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ABSTRACT
Source apportionment of particulate matter has been commonly performed us-

ing receptor models, but studies suggest that the assumptions in receptor models
limit the accuracy of results. An alternative approach is the use of three-dimensional
source-oriented air quality models. Here, a comparison is conducted between the
PM2.5 apportioned from the Chemical Mass Balance (CMB) receptor model using
organic tracers as molecular markers with those from the source-based Community
Multiscale Air Quality (CMAQ) model. Source apportionment was conducted at
sites in the southeastern United States for July 2001 and January 2002. PM2.5 source
apportionment results had moderate discrepancies, which originate from different
spatial scales, fundamental limitations, and uncertainties of the two models. Results
from CMB fluctuated temporally more than real variation due to measurement and
source profile errors and uncertainties, whereas those from CMAQ could not cap-
ture daily variation well. In addition, results from CMB are mass contributions for
the monitoring location, whereas those from CMAQ represent the average mass
contributions of the model’s grid. It is difficult to assess which approach is “better.”
Indeed, both models have strengths and limitations, and each model’s strengths can
be utilized to help overcome the other model’s limitations.

Key Words: source apportionment, particulate matter, CMB, CMAQ.

INTRODUCTION

In 1997, the United States National Ambient Air Quality Standard (NAAQS) for
PM2.5 (particulate matter with aerodynamic diameter less than 2.5 micrometers)
was promulgated in a response to scientific studies linking elevated fine particle
concentrations with health risks (Dockery and Pope 1994; Metzger et al. 2004; Peel
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Cyber University, Wangsimni-ro 222, Haengdang-dong 17, Sungdong-gu 133-791, Seoul, Ko-
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et al. 2002). Such environmental risks can be properly managed when appropriate
models are selected for use (Wu and Olson 2010a,b). Although models help in
managing and assessing environmental risks, special attention should be paid to
selecting a model’s parameters as well as the model itself since various models may
differently estimate environmental variables (Djalalova et al. 2010; Kim et al. 2008;
Manomaiphiboon et al. 2008; McKeen et al. 2009; Park et al. 2006b; Temiyasathit
et al. 2009; Vautard et al. 2009). Hence, comparing performance of several models
followed by multiple tests to identify improved parameter estimates is essential to
improving risk management (Wu and Olson 2008, 2010a,b). In addition, several
models can be combined together to optimize and improve risk management (Wu
and Olson 2009).

The goal of this research is to compare PM2.5 source apportionment done by
a receptor model with those from a source-based model, and utilize each model’s
strengths to help overcome the other model’s limitations. Historically, source ap-
portionment of PM2.5 largely has been performed via several receptor-modeling
techniques (Viana et al. 2008). In particular, one of the most widely used receptor
modeling techniques is the chemical mass balance (CMB) approach (Core et al.
1982; Watson et al. 2002a). In CMB, ambient chemical concentrations are expressed
as the sum of products of source profiles and source contributions. This linear sys-
tem of equations is solved for source contributions by weighted least square fitting.
The CMB model is based, in part, on the following six assumptions (USEPA 2004):
(1) compositions of source emissions are constant over the period of ambient and
source sampling; (2) chemical species do not react with each other (i.e., they add
linearly); (3) all sources with a potential for contributing to the receptor have been
identified and have had their emissions characterized; (4) the number of sources or
source categories is less than or equal to the number of species; (5) source profiles
are linearly independent of each other; (6) measurement uncertainties are random,
uncorrelated, and normally distributed. These six assumptions are never totally sat-
isfied in actual practice (Watson et al. 2002b), and deviations from assumptions
increase the uncertainty in the source contribution estimates.

The extent to which these six assumptions are violated is unknown. For example,
as various source emission profiles change, such as biomass burning (e.g., wildfires
vs. burning of wood construction waste), or vehicle emissions during rush hour
versus open freeways, the first assumption is violated (Brauer et al. 2003; Huo et al.
2009). Because many source profiles are often similar with each other (e.g., gasoline
and diesel vehicles; biomass burning, meat cooking, and vegetative detritus) the fifth
assumption is also violated to some degree (Fine et al. 2004; Sheesley et al. 2007). In
addition to the above assumptions, it is inappropriate to use CMB when estimating
the impact of emission reductions on species that react in a significantly nonlinear
fashion. Also, CMB does not link the impact of emissions to either temporal or
spatial locations of the sources of PM2.5 (Subramanian et al. 2006). Nevertheless,
CMB has a great advantage that results provide temporal and spatial variations at
the receptor in a fashion that is consistent with measured concentrations.

A bottom-up approach to source apportionment is the use of emission-based
(or source-based) three-dimensional air quality models (AQMs). Such models solve
the atmospheric diffusion equation, which is a statement of species conservation in
a turbulent fluid. The diffusion equation describes the formation, transport, and
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Comparison of Receptor and Air Quality Models

fate of air pollutants, including components for processing emissions, meteorology,
topography, air quality observations, and chemistry (Russell and Dennis 2000). Use
of air quality models in source apportionment has limitations, principally that results
are dependent on the accuracy of the model’s process and input data. However,
such models can overcome the six assumptions of CMB. Three-dimensional models,
including the Comprehensive Air Quality Model with Extensions (CAMx) and the
Community Multiscale Air Quality (CMAQ) model, have been used for PM2.5 source
apportionment (Marmur et al. 2006).

Here, consistency and accuracy of source apportionment methods are compared
by analyzing the discrepancies between CMB receptor and CMAQ models. In ad-
dition, source apportionment of PM2.5 from the externally mixed source-oriented
model was compared with that from the CMB model in the San Joaquin Valley
and in the South Coast Air Basin each for three days (Held et al. 2005). Here, the
comparison was done for two complete months (July 2001 and January 2002) over
eight stations in the southeastern United States, and the reasons for discrepancy are
analyzed.

METHODS

Source apportionment of PM2.5 is performed using two different approaches:
Chemical Mass Balance (CMB) and Community Multiscale Air Quality (CMAQ)
models. CMB was applied to observations at the eight Southeastern Aerosol Re-
search and Characterization (SEARCH) stations (Figure 1A), and CMAQ was run
over the United States (Figure 1B) for July 2001 and for January 2002 corresponding
to the coordinated intensive monitoring periods by the U.S. Environmental Protec-
tion Agency’s (USEPA’s) Eastern Supersite Program (ESP 01/02). SEARCH stations
are located in North Birmingham, Alabama (BHM); Centreville, Alabama (CTR);
Yorkville, Georgia (YRK); Jefferson St–Atlanta, Georgia (JST); Gulfport, Mississippi
(GFP); Oak Grove, Mississippi (OAK); Outlying Landing Field #8, Florida (OLF);
and Pensacola, Florida (PNS) (Figure 1A). Daily average mass contributions of
PM2.5 were compared between the two approaches for the JST station, and monthly
average results were compared at all stations.

Receptor-Based PM2.5 Apportionment Using a CMB Model

Receptor-based source apportionment of PM2.5 is performed using CMB with or-
ganic tracers as molecular markers (CMB-MM) (Ke et al. 2008; Schauer et al. 1996;
Zheng et al. 2007). Mass contributions are calculated for seven sources: gasoline ex-
haust, diesel exhaust, road dust, wood/biomass burning, meat cooking, natural gas,
and power plant emissions. Historically, source profiles for the CMB application are
composed of elemental species that include sulfate, nitrate, ammonium, elemental
carbon, organic carbon, and trace metals. CMB has a long record of use, but the
co-linearity of profiles relying solely on inorganic species proved problematic, par-
ticularly for sources that emit similar metals, but can have very different organic
species concentrations. Thus, CMB-MM, which relies more on speciated organic
compounds was developed (Schauer et al. 1996; Zheng et al. 2002, 2007). Source
profiles are expressed as normalized values to organic carbon. Hence, CMB-MM

Hum. Ecol. Risk Assess. Vol. 19, No. 5, 2013 1387
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S.-K. Park et al.

Figure 1. (A) SEARCH PM2.5 monitors (http://www.atmospheric-research.com)
over plotted by CMAQ 36-km grid. A rectangle containing YRK and JST
is CMAQ 12-km domain. (B) CMAQ domain. Rectangles around the
United States and over the Atlanta area are 36-km and 12-km grid do-
main, respectively. The number of vertical layer is nine with top pressure
of 100 hPa. (Color figure available online.)

apportions mass contributions to organic carbon, then the mass contributions to
PM2.5 are calculated by dividing by the organic carbon to PM2.5 ratio of each source.

CMB-MM requires additional effort to analyze organic compounds present in
PM2.5, but the advantage of this method over the CMB is that the relative distribution
of specific organic compounds in source emissions can provide extra means to

1388 Hum. Ecol. Risk Assess. Vol. 19, No. 5, 2013
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Comparison of Receptor and Air Quality Models

fingerprint sources that cannot be uniquely identified by the elemental composition
alone (Rogge et al. 1991, Rogge et al. 1993a,b,c,d; 1994; 1997a,b; 1998; Schauer et al.
1999a,b; 2001; 2002a,b). For example, cholesterol is found in the meat cooking
source profile. Thus, much of the co-linearity problem of source profiles can be
alleviated.

Source-Based PM2.5 Apportionment Using the CMAQ Model

The three-dimensional air quality modeling system used for the source apportion-
ment is USEPA Models-3, which includes the Sparse Matrix Operator Kernel Emis-
sions (SMOKE) v1.5 for emission processing (SMOKE-Model 2012), the NCAR’s
5th generation Mesoscale Model (MM5) v3.5.3 for preparing meteorological fields
(Dudhia et al . 2005), and the CMAQ model v4.3 for air quality modeling (USEPA
1999). CMAQ was applied for July 2001 and January 2002 over the continental
United States and parts of Mexico and Canada with a 36-km grid and over the
Atlanta area with a 12 = km grid (Figure 1B). The projection used is the unified
Regional Planning Organization (RPO) national grid, which is Lambert conformal
conic projection with a central meridian of 97 W, a center of latitude of 40 N, and
standard parallels of 33 N and 45 N. More information of the air quality modeling
system and the model’s evaluation results are available elsewhere (Park et al. 2006a).

Modeling with smaller spatial scale, for example 4-km grid, would be also of
interest. However, the pollutant distribution is dependent on the spatial resolution
of the emission inventory, and the emission inventory is often prepared with the
spatial scale, larger than 4 km. Thus, the small grid size does not always produce
better resolution in pollutant distribution.

Source apportionment using CMAQ can be done by direct sensitivity methods
such as DDM-3D (Dunker 1981; Yang et al. 1997) or by Brute Force (BF) (i.e.,
applying the model once with, then without the target source) (Park et al. 2005), the
latter of which was applied in this study. The target emission source is removed based
on the source category code (SCC) in the emission inventory. Emission sources
apportioned were the same as the seven emission categories chosen in CMB for
comparison purposes. CMAQ can calculate mass contributions to the secondary
PM2.5 in addition to those to the primary PM2.5. Only mass contributions to primary
PM2.5 from CMAQ were compared with those from CMB due to the limitations of
CMB.

RESULTS

Monthly PM2.5 compositions in the southeastern United States were apportioned
using CMB-MM and CMAQ (36-km grid) (Figure 2). Sulfate, nitrate, and ammo-
nium masses are not shown to give more focus on primary PM2.5 mass. While mass
contributions calculated from CMAQ and those from CMB-MM are similar, a reason-
able amount of discrepancy exists. Total primary PM2.5 masses are different between
the two methods as PM2.5 mass from CMB-MM is the measured concentration and
that from CMAQ is simulated value. Relative PM2.5 mass and contributions from
each source using CMAQ do not differ significantly between July 2001 and January
2002, whereas, those from CMB-MM vary markedly from July 2001 to January 2002.

Hum. Ecol. Risk Assess. Vol. 19, No. 5, 2013 1389
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S.-K. Park et al.

Figure 2. Monthly average mass contributions to PM2.5 in SEARCH stations (sul-
fate, nitrate, and ammonium were excluded). CMB-MM, CMAQ (36 km)
(left to right). (A) July 2001. (B) January 2002.

Reasons of this difference will be discussed later. Daily PM2.5 masses at the JST station
apportioned using CMB-MM and CMAQ (12 km) were compared as well (Figure 3).
CMAQ mass contributions were high on some days compared with observations,
and low on other days. This daily variation would not be captured if the analysis was
done only for a few days, so analysis for long periods are necessary to understand
the temporal trends and the robustness of the comparison over periods comparable
to air quality management decision-making.

Monthly average mass contributions of PM2.5 from CMAQ (36 km) and that from
CMB-MM at eight SEARCH stations were positively correlated, and the correlation
coefficient for monthly contribution was slightly higher than that for daily mass
contributions (Figures 4A and 4B). The low correlation coefficient for daily average
mass contribution is partly due to zero values of mass contributions from CMB-MM

1390 Hum. Ecol. Risk Assess. Vol. 19, No. 5, 2013
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Comparison of Receptor and Air Quality Models

Figure 3. Daily average mass contributions to PM2.5 in JST (sulfate, nitrate, and
ammonium were excluded). CMB-MM, CMAQ (12 km) (left to right).
Results of CMB-MM are not available on July 1, 2, 5, 22, 24, and 28, and
on January 1, 11, and 20. (A) July 2001. (B) January 2002.

Hum. Ecol. Risk Assess. Vol. 19, No. 5, 2013 1391
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S.-K. Park et al.

Figure 4. Scatter plot of mass contributions to PM2.5 in July 2001 and January
2002. (A) Monthly average contributions in SEARCH stations. (B) Daily
average contributions in JST. (C) Mass contributions averaged over the
eight SEARCH stations for July 2001 and January 2002.

(Figure 4B), which was not seen in the monthly average mass contributions. The
correlation for spatially and temporally averaged mass contributions was quite good
(0.74), with a slope near 1, apparently hiding the real differences between CMB-MM
and CMAQ results (Figure 4C). Therefore, the source of disagreement of the two
models cannot be fully analyzed using averaged mass contributions (in space or in
time), or results from a few sites or from a few days, and the analysis for multiple
stations for long periods is necessary.

1392 Hum. Ecol. Risk Assess. Vol. 19, No. 5, 2013

D
ow

nl
oa

de
d 

by
 [

K
or

ea
 U

ni
ve

rs
ity

] 
at

 0
6:

13
 0

4 
Ju

ly
 2

01
3 



Comparison of Receptor and Air Quality Models

Figure 5. Monthly average mass contributions to organic carbon in SEARCH sta-
tions. CMB-MM, CMAQ (36 km) (left to right). (A) July 2001. (B) Jan-
uary 2002. (Color figure available online.)

DISCUSSION

Data in Figures 2, 3, and 4 suggest that the separate source apportionment tech-
niques give comparable results on average, but differences increase when consid-
ering daily source apportionment results. Sources of disagreement include organic
carbon to PM2.5 ratio, different spatial and temporal variations of the two models,
and uncertainties in the application of each model. To analyze the reasons of dis-
crepancy is fundamental to improving the accuracy of source apportionment of
PM2.5.

Organic Carbon to PM2.5 Ratio

The source profile used in CMB-MM is expressed as normalized values to organic
carbon (OC). CMB-MM apportions mass contributions to OC, and the contributions
to PM2.5 are calculated by dividing the contributions to OC by the OC to PM2.5 ratio
(Figures 2, 5, and 6). CMAQ also uses a speciation profile, which includes the OC
to PM2.5 ratio, to differentiate PM2.5 emissions by sub-categories. Currently, the OC

Hum. Ecol. Risk Assess. Vol. 19, No. 5, 2013 1393
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Figure 6. Organic carbon to PM2.5 ratio.

to PM2.5 ratios used in CMB-MM and CMAQ are different (Figure 6). Therefore,
although the mass contributions to OC from CMB-MM and CMAQ are similar, the
different OC to PM2.5 ratio can cause the mass contribution to PM2.5 of CMB-MM
to be significantly different from that of CMAQ, and vice-versa. Studies showed
that the ratio varies in a wide range depending on the location or experimental
situation of the emission analysis (Chow et al. 2004; Hildemann et al. 1991; Javitz
et al. 1988; Schauer et al. 1999a,b, 2001, 2002a,b; Watson et al. 2001). Currently, the
same OC to PM2.5 ratio for each source category was applied to all the monitors in the
southeastern United States in the source apportionment with CMB-MM. Applying
different OC to PM2.5 ratios to different regions should be considered to improve
the accuracy of CMB source apportionment.

Spatial Scale

Mass contributions calculated from CMAQ and CMB have different spatial scales.
CMB calculates mass contributions of PM2.5 at the monitoring location, whereas
CMAQ simulates average concentrations of the grid, hence source contributions at
the grid scale level. This different spatial scale can be a major source of the discrep-
ancy between the two models in places where spatial gradients are relatively large.
For example, primary PM2.5 concentrations estimated from CMAQ were markedly
lower than those from CMB in PNS (Figure 2). The PNS station is located near the
Florida coast and the corresponding grid of CMAQ to PNS is occupied by more than
90% ocean (Figure 7). Thus, the volume-averaged concentrations are much lower
than the point concentrations in PNS. Due to the large percentage of the ocean
in the PNS grid, the agreement of primary PM2.5 mass between CMAQ for the grid
containing the OLF station and CMB in the PNS station is markedly better than that
between CMAQ in PNS and CMB in PNS (Figure 7). An additional issue is that even
a minor source very near a monitor may be responsible for a large impact at that
receptor, but have a small impact over a typical grid.

The different spatial scales of the two models have an important implication for
use of the results. CMB is done based on the measurement, so results are specific
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Comparison of Receptor and Air Quality Models

Figure 7. (A) Geographic location of the PNS and OLF sites over plotted by CMAQ
36-km grid. (B) Monthly average mass contributions to PM2.5 in July 2001
(re-plotted using Figure 2A). (Color figure available online.)

to the monitoring location. However, mass contributions calculated from CMB may
not be representative to a specific location if a strong local (spatial) concentration
gradient exists. The site representativeness problem is important to epidemiological
studies, because source impacts determined at the monitoring station are used to
analyze the health effect of the pollutants over the area in which the monitor is
located (Wade et al. 2004). On the other hand, CMAQ simulates average concen-
trations of the grid, so results are less subject to local effects. However, source-based
models are sensitive to errors in emissions and meteorological fields.

To install multiple monitors in the area of interests may diminish the non-
representativeness (in space) of CMB results although this approach would en-
counter additional costs. To decrease the grid size of the air quality model can
enhance the spatial resolution of CMAQ results though model inputs have inherent
spatial and temporal resolution limitations as well. The mass contributions calcu-
lated from CMAQ using different grid sizes are compared in JST and YRK (Figure 8).
The JST station is located in an urban area, and the YRK station is placed in the rural
area. The correlation of mass contributions from CMAQ using a different size of grid
is lower in JST than in YRK because emissions are more localized in the urban area.
In addition, mass contributions from the 36-km are usually higher than those from
12 km in YRK, suggesting that emission strength at the YRK station is weaker than
that in the surrounding area. The Mean Fractional Error (MFE), Mean Fractional
Bias (MFB), and correlation coefficient between mass contributions from CMB-MM
and those from the two different grid sizes of CMAQ are compared (Table 1).
The negative MFB indicates that CMAQ had lower mass contributions compared
to CMB. Errors between CMB-MM and CMAQ (12 km) are not always smaller than
those between CMB-MM and CMAQ (36 km). This result suggests that there are
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Figure 8. Scatter plot of daily average mass contributions to PM2.5 from CMAQ in
July 2001 and January 2002. (A) JST (urban area). (B) YRK (rural area).

also significant sources other than the different spatial scale that caused the results
from CMB-MM and CMAQ to be different. This will be dealt with in detail.

Note that the advantage of the finer grid size only can be fully realized when
the resolution of emission and meteorological inputs are also enhanced. Currently,
input emissions to CMAQ were prepared for county-level data that has a spatial scale
on the order of 10 km. Greater spatial detail is obtained by mapping emissions using
surrogates, a process that cannot fully capture the spatio-temporal distributions.
Thus, even though the size of the grid in the air quality model chosen is finer
than 10 km, the spatial resolution of the sources may not lead to significant model
improvement.

Temporal Variation

Analysis showed that daily source apportionment results from CMAQ did not
agree as well with those from CMB-MM (Figures 2 and 3) as did the monthly averages.
Note that the monthly average value has better agreement between CMB-MM and
CMAQ. That is because temporal averaging also leads, effectively, to spatial averaging
of source impact as winds change directions. CMB uses daily measurements, so
results will capture the day-to-day temporal variation. However, the variation can
fluctuate more than the true degree due to measurement errors and colinearity of
source profiles in the CMB calculations. Mass contributions of road dust in January
2002 from CMB-MM are found for only one day, January 7, 2002 (Figure 3) because
of very low levels of Al and Si in the January 2002 samples.

Conversely, CMAQ simulates pollutant concentrations based on an annual emis-
sion inventory that is then disaggregated to account for monthly, daily, and hourly
variations. Continuous emissions monitors (CEMs) on major point sources add tem-
poral accuracy, but are limited to only the largest sources of SOx and NOx. Modeled
temperature somewhat corrects mobile and biogenic emissions. It is suspected that
such emissions underestimate the temporal variations of source activity, because
emissions are prepared by applying typical statistical trends to the annual emission

1396 Hum. Ecol. Risk Assess. Vol. 19, No. 5, 2013
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Table 1. Mean fractional error (MFE), mean fractional bias (MFB), and
correlation (r) between daily average mass contributions in JST from
CMB (MM), CMAQ (12 km), and CMAQ (36 km). The positive MFB
indicates mass contributions from CMAQ are higher than those from
CMB.

CMB (MM) CMB (MM)
vs. vs.

CMAQ (12 km) CMAQ (36 km)

Diesel 35.8 56.9
Jul. Gasoline 122.1 109.1

2001 Road dust 156.0 153.2
MFE Wood burning 185.5 189.6
[%] Diesel 41.9 70.0

Jan. Gasoline 86.4 103.0
2002 Road dust 199.6 199.5

Wood burning 50.3 55.9
Diesel −12.2 −51.6

Jul. Gasoline 122.1 108.8
2001 Road dust 147.0 138.2

MFB Wood burning 185.5 189.6
[%] Diesel −27.0 −67.0

Jan. Gasoline −79.2 −99.6
2002 Road dust 199.6 199.5

Wood burning −17.6 9.2
Diesel 0.57 0.50

Jul. Gasoline 0.17 0.10
2001 Road dust −0.30 −0.35

r Wood burning −0.30 −0.16
(correl.) Diesel 0.55 0.62

Jan. Gasoline 0.35 0.30
2002 Road dust −0.20 −0.18

Wood burning 0.47 0.29

MF E = 1
N

∑N
i=1

|C1−C2|
(

C1+C2
2 )

MFB = 1
N

∑N
i=1

(C1−C2)

(
C1+C2

2 )

C1 and C2 are pollutant concentrations compared. N equals the number of C1 and C2 pairs
drawn from all valid monitoring station data for the comparison time period of interest.

inventory. The typical trends do not include irregular events (e.g., forest fires or
traffic irregularities) (Figure 9). In addition, the airport emissions are much more
variable than the smooth profile used for emissions inventory modeling (Unal et al .
2005). Thus, seasonal variations of mass contributions in addition to daily variations
using CMAQ were significantly smaller than those from CMB-MM (Figures 2 and 3),
and temporal variation of CMAQ is mainly driven by the variation in meteorology
due to relatively constant emissions.

The influence of the meteorological fields on the CMAQ results is clear from
the analysis of wind speed and pollutant concentrations. All the primary pollutant
concentrations from CMAQ are negatively correlated with wind speed (Table 2),
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Figure 9. Daily temporal profile of emissions in CMAQ.

indicating the effect of increased dilution. The negative correlation was higher in
winter than in summer because the wind speed is higher in wintertime. However,
road dust in July and in January, and gasoline in July using CMB-MM are not highly
correlated with wind speed (Table 2). The little correlation between emission sources
and wind speed is reasonable because two opposite effects may happen; one is that
more particles would be suspended and be transported more efficiently in the air
when the wind is strong, and the other is the increased dilution may be happen
when the wind is strong.

Uncertainty of Each Model

Another reason for disagreement between the two models includes uncertainty
of the two models. Important sources of uncertainty in CMB results include source
profiles. Studies show that mass contributions estimated from CMB are significantly
different depending on source profiles chosen (Ke et al. 2008). Another source of
uncertainty is that CMB apportions primary mass, which is only a fraction of total

Table 2. Correlation coefficient(r) between daily contributed mass to PM2.5 and
wind speed in JST.

Diesel Gasoline Road dust Wood burning

July 2001 CMB(MM) −0.57 −0.07 0.34 −0.30
CMAQ −0.48 −0.35 −0.57 −0.10

January 2002 CMB(MM) −0.70 −0.69 0.01 −0.40
CMAQ −0.72 −0.71 −0.83 −0.73
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Comparison of Receptor and Air Quality Models

Figure 10. (A) PM2.5 emissions in the southeastern United States (AL, GA, FL,
and MS) in 2001 based on 1999 National Emission Inventory (NEI
99) (5.7E + 5 tons year–1). (B) Difference of 2001 PM2.5 emissions in
the southeastern United States between emissions based on NEI 99
and those based on USEPA Platform 2001 (USEPA 2001-NEI 99). The
normalized difference is expressed as a percentage.

Hum. Ecol. Risk Assess. Vol. 19, No. 5, 2013 1399

D
ow

nl
oa

de
d 

by
 [

K
or

ea
 U

ni
ve

rs
ity

] 
at

 0
6:

13
 0

4 
Ju

ly
 2

01
3 



S.-K. Park et al.

PM2.5 mass (Figures 2 and 3). Unknown sources are important not only because
they occupy a large parts of PM2.5 mass, but also because unknown sources can affect
estimating known sources in CMB (Christensen 2004). According to 1999 National
Emission Inventory (1999 NEI), major PM2.5 sources that did not have profiles for
use here include agriculture, waste disposal, and wood products (Figure 10).

Major sources of uncertainty in CMAQ results include the emission inventory,
speciation profiles, and meteorological inputs (Placet et al. 2000). Currently, the
emission inventory is known to be one of the more uncertain inputs (Abdel-Aziz
and Frey 2004; Gilliland et al. 2003; Hogrefe et al. 2003; Mannschreck et al. 2002;
Mendoza-Dominguez and Russell 2001; Placet et al. 2000; Taghavi et al. 2005; Vautard
et al. 2003). Two recent year 2001 emission inventories over the southeastern United
States are significantly different (Figure 10). Depending on sources, up to 300% of
difference was observed. One method to improve the accuracy of emissions would
be to calculate scaling factors of emissions via inverse modeling by incorporating
measured concentrations. Indeed, both models have strengths and limitations, and
each model’s strength can be utilized to overcome the other model’s limitations.
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