe our approach for applying
SOM to generate a classification of multipollutant day
types. However, before we can apply SOM we need to
perform three preliminary steps: 1) standardize the data,
2) define dissimilarity, and 3) choose how many classes
to look for in the data. Decisions made for each of these
steps can have consequences on results; however, there
is typically not a single right answer and decisions are
usually guided by subject matter knowledge or data-
based heuristics [14].

Training set selection and data standardization
A preliminary step needed to prepare the data for unsuper-
vised classification is to identify an appropriate training data
set. Here this is achieved by identifying days in which we
have complete observations for all pollutants. This results
in a training data set composed of 2724 days. Another
important preliminary step to unsupervised classifica-
tion is to standardize the variables, particularly those
measured in different units, to have a mean zero and
standard deviation of one before analysis [14]. To achieve
this we standardize by subtracting mean values and dividing
by standard deviations as this removes the absolute dif-
ferences between variable magnitudes but retains the
ratios between variable amplitudes.

Defining similarity of days
The definition of dissimilarity is essential to any un-
supervised classification approach [14]. In this study,
we define using the Euclidean distance (D) between
observations in multidimensional data space. With our
data, D is calculated as:

D Zi;Zi �ð Þ ¼
Xp
j¼1

Zij−Zi �j
� �2" #1=2

where (Zi , Zi*) represents a pair of observations for the
ith and i*th days, Zij and Zi*j are the ith and i*th values
of pollutant j, and p is the total number of pollutants.

Selecting map size
The choice for map size, analogous to selecting the
number of classes k, typically depends on the goal of the
analysis. Here we are interested in creating a set of spe-
cific classes that can be used as a multipollutant metric
of ambient air quality and thus we present an approach
to framing the problem towards our objective that
involves common strategies taken in cluster analysis and
data segmentation.
First, we graphically explore the grouping structure of

our data by applying multi-dimensional scaling (MDS)
in order to produce a two-dimensional representation of
the data that preserves the pairwise distances between ob-
servations as well as possible [14]. MDS representations of
high-dimensional data are often useful in unsupervised
classification because they provide visual means of explor-
ing the data that can be useful for identifying boundaries
in data sets that exhibit grouping structure.
Second, we use a data-based method to identify the

number of classes k by evaluating the ratio between the
within-class variance and the between-class variance as a
function of the number of classes. The expectation here
is that if there is really k* groupings in the data then the
right class solution will present itself with a substantial
shift (i.e., elbowing) in the evaluation statistic. To inves-
tigate this variance ratio, we use the Calinski-Harabasz
Index (CH) [24], which is defined as:

CH ¼ SSB= k−1ð Þ
SSW= n−kð Þ

where SSB is the overall between-class sum of squared
deviations, SSW is the overall within-class sum of squared
deviations, k is the number of classes, and n is the number
of observations. Well-defined groupings have a large
between-class variance and a small within-class vari-
ance and thus the larger the CH index, the better the
grouping structure of the partition. We chose the CH
index because it is well suited for grouping solutions
based on Euclidean distance and it performed well in a
comparison of several statistics focused on identifying
groups in multivariate data [24].
Finally, we are interested in providing a solution that

produces a reasonable, dimension reduced, approximation
of the original data. To explore this aspect, we estimated
the percentage of variance explained by each class solu-
tion by fitting a regression model to predict each pollu-
tant using a categorical variable for each classification
solution as the predictor. We summarize results using
the adjusted R2, where an increasing R2 indicates an
increasing ability of a class solution to approximate
the original data.
Ultimately, we would like classifications to provide mean-

ingful categories of ambient air quality for epidemiological
research. Given this, we restrict the potential range of so-
lutions using a minimum of 2 classes up to a maximum of
30 classes as potential sample size is a concern. Of course,
the definition of meaningful is likely to be hypothesis spe-
cific and thus we note that our strategy may be adapted to
suit other scenarios.
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SOM implementation
Implementation of the SOM algorithm in this study was
performed using the ‘kohonen’ package in the R envir-
onment for statistical computing [23,25]. For each map
size, ten random initializations were chosen and, once
initialized, training of the SOM was accomplished by
setting the algorithm to run a number of iterations
equal to k classes × 500 for each size. The learning rate
α and the neighborhood function N were specified α to
decrease linearly from 0.05 to 0.01 and set N to start
with a value that covered 2/3 of all node-to-node dis-
tances, decrease linearly, and terminate after 1/3 of the
iterations had passed. A random initialization scheme
yielding the most frequent quantization error (QE) was
used for evaluation. QE, a standard output from the
software, is the weighted average of Euclidean distances
between the input days and the class profile to which they
are assigned. For more detail on implementation of SOM
in R please refer to Wehrens and Buydens [25].
An example map
To demonstrate SOM we developed a ‘medium’ size
map of multipollutant day types representing the range
of day-level multipollutant combinations observed in
our data. We visualized class profiles on the map using
pie segment diagrams where the average daily concen-
tration of a pollutant under a given profile is indicated
by size. The temporal frequencies and durations were
calculated for each day type. In addition, we use the
SOM grid to present summaries of long-term trends,
seasonality, meteorology, and pollutant concentrations
within each class as such summaries are anticipated to
be useful for air pollution epidemiologic investigations.
We surveyed the following quality indicators: class re-

liability, spatial organization, and map distortion. Statis-
tically speaking, a reliable class is a grouping of days
with low dispersion. To assess, we use a coefficient of
variation (CV), which was calculated as the ratio of the
standard error (standard deviation /

ffiffiffi
n

p
) of the mean

to the mean dissimilarity of days within each class,
times 100. The spatial organization was assessed by
comparing the location of class profiles on the SOM to
a dendrogram created by applying Ward’s hierarchical
clustering to the SOM class profiles [26]. Map distor-
tion occurs because SOM is restricted to mapping over
a finite grid and therefore the actual strengths of dis-
similarity may vary between adjacent class profiles in
different regions on the map. To better visualize these
divergences or ‘distortions’ between class profiles on
the map we applied an additional visualization technique
known as Sammon Mapping [14]. Finally, we compared
results with applications of k-means and Ward’s cluster-
ing algorithms [5].
Results
SOM mapping of multipollutant day types
Map size
The MDS display indicates that our data are not composed
of distinct well-separated groupings, as no clear boundaries
between sets of observations are obvious (Figure 3a). On
the left side we see a compressed region of relatively ‘clean’
air days and moving to the right we see an expansion
of days, which illustrates the increasing dissimilarity of
days driven by secondary pollutants (e.g., O3, SO4) and
days driven by primary pollutants (e.g., CO, NO2). A
graphical display of the CH statistic (Figure 3b) identified
a two-class system as the best ‘clustering’ for our dataset
with substantial drops occurring after k equals three clas-
ses. Inspection revealed that a two-class solution general-
izes air quality as either days when all pollutants were
high or days when all pollutants were low. The three-
class solution described days as conditions when either
all secondary pollutants were high, all primary pollutants
were high, or all pollutants were low. Plotting the pooled
adjusted R2 for each map size indicated a positive nonlinear
relationship between class number and the map’s ability to
reflect the overall variability in the daily pollutant measures
(Figure 3c). However, inspection of the ranges reveals that
notable improvements occur at k = 7, 10, 15, 19, and 28
partitions. This trend reflects the capturing of more subtle
features in the data as k increases.
These findings reflect the challenge of determining k

for our data because they do not exhibit groupings with
clear boundaries. This is an important finding because
traditional cluster statistics are known to perform poorly
when data are not well separated [27]. Given this, and
the fact that CH identified very generalized classifications,
we focus our attention on the R2 statistic as it seems to do
quite well in capturing more subtle features in our data.
Here, we see that the best mapping of our data occurs
at k = 28; however, this would produce groupings with
expected class sample sizes of less than one hundred
days per class, a situation likely to result in lower stat-
istical power. Therefore, we choose to illustrate the ap-
proach with k = 16 as this number of classes suggests a
reasonable mapping of our data given the sufficient
balance between variance explained (mean R2 = 0.67) and
expected class sample size (n = 170 days). Additionally,
selecting 16 classes allows construction of a 4 × 4 two-
dimensional map (i.e., a 4 × 4 SOM), a low-dimensionality
that facilitates preservation of topological structure
and improves visualization of interrelationships between
classes [15].

The example map
Application of a 4 × 4 SOM identified classes that define a
broad range of multipollutant day types (Figure 4). Globally,
we see that the principal axes along the diagonals of the



Figure 3 Measures used to aid selection of number of day types for SOM classification system. Panel (a) two-dimensional representation
of multipollutant data created using multidimensional scaling. Panel (b) Calinski-Harabasz clustering index values for each class number tested.
(Higher values are better.) Panel (c) resulting mean (± range) adjusted R2 values from regression models fit to each pollutant using the SOM
classification as the predictor for each class number.
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map reveal two primary modes of variation in our data:
days dominated by primary pollutants such as CO, NO2,
EC, and OC (bottom left to upper right), and days domi-
nated by secondary pollutants such as O3, SO4, and
NH4 (top left to bottom right). Zooming in, we see the
bottom left corner of the map represents types of days
that occurred frequently and exhibited relatively low
pollution conditions. Consistent with these relatively
clean atmosphere day types are the low pressure, high
wind speed, and high relative humidity conditions associ-
ated with strong atmospheric mixing and rain (Figure 5).
In the upper right, types represent rather infrequent days
dominated by higher primary pollution (Figure 4). The
pollutant combinations dominating these poorer air
quality days suggest that pollution released at ground
level (mobile sources) was concentrated due to poorer
mixing meteorological conditions and potential inver-
sions (i.e., high barometric pressure, low wind speed,
and low humidity) (Figure 5).
The upper left identifies types dominated by high
ammonium nitrate (type [1,4]) that occurred primarily
in winter (Figure 4) and days with relatively increased
SO2. The bottom right consists of days dominated by
high ammonium sulfate and ozone (type [4,1]) that oc-
curred in summer (Figure 4). Moving up from the bot-
tom right, type [4,2] represents days that appeared to
be more acidic, containing increased SO2 and less neu-
tralized sulfate (i.e., more ammonium bisulfate). In the
center of the map, we see that types reflect more moderate,
less distinguishable air quality days. It is important to note
that evaluation of similar map sizes indicated that the same
primary modes of variation were revealed at each level of
generalization. Specifically, a 3 × 3, 4 × 3, 5 × 4 and 6 × 5
SOM reveal the same broad patterns of multipollutant
day types, with days dominated by primary pollution in
one corner and days dominated by secondary pollution
in the other. However, as map size increased distinctions
between corners of the SOM became more apparent and
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Figure 4 A 16-class representation of multipollutant air quality days observed in Atlanta, GA, during the years 2000 to 2007 identified
with SOM analysis. Panel (a) discovered class profiles describing each multipollutant day type. Pollutant concentrations under each class are
represented by the size of the pie and coordinate indices are in parentheses. Panel (b) resulting frequency counts for number of air quality days
classified under each day type. Percentages are listed in parentheses. Panel (c) mean (range) number of days in which a day type persisted.
(Lighter grey tones indicate lower values and darker shades indicate higher values).
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less dominant day types (particularly involving SO2) were
revealed. Finally, we found that SOM multipollutant day
types, while certainly impacted by source emissions,
were generally more dependent on meteorology than
on expected source groupings [28].
The organization of multipollutant profiles on the

SOM reveals through proximity that relatively clean
days (type [1,1]) are most different from the days dom-
inated by high primary pollutants (type [4,4]) and that
the highest ozone-ammonium sulfate days (type [4,1])
are most different from the highest ammonium nitrate days
(type [1,4]). Moreover, lower secondary days (type [2,1]) are
more similar to moderate secondary days (type [3,1]) and
lower primary days are more similar to moderate primary
days. This organization lays a qualitative framework that
can be used to begin understanding relationships between
multipollutant day types and can provide insight into
potential air quality contrasts. However, we reiterate
that the relative magnitude of the interclass dissimilarity
does vary across the map and thus additional techniques
(e.g., Prim’s Minimal Spanning Tree [22]) may prove useful
in further understanding class interrelationships.
The temporality of day types indicated heterogeneous

frequencies of the kinds of multipollutant days experi-
enced (Figure 4b) and moderately variable persistence of
such types (Figure 4c). The least frequent day types were
associated with the highest pollution levels and the most
frequent were associated with moderate to relatively low
pollution levels. The average duration for our collection
of multipollutant day types was less than two days with
average ranges being around one to five days. Types with
greater persistence were dominated by relatively high
secondary pollution or relatively low pollution, and
shorter duration day types were dominated by primary
pollutant combinations or single-pollutant episodes
(e.g., elevated SO2 days – type [2,4]). It is important to
note that the relatively specific nature of our classification
captures transitions in air quality that are rather subtle in
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Figure 5 Bi-annual frequencies, seasonal frequencies, and meteorological summaries for each SOM multipollutant day type. Panels
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nature (e.g., transition from a moderate secondary day to
a high secondary day). In contrast, a more general classifi-
cation (e.g., two-class system) would be expected to result
in longer durations and the transitions in air quality would
be less subtle.
The biannual and seasonal frequencies of each day

type illustrate a strong association with long-term trends
and seasonality (Figure 5). Biannual frequencies indicate a
decrease in day types dominated by relatively high primary
pollution and a steady persistence of secondary day types.
As expected, the distribution of seasonal frequencies on
the SOM was consistent with expected air quality across
seasons (e.g., summer dominated by secondary pollut-
ants and winter dominated by primary pollutants).
Examining pollutant concentrations under each day
type (Figure 6) highlights potential contrasts of interest
for subsequent testing. For example, comparisons of
similar O3 concentrations (Figure 6d) with differing
co-pollution (e.g., type [3,2] and [4,2]) or similar PM2.5
(Figure 6l) with varying co-pollutants (e.g., type [1,4]
and [3,4]) could be of interest in a health investigation.
Mapping the CV for within-class dissimilarity across the

SOM provides understanding of within-class dispersion
that could play an import role in the inferential confidence
associated with each multipollutant day type (Figure 7a).
Here, a lower value is better and thus we see that the
higher pollution day types in the upper right corner
have the greatest within-class dispersion and that the
lower pollution day types in the bottom left have the most
uniformity (Figure 7a). Ward’s clustering of class profiles
confirms that SOM arranged day types so that similar types
are neighbors (Figure 7b). Sammon mapping allows us
to see that the magnitude of dissimilarities between day
types varies across the map (Figure 7c). This projection of
classes can help refine understanding of inter-class rela-
tionships between day types. Finally, comparison of SOM
with k-means and Ward’s indicates similar day types
were derived from the three techniques (Figure 7d).
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Figure 6 Single pollutant summaries for each SOM multipollutant day type. Panels (a-l) map the observed pollutant means
(standard deviation) on days assigned to each class. *Pollutants not included SOM training analysis. (Lighter grey tones indicate lower
values and darker shades indicate higher values).
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Class assignments across techniques found direct agree-
ment for 94% of days between SOM and k-means, 55% of
days between SOM and Ward’s, and 54% of days between
k-means and Ward’s. These results agree well with com-
parisons in the literature [18,19] and establish that SOM
can classify multipollutant day types in a manner that is
comparable with more conventional methods.

Discussion
Our application of SOM provides an unsupervised ap-
proach to producing classification systems for sum-
marizing ambient air quality as a collection of day
types. The classes presented distinguish contrasts in the
ambient air quality environment through the formation of
categories that generally reflect high frequency modes of
the multipollutant distribution. In effect, this partitioning
of the multipollutant ambient environment results in
classes that have the characteristic of being numeric-
ally optimized into a collection of what many describe
as ‘natural groupings’ in the data [14]. Such classes can
play an important role in air pollution mixtures research
as we have demonstrated their usefulness in identifying
the types of multipollutant combinations that occur, their
temporality, and for summarizing external variables of
interest (Figures 4, 5 and 6).
An important point of discussion is if there is added

value of using SOM versus more standard unsupervised
approaches for developing multipollutant metrics of
ambient air quality. Our comparison of SOM with cluster
analysis identified that classifications agreed strongly with
k-means, and to a lesser extent Ward’s solutions (Figure 7d);
however, our rationale for introducing SOM is not that we
expect to find different groupings than cluster analysis
would provide (in fact we hope for agreement) but rather
that we anticipate need to produce complex classifications
for mixtures research that may be difficult to understand
using traditional approaches. It is in these situations
that application of SOM will likely be of greatest value
as the additional visualization provided by the map facili-
tates understanding of interrelationships among classes.
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c
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d

Figure 7 Evaluation measures used to characterize 4 × 4 SOM quality. Panel (a) presents the coefficient of variation for within-class similarity
in bold and the standard error/mean in parentheses. Panel (b) presents a dendrogram of SOM classes labeled with xy coordinates. Panel (c)
presents a Sammon map of SOM classes labeled with xy coordinates. Panel (d) presents a multidimensional scaling projection of daily
multipollutant profiles and class profiles generated from SOM, k-means, and Ward’s clustering approaches.
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This benefit can be useful in settings requiring larger
numbers of classes and aid in scenarios when classes need
to be compared. Beyond the map, we note that SOM
offers many additional benefits such as the ability to
project classifications onto new data, classification of
data with missing values, and extensions that facilitate
supervised learning [23].
Of course, SOM is not without limitations. One short-

coming is the restriction of the map to a finite grid, as
this constraint limits potential of the map to provide
precise information about class dissimilarity. Another
drawback is the need for the underlying map grid to be
developed using sets of numbers (e.g., 3 × 3, 4 × 3, etc.)
that generalize to shapes such as a square or rectangle.
On the other hand, if a non-figurate solution is desired a
1-dimensional grid can be developed; however, this con-
figuration is less appealing for visual interpretation of
complex classifications as topological structure is more
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difficult to preserve. Nevertheless, the additional infor-
mation provided by the map, as well as the flexibility of
the technique, favors adding the SOM to the analytic
toolkit for ambient air quality mixtures research.
Another important point of discussion is the broader

challenge of determining the ‘right’ number of classes
for a specific unsupervised analysis. This remains an open
problem because there is no direct measure of success
and thus it can be difficult to ascertain the validity of
inferences drawn from an unsupervised learning algo-
rithm [14]. As such, a reliance on heuristic arguments
for judgments as to the quality of results has resulted
in a complex situation that has led to many proposed
solutions [24]. To simplify, there are two kinds of errors
that can occur when making this decision – selecting a
solution with either too few classes or selecting a solution
with too many classes. The consequences depend on the
context of the problem; however, here we suggest that
selecting too few classes might be considered more serious
because it could lead to important information being lost
by merging important distinctions under highly generalized
classes. On the other hand, defining “too many” classes
can result in classes that are too similar or present small
within-class sample sizes leading to reduced statistical
power. With SOM, a choice of “too many” classes will
simply subdivide a larger class into neighboring classes,
an outcome we argue as less severe for our application
than over generalization.
In this study, we expand from a traditional clustering

approach in that we wanted to identify a variety of clas-
ses that well describe the multipollutant features in our
data with a relaxed emphasis on parsimony. Moreover,
we also wanted to retain potential applicability of categories
for epidemiological investigation. To achieve this goal,
we presented an approach for identifying a ‘reasonable’
number of classes that emphasized aspects of classifica-
tion representativeness and considered potential statistical
power (Figure 3). This strategy found a 16-class system as
an attractive solution for this data as it provided a balance
between variance explained and potential sample size.
However, we note that this should not be interpreted as
the ‘right’ solution for this data as any partition of the data
has to potential to produce interesting results.
Another broadly related issue is the likely influence of

variable measurement error among the pollutants on the
ability to validate a given class solution. Research has shown
that increasing measurement error impedes the ability of
unsupervised methods to find the ‘right’ grouping structure
in the data [29]. Strategies for dealing with this issue,
such as variable weighting, have promise; however,
given that measurement error is expected to be a major
difficulty in multipollutant air quality characterization
[1,3], more research is needed to develop mixtures
relevant tactics. Finally, health investigators should be
aware of the potential for conclusions based on data
grouping – particularly subsequent health investigations
that utilize groupings – to be sensitive to different aggrega-
tions of the same multipollutant data. Given the potential
implications of this particular issue, we suggest analyses
consider testing multiple classification solutions before
drawing conclusions.
The development of multipollutant metrics of ambient

air quality for investigating population-level health impacts
is an open problem and thus there are many opportun-
ities for future research. A natural extension of the work
presented herein is to investigate the health risks asso-
ciated with multipollutant categories of ambient air
quality. Additionally, profiles could be used to aid joint
effects studies. Other areas of research that need to be
explored are multipollutant spatial and spatiotemporal
classifications. Finally, we note there is still much room
for improvement when applying classification to create
multipollutant classes of ambient air quality. In par-
ticular, further exploration of class number selection
strategies, dissimilarity metrics, high-dimensional is-
sues, and standardization approaches could benefit air
pollution mixtures research.

Conclusion
We find SOM to be an attractive framework for classi-
fying day types for ambient air quality characterization
because the approach produces classifications equiva-
lent to traditional techniques with the benefit of a map
that provides an organized visualization of class profiles.
This additional feature of SOM promotes understanding
of potentially complex interclass relationships that could
prove useful in multipollutant research settings requiring
larger classification systems.
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