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Abstract: The Four-Dimensional Data Assimilation was performed

to evaluate source emission strengths over the United States. The US-

EPA Models-3 system (CMAQ/MM5/SMOKE) and ridge regression

are used as the forward and inverse models, respectively. The con-

tinental US is divided into six regions, and data assimilation is

performed for each region in July 2001 and January 2002. In

addition, two separate scaling factors are calculated for weekdays

and weekends. Results show that base emissions for CO and SO2

sources are relatively accurate. Base emissions for PEC source are

overestimated 100%, but those for POA source are underestimated

up to 70% when compared with the adjusted emissions. Emissions

for NH3, NOx, and PMFINE sources are relatively accurate in July

2001, but those in January 2002 are around 100% higher than the

adjusted emissions. Base VOC emissions in July 2001 are similar to

the adjusted emissions but those in January 2002 are underestimated

up to 70% when compared with the adjusted emissions. Though the

emission adjustment itself improves the overall air quality model

performance, a better improvement is expected with the modification

of speciation profiles and temporal allocations in the Models-3

system, as well.

Key words: Emission adjustment, US-EPA Models-3 system, ridge

regression, four dimensional data Assimilation

1. Introduction

Photochemical air quality models are essential tools for the

investigation of air quality management. Confidence of these

models is bolstered when the pollutant concentrations simulated

by the models compare well to observations. Accuracy of

modeling results relies on model inputs, and one of the most

uncertain inputs to air quality models includes the emission

inventory (Placet et al., 2000; Sawyer et al., 2000; Mannschreck

et al., 2002; Gilliland et al., 2003; Hogrefe et al., 2003;

Vautard et al., 2003; Abdel-Aziz and Frey 2004; Taghavi et al.,

2005). A direct comparison of ‘1999 national emission inven-

tory (NET99)’ projected to 2001 with ‘2001 EPA platform

emission inventory’ also indicated that the emission inventory

is one of the most uncertain factors in air quality modeling

(Park et al., 2013). Though a nonlinear response of pollutant

concentrations to emissions complicated the air quality model

formulation, uncertainties in the responses of pollutant concen-

trations to various emissions controls were still less than the

uncertainties in emissions inputs (Di et al., 2010). In addition,

a trans-boundary portion of air pollution also added more

difficulty in accurate emission estimation (Park et al., 2004).

Four Dimensional Data Assimilation (FDDA) (Mendoza-

Dominguez and Russell, 2000) was developed to refine and

evaluate emission inventories. The FDDA method links formal

direct sensitivity analysis of three dimensional air quality

models with inverse modeling, and incorporates observational

data of multiple species. FDDA can estimate the emission

strength of various source categories in an inventory simulta-

neously. The FDDA approach is iterative in nature as the

sensitivity changes with emission strengths. Thus, the modeling

procedure let us examine the changes of the sensitivity of

pollutant concentrations to emission changes in the air quality

model. 

This method has been assessed by applying the perturbation

to the base emission inventories to generate predictions that

serve as observations (or pseudo-observations) in the assimi-

lation process, and has successfully identified the predefined

perturbation applied (Mendoza-Dominguez and Russell, 2000).

This method was also applied to calibrate the 2004 elemental

carbon (EC) emissions in the continental United States. The re-

estimate of the total emissions was 13% higher than a priori

2004 emissions inventory and the adjusted emissions had an

~10% reduction in annual average fractional error based on 24

h EC observations (Hu et al., 2009b). However, a separate

analysis also showed that the results of the method could be

affected by the choice of the observational networks (Hu et al.,

2009a). 

Fundamental assumptions of FDDA are that the major source

for the discrepancies between the simulated and observed con-

centrations of pollutants is the emission inventory. These limi-

tations have been discussed in the previous studies (Mendoza-

Dominguez and Russell, 2000; 2001a, b). The spatial allocation

of the emissions is often less important to overall performance

than the total mass of emissions in regional air quality mod-

eling since the emission inventory is usually prepared with the

spatial scale smaller than the grid size (Mendoza-Dominguez

and Russell, 2001b; Park et al., 2013). Though it may sig-

nificantly affect the overall model performance particularly for
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relatively small scale modeling, for example urban-scale air

quality modeling, if the spatial scale of the emission inventory

prepared is larger than the grid size. 

Previously, FDDA was applied to estimate adjustments in

the emissions of gas-phase primary species and O3 precursors

during August 9-10, 1992 over the Atlanta, Georgia Metro-

politan area (Mendoza-Dominguez and Russell, 2001b). In that

study, the California Institute of Technology (CIT) airshed

model (Harley et al., 1993) and ridge regressions (Frank and

Friedman, 1993) were used as the forward and the inverse

models, respectively. This method was also applied to derive

emission adjustments of domain-wide sources of fine organic

aerosol and gas-phase species (e.g., NOx, volatile organic com-

pounds: VOCs, CO, SO2, and NH3) over the eastern United

States during July 9-19, 1995 and May 22-29, 1995 (Mendoza-

Dominguez and Russell, 2001a). The study employed the

Urban-to-Regional multiscale Model (URM) (Odman and

Russell, 1991) as a forward model.

The present study assessed the feasibility of using the FDDA

approach to estimate regional emission strength adjustment

over the continental United States. Comparing with the pre-

vious studies that were limited to the Atlanta, Georgia metro-

politan area or the eastern United States, this study extended

the spatial domain over the continental United States. Also,

regionally different emission scaling factors were estimated to

capture spatial variations of systematic biases in emissions.

Furthermore, modeling was performed for two complete

months (i.e., July 2001 and January 2002). This ensures that the

estimated emission adjustment better reflects systematic bias

because emission-scaling factors calculated are less dependent

on the short-period abnormal meteorology or modeling system

deficiencies. 

2. Model description

The four dimensional data assimilation (FDDA) was per-

formed using the US-EPA Models-3 system and ridge regres-

sion as the forward and inverse models, respectively. Models-3

is composed of the Community Multiscale Air Quality (CMAQ)

model for air quality modeling (Byun and Ching, 1999), the

Sparse Matrix Operator Kernel Emissions (SMOKE) for

emission processing (US-EPA, 2012b), and the PSU/NCAR’s

5th generation Mesoscale Model v5 (MM5) for meteorological

modeling (PSU/NCAR, 2012). Meteorological fields were

evaluated with the Barnes objective analysis scheme (Koch et

al., 1983) using the U.S. and Canada surface hourly data

(UCAR, 2012), developed by the Meteorological Development

Laboratory (MDL), formally the Techniques Development La-

boratory (TDL), of NOAA’s National Weather Service. Mean

errors (MEs) in temperature, specific humidity, and wind speed

over the continental United States were 1.7oC / 2.1oC (July

2001 / January 2002), 1.8 g kg−1 / 0.5 g kg−1, and 1.3 m sec−1 /

1.4 m sec−1, respectively. These values are within the bench-

marks for the meteorological model evaluation (Emery and

Tai, 2001).

The emission inventory for the continental United States is

based on the 1999 National Emission Inventory (NEI 99) (US-

EPA, 2012c), projected to 2001 and 2002 using EGAS 4.0

(US-EPA, 2012j). The continuous emissions monitoring data

were also used for SO2 (US-EPA, 2012g). The 1999 Mexico

national emission inventory (US-EPA, 2012d) and the 2000

Canadian emission inventory (US-EPA, 2012e) were also used.

The biogenic emissions were prepared using the Biogenic

Emissions Inventory System version 3 (BEIS3). In order to

prepare the meteorological fiends using MM5, Pleim-Xiu land

surface model, Pleim Chang Planetary boundary layer, simple

ice microphysics, Kain-Fritsch cumulus scheme, and rapid

radiative transfer model were used (PSU/NCAR, 2012).

Air quality modeling was conducted using CMAQ over the

continental United States using the unified Regional Planning

Organization (RPO) national grid with a 36 km resolution. The

grid dimension is 147 by 111 with the origin of [−2628 km, −
1980 km] (Fig. 1). The air quality model domain was larger

than the continental United States, in which FDDA was

conducted. The two episodes of modeling were from July 1 to

31, 2001 and from January 1 to 30, 2002, and the first 24 hours

in each episode were used as ramp-up days. The chemical

mechanism used for CMAQ was SAPRC-99 (Byun and Ching,

1999; Carter, 2004). The Modified Euler Backward Iterative

method (MEBI) was used as a chemistry solver. The regional

acid deposition model (RADM) was for cloud, and AERO3

was used for aerosol dynamics. Deposition velocities of

aerosols was calculated using AERO_DEPV2, and horizontal

and vertical advection was computed based on piecewise

parabolic method (PPM). The initial and boundary conditions

were generated using ICON and BCON processors, respec-

tively (Byun and Ching, 1999). 

The modeling period includes July 2001 and January 2002,

which correspond to the coordinated intensive Eastern

Supersite Program (ESP 01/02) period, in which additional

observations are available. Observations were used for model

evaluation as well as for ridge regression. Monitoring data of

gaseous species were obtained from Ozone and Photochemical

Fig. 1. Six regions defined for the FDDA approach.
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Assessment Monitoring Stations (PAMS) program (US-EPA,

2012a). Those of speciated PM2.5 data were obtained from the

Assessment of Spatial Aerosol Composition in Atlanta (ASACA)

project (Butler et al., 2003), the Southeastern Aerosol Re-

search and Characterization (SEARCH) study (Hansen et al.,

2003), the Environmental Protection Agency’s Speciated

Trends Network (EPA-STN) databases (Park et al., 2006), and

the Interagency Monitoring of Protected Visual Environments

(IMPROVE) network (Ames and Malm, 2001). 

The FDDA approach adjusts emissions by incorporating the

surface observations into the three-dimensional air quality

model. The difference between observations and simulated

concentrations, along with the sensitivity of pollutant concen-

trations to emissions, are used to estimate how much emissions

from a specific source should be altered to optimize model

performance (Mendoza-Dominguez and Russell, 2000; 2001a,

b; Hu et al., 2009a, b). Detailed descriptions of FDDA is

available elsewhere (Mendoza-Dominguez and Russell, 2000;

2001a, b), and summary is provided below. 

Let Oik be the kth observation (in space and time) of the ith

species, and Pik

<adjusted>, be the adjusted prediction at the same

location and time with the measured concentrations. Then, the

weighted error is defined as: 

eik= wik (Oik − Pik

<adjusted>)  (1)

where wik is a weighting factor that accounts for measurement

uncertainties, and other properties of the measurements. wik is

computed as:

wik = wik

<n> · wik

<c> (2)

where wik

<n> is defined as the inverse of the total (valid) number

of observations for species i, i.e., 1/Ni. This allows each

species to have equal weight in the solution. wik

<c> is defined as

the inverse of the variance of the kth observation (space and

Table 1. Observed species assimilated and the coefficient of variation used for each species in the ridge regression module.

Species
Coefficient of 
Variation (%)

No. of Observations

Pacific (P) Mountain (M) midWest (W) Northeast (N) Southeast (S) Gorgia (G)

July January July January July January July January July January July January

2001 2002 2001 2002 2991 2002 2001 2002 2001 2002 2001 2002

O3 30 444 71 501 104 1330 0 615 0 1407 13 91 0

CO 50 778 1202 472 920 644 811 625 805 1004 1202 37 25

NO2 45 1040 1350 308 379 502 588 682 870 1039 1408 50 65

NOx 45 901 1212 145 124 289 300 579 718 536 818 50 65

NOy 45 0 0 0 0 19 0 50 51 231 49 37 24

SO2 40 222 301 152 215 1080 1636 893 1333 1050 1367 100 91

Formaldehyde 
(HCHO)

50 34 41 7 0 73 52 25 31 30 20 0 0

Acetaldehyde 
(CCHO)

50 34 41 7 0 63 42 28 31 29 21 0 0

Acetone 50 6 0 7 0 34 66 30 19 27 21 0 0

Ethylene 50 14 19 6 0 73 6 111 21 186 191 15 10

Isoprene 50 14 19 6 0 67 3 117 18 166 144 25 1

Ethane (ALK1) 50 14 19 6 0 84 6 130 21 186 206 26 10

ALK2 50 14 13 6 0 84 3 128 21 186 121 26 7

ALK3 50 14 19 6 0 84 6 123 21 186 206 26 10

ALK4 50 14 17 6 0 84 3 124 21 177 164 26 10

ALK5 50 14 17 6 0 73 6 109 21 185 154 23 10

ARO1 50 14 17 6 0 74 6 128 21 184 197 25 10

ARO2 50 2 2 0 0 53 3 129 21 71 75 8 8

OLE1 50 14 19 0 0 50 6 103 21 178 201 22 10

OLE2 50 14 19 6 0 51 2 109 21 159 197 6 10

TNMOC 50 77 139 6 0 84 30 162 66 144 136 26 8

SO4

2- PM2.5 30 132 198 173 252 104 172 147 194 269 378 48 64

NO3

− PM2.5 50 132 174 173 241 102 171 147 194 193 331 48 64

NH4

+ PM2.5 30 27 44 21 40 58 111 85 112 197 271 46 55

OC PM2.5 40 132 193 175 251 105 174 151 193 274 376 54 63

EC PM2.5 40 132 198 176 252 105 174 151 193 273 376 53 59

Crustal PM2.5 60 19 40 16 25 54 86 82 84 110 183 23 39

Total PM2.5 30 727 1029 607 714 1358 1733 848 1124 1909 2387 168 206
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time) for species i, i.e., 1/(σik)
2. The more accurate observations

will have greater weight than the inaccurate observations. The

standard deviation of each species is calculated by multiplying

the coefficient of variation by the average concentration of

each species.

The number of observations and the coefficient of variation

of twenty-eight species used in the assimilation process are

illustrated in Table 1. The coefficient of variation for each

species is selected following the previous study (Mendoza-

Dominguez and Russell, 2001a). The coefficient of variation

multiplied by the average concentration of each species be-

comes the standard deviation of each species, which is used to

calculate the observation weight (wik

<c>) described previously.

The value of the adjusted simulated concentration (i.e.,

Pik

<adjusted>) is approximated by the linear combination of the

product of the sensitivity coefficients and the perturbed

emission strengths:

(3)

where Pik is the predicted concentration at base emission, sik,j is

the sensitivity of the ith species to emissions from the jth source

at the kth location, δij is a weighting factor applied to the sen-

sitivity coefficients, J is the total number of sources involved,

and mj is the emission adjustment scaling factor of the jth

source from its base level. The emission adjustment scaling

factor (mj) is the unknown that should be calculated. 

A new weighting factor for the sensitivity coefficients (δij) is

introduced in an ad hoc fashion to compensate for a lack of

emission constraints in the penalty function (Wm), which will

be shown in Eq. (6). δij used in this study are given in Table 2

Pik

adjusted〈 〉
Pik δij sik j,  mj

j 1=

J

∑+=

Table 2. The weighting factors for the sensitivity coefficients (δ
ij
). 

Species
Sources*

CO (T) NH3 (T) NOx (AMN) NOx (P) SO2 (T) VOC (AMNP) VOC (B) POA (T) PEC (T) PMFINE (T)

O3 0.5 0.5 1 1 0.5 1 1 0.5 0 0

CO 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0

NO2 0 0 0.5 0.5 0 0 0 0 0 0

NOx 0.5 0.5 1 1 0.5 1 1 0.5 0 0

NOy 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0

SO2 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0 0

NMOC 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0

Ethylene 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0

Isoprene 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0

HCHO 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0

CCHO 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0

Acetone 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0

ALK1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0

ALK2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0

ALK3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0

ALK4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0

ALK5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0

OLE1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0

OLE2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0

ARO1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0

ARO2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0

Total PM2.5 0 0.5 0.1 0.1 0.5 0 0 0.5 0 0

SO4

2- PM2.5 0 0.5 0.1 0.1 1 0 0 0.5 0 0

NO3

− PM2.5 0 0.5 0 0 0.5 0 0 0.5 0 0

NH4

+ PM2.5 0 1 0.1 0.1 0.5 0 0 0.5 0 0

OC PM2.5 0 0.5 0.1 0.1 0.5 0 0 1 0 0

EC PM2.5 0 0.5 0.1 0.1 0.5 0 0 0.5 1 0

Crustal PM2.5 0 0.5 0.1 0.1 0.5 0 0 0.5 0 1

* T (total): area, biogenic, mobile, nonroad and point sources
* A: area source
* B: biogenic source
* M: mobile source
* N: nonroad source
* P: point source
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(Mendoza-Dominguez and Russell, 2001a). Please note that

the weighting factor (wik) introduced in Eqs, (1) and (2) is to

account for measurement uncertainties and the number of

observation. 

Sensitivity coefficients (sik,j) can be calculated by direct

sensitivity methods such as DDM-3D (Dunker 1981; Yang et

al., 1997) or by Brute Force (BF) (i.e., applying the model

once with, then without the target sources) (Park et al., 2013),

the latter of which was applied in this study. Ten target emis-

sion sources used to calculate the sensitivity coefficients are

total carbon monoxide (CO; T), total ammonium (NH3; T),

area, on-road mobile, and nonroad mobile source nitrogen

oxides (NOx; AMN), point source nitrogen oxides (NOx; P),

total sulfur dioxide (SO2; T), anthropogenic volatile organic

carbon (VOC; AMNP), biogenic volatile organic carbon (VOC;

B), total primary organic aerosol (POA; T), total primary

elemental carbon (PEC; T), and total crustal element (PMFINE;

T). Thus, the air quality model for each region in the 1st

iteration was run eleven times to calculate the sensitivity

coefficients for ten emission sources, one with base emissions,

and the other ten times with emissions without each target

source. Since the modeling domain was divided into six regions,

and iterations were conducted, the eleven times of modeling

steps were repeated for each region in every iteration. 

The receptor model is written using Eqs. (1) and (3) as:

(4)

where dik (= Oik − Pik) is the difference between observed and

modeled concentrations. Eq. (4) can be expressed in matrix

notation: 

W
e
d = W

e
Gm + e (5)

where W
e
 is a (I·K × I·K) diagonal matrix of observation

weights (the wik’s are the elements of the diagonal), d (dik =

Oik − Pik) and e (error term) are (I·K) length vectors, G (gik,j =

δij·sik,j) is the (I·K × J) matrix of weighted sensitivity coeffi-

cients, and m is a J-length vector. I, K, and J are the total num-

ber of species, sources, and monitoring stations, respectively. 

The unknown variable, m, the amount of emissions to be

adjusted is selected by minimizing the following: 

Γ = e
T
W

e
e + m

T
W

m
m (6)

The penalty function (W
m
) is introduced to bind the

emission adjustment within the physically meaningful ranges.

The adjusted emissions should lie inside a range defined by

uncertainty limits of the base emission estimates. Uncertainties

in emission estimates are often represented by a log-normal

distribution. Assuming that the base inventory is located at the

median of the distribution, a Confidence Interval (CI) of the

emissions estimates ranges from 1/σg

n to σg

n (σg is the geo-

metric standard deviation), where n depends on the CI selected.

Here, n was selected as 3.3 for CI to be 99.9% (Mendoza-

Dominguez and Russell, 2000). The upper limits of the CI of

emissions, i.e., σg

3.3, are 3.73 for VOC and POA, and 2.25 for

all other sources (Mendoza-Dominguez and Russell, 2001a).

W
m
 is a (J × J) diagonal matrix, which has parameters wjj

(positive constants) in the diagonal, i.e., W
m

= λI, where λ is

known as the ridge parameter and I is the identity matrix. The

method to calculate the ridge parameter λ can be found in

elsewhere (Marquardt, 1963; Hoerl and Kennard, 1970; Frank

and Friedman, 1993; Aldrin, 1997; Mendoza-Dominguez and

Russell, 2000).

The resulting m after minimizing the Eq. (6) is as follows:

m = (GT
W

e
G + W

m
)−1GT

W
e
d (7)

The base emissions multiplied by the emission adjustment

scaling factor (m) from Eq. (7) are the adjusted emissions of

the first iteration. The FDDA approach is iterative in nature as

the sensitivity changes with emission strengths. The sensitivity

coefficients multiplied by the weighting factor of the sen-

sitivity coefficient (G) and the difference between modeled

and observed concentrations (d) are recalculated based on the

adjusted emissions from the first iteration. G is again calculated

by Brute Force described previously. m of the second iteration

is calculated using Eq. (7) with G and d obtained using the

adjusted emissions from the first iteration. In this way, m is

iteratively recalculated. 

The iteration is conducted to have a stable response in the

assimilation process, and the following expression is used to

terminate the iteration process (Hoerl and Kennard, 1970):

 (for t > 1)  (8)

where λt is the λ (ridge parameter) at t th iteration, and Tr[M]

denotes the trace of the square matrix M. After five iterations,

Eq. (8) was satisfied to terminate the iteration in this study.

The error bound (1σ) for each scaling factor is obtained

from the square root of the diagonal elements of the variance-

covariance matrix (V) in the emission adjustment estimates.

V = (GT
W

e
G + W

m
)−1(GT

W
e
G)(GT

W
e
G + W

m
) (9)

Since iteration is conducted to obtain the ultimate estimates

for vector m, the values of G and W
m
 from the last iteration are

used to compute V (Menke, 1989). For the nonlinear problem,

σ does not necessarily represent a standard deviation from a

typical Gaussian distribution.

The robustness of this method was tested in the previous

study (Mendoza-Dominguez and Russell, 2000). A predefined

perturbation was applied to the base emissions inventory to

generate predictions that serve as observations in the assimi-

lation process. Therefore, a known solution exist in test

scenarios. Five test scenarios, each one with different mix of

observed species and emission sources, were investigated. In

addition, several combinations of the weighting factors were

wik dik wik δij sik j,  mj eik+

j 1=

J

∑=

λt λt 1–
–

λt 1–
----------------- 20

Tr G
T
WeG( )

1–
[ ]

J
------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

1.3–

≤
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evaluated for its impact on convergence and stability of the

emission adjustments. Results showed that the FDDA method

could adjust perturbed emissions close to their known original

values in these test scenarios. The weighting factors helped to

accelerate the convergence, but they have little impact on the

final results

3. Results

The continental United States is divided into six regions

based on the U.S. Census Bureau (Census, 2012): Pacific (P),

Mountain (M), midWest (W), Southeast (S), Northeast (N),

and Georgia (G) (Fig. 1). Emission adjustment scaling factors

are calculated separately for those six regions. In addition to

the different scaling factor for each region, scaling factors were

calculated for weekdays (Monday through Friday) and wee-

kends (Saturday and Sunday) to account for the day-of-week

variation. Since emissions strength continuously varies, hourly

emissions assimilation would give more useful information

than daily assimilation. However, observed PM2.5 species data

were only available on daily basis (24-hour average) though

measurements of other species were collected hourly, so the

FDDA was performed on daily basis. 

Emissions were adjusted separately for each region as well

as for weekdays and weekends (Fig. 2 and Table 3). The error

bounds (expressed as 1σ) for scaling factors are also repre-

sented (Table 3). CO emissions are relatively accurate with

little difference in emission scaling factors between weekdays

and weekends. However, scaling factors in the Southeast

region in July 2001 and the Mountain region in January 2002

are significantly different from 1.0. The scaling factor of CO

emissions in the State of Georgia on weekends in January 2002

is also deviated from 1.0. The relatively small errors in the CO

emissions are consistent with the previous studies (Petron et

al., 2004; Muller and Stavrakou, 2005; Stavrakou and Muller,

2006). However, a detailed comparison with the previous

studies was not done because the spatial resolutions of the

previous studies differed from those of this work. 

NH3 emissions are slightly overestimated in July 2001, but

they are overestimated 100% in January 2002. The formation

of NH3NO3 from NOx and NH3 favors low temperature, the

correct estimation of NH3 improves the predicted NO3-PM2.5

concentrations especially in winter (Gilliland et al., 2003).

Emission scaling factor for NOx from point sources and NOx

from area/mobile/nonroad sources had similar trends. The base

NOx emissions were overestimated around 120% for Georgia

and Mountain regions in July 2001. However, NOx emissions

were underestimated in Southeast and Pacific regions in July

2001. Previous studies revealed that the NOx in the South-

eastern region was underestimated (Mendoza-Dominguez and

Russell, 2001a). NOx emissions were around 100% overesti-

mated in January 2002 except in the Pacific region. 

SO2 emissions were relatively accurate because the con-

tinuous emissions monitoring data were used for modeling

Fig. 2. Emission adjustment scaling factor for July 2001 and January 2002 . The scaling factor of one indicates that the adjustment is not needed.
Two and 0.5 indicate the adjustment is needed twice of the base level and a half of the base level, respectively. Some scaling factors on weekday are
overlapped with those on weekends.
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Table 3. Emission adjustment scaling factors and the error bound (1σ) in each region on weekdays and weekends. (a) is for July 2001, and (b) is for
January 2002. A scaling factor of one indicates that the adjusted emissions are the same as the base emissions. Two and 0.5 indicate that the
adjusted emissions are twice and a half of the base emissions, respectively.

 (a) July 2001
(a)-1. Weekdays (Monday through Friday) 

Pacific (P) Mountain (M) midWest (W) Northeast (N) Southeast (S) Georgia (G)

CO 0.78 ± 1.01 0.96 ± 1.14 1.14 ± 1.09 1.11 ± 0.00 1.82 ± 0.29 0.76 ± 0.79

NH3 1.90 ± 0.00 1.78 ± 0.02 0.65 ± 0.00 0.65 ± 0.00 0.87 ± 0.00 0.58 ± 0.00

NOXA 1.86 ± 0.09 0.50 ± 0.00 0.98 ± 0.03 0.85 ± 0.00 1.65 ± 0.07 0.47 ± 0.00

NOXP 1.28 ± 0.02 0.49 ± 0.07 0.46 ± 0.00 0.60 ± 0.00 2.11 ± 0.00 0.75 ± 0.01

PEC 0.47 ± 0.00 0.57 ± 0.01 0.50 ± 0.00 1.00 ± 0.00 0.65 ± 0.00 0.78 ± 0.00

PMFI 0.86 ± 0.01 2.21 ± 0.01 0.69 ± 0.01 1.62 ± 0.00 2.23 ± 0.01 2.24 ± 0.00

POA 0.73 ± 0.01 1.51 ± 0.01 2.90 ± 0.00 1.84 ± 0.00 2.59 ± 0.00 3.50 ± 0.00

SO2 0.85 ± 0.01 1.82 ± 0.01 0.51 ± 0.00 0.81 ± 0.00 0.64 ± 0.00 0.57 ± 0.00

VOCA 0.67 ± 0.09 0.28 ± 0.01 0.64 ± 0.08 0.97 ± 0.00 1.44 ± 0.49 0.48 ± 0.27

VOCB 1.48 ± 1.68 0.28 ± 0.00 0.63 ± 0.30 0.98 ± 0.00 0.39 ± 0.57 0.35 ± 0.32

(a)-2. Weekends (Saturday and Sunday)

Pacific (P) Mountain (M) midWest (W) Northeast (N) Southeast (S) Georgia (G)

CO 0.97 ± 1.20 0.77 ± 0.98 1.14 ± 1.22 1.09 ± 0.00 1.97 ± 0.19 0.73 ± 0.76

NH3 2.20 ± 0.01 0.45 ± 0.00 0.82 ± 0.00 1.00 ± 0.00 0.65 ± 0.00 0.77 ± 0.00

NOXA 1.69 ± 0.01 0.45 ± 0.00 2.11 ± 0.00 0.61 ± 0.00 2.18 ± 0.12 0.74 ± 0.01

NOXP 1.31 ± 0.01 0.59 ± 0.00 1.60 ± 0.02 0.99 ± 0.00 1.70 ± 0.01 0.57 ± 0.01

PEC 0.45 ± 0.00 0.47 ± 0.01 0.48 ± 0.00 1.00 ± 0.00 0.58 ± 0.00 0.58 ± 0.00

PMFI 0.45 ± 0.00 0.45 ± 0.01 1.01 ± 0.01 1.40 ± 0.00 1.87 ± 0.01 2.00 ± 0.00

POA 0.33 ± 0.02 0.27 ± 0.00 2.17 ± 0.00 2.06 ± 0.00 2.70 ± 0.00 3.72 ± 0.00

SO2 0.45 ± 0.01 2.22 ± 0.01 0.54 ± 0.00 0.91 ± 0.00 0.62 ± 0.00 0.98 ± 0.00

VOCA 0.34 ± 0.22 2.28 ± 0.14 0.42 ± 0.47 0.97 ± 0.00 0.88 ± 0.47 0.34 ± 0.03

VOCB 3.65 ± 0.00 0.74 ± 0.29 1.15 ± 0.24 0.98 ± 0.00 0.51 ± 0.48 0.31 ± 0.07

 (b) January 2002
(b)-1. Weekdays (Monday through Friday)

Pacific (P) Mountain (M) midWest (W) Northeast (N) Southeast (S) Georgia (G)

CO 0.98 ± 1.20 2.02 ± 0.24 0.98 ± 7.97 0.57 ± 0.53 1.35 ± 0.86 1.18 ± 1.03

NH3 1.00 ± 0.00 2.01 ± 0.01 0.45 ± 0.01 0.46 ± 0.00 0.51 ± 0.00 0.44 ± 0.00

NOXA 1.79 ± 0.01 0.56 ± 0.07 0.50 ± 0.15 0.50 ± 0.01 0.63 ± 0.01 0.49 ± 0.01

NOXP 2.12 ± 0.00 1.67 ± 0.03 0.45 ± 0.38 0.85 ± 0.01 0.44 ± 0.00 0.46 ± 0.00

PEC 0.45 ± 0.00 0.81 ± 0.00 0.45 ± 0.00 0.45 ± 0.00 0.81 ± 0.00 0.56 ± 0.00

PMFI 0.52 ± 0.00 0.45 ± 0.00 0.45 ± 0.00 0.45 ± 0.00 0.46 ± 0.00 0.45 ± 0.00

POA 1.36 ± 0.00 1.38 ± 0.01 1.32 ± 0.00 0.63 ± 0.00 2.31 ± 0.00 1.29 ± 0.00

SO2 1.43 ± 0.02 0.48 ± 0.02 0.88 ± 0.01 0.55 ± 0.00 0.65 ± 0.00 0.47 ± 0.00

VOCA 3.00 ± 1.32 0.27 ± 0.00 0.35 ± 17.2 0.56 ± 0.06 3.20 ± 0.84 0.37 ± 0.03

VOCB 0.49 ± 0.08 0.37 ± 0.02 3.70 ± #### 3.64 ± 0.01 2.72 ± 0.04 3.66 ± 0.00

(b)-2. Weekends (Saturday and Sunday) 

Pacific (P) Mountain (M) midWest (W) Northeast (N) Southeast (S) Georgia (G)

CO 1.00 ± 1.23 2.19 ± 0.02 0.64 ± 0.74 0.48 ± 0.26 1.34 ± 0.72 1.60 ± 0.73

NH3 1.53 ± 0.01 0.46 ± 0.01 0.45 ± 0.01 0.45 ± 0.01 0.56 ± 0.00 0.45 ± 0.00

NOXA 1.76 ± 0.01 0.56 ± 0.04 0.45 ± 0.00 0.48 ± 0.01 0.63 ± 0.01 0.48 ± 0.00

NOXP 2.20 ± 0.00 0.45 ± 0.04 0.48 ± 0.00 0.45 ± 0.00 0.45 ± 0.00 0.45 ± 0.00

PEC 0.61 ± 0.00 2.13 ± 0.01 0.45 ± 0.00 0.45 ± 0.00 0.61 ± 0.00 0.47 ± 0.00

PMFI 1.28 ± 0.00 0.44 ± 0.00 0.45 ± 0.00 0.44 ± 0.00 0.45 ± 0.00 0.45 ± 0.00

POA 3.71 ± 0.00 3.71 ± 0.00 0.69 ± 0.00 0.27 ± 0.00 2.55 ± 0.00 0.57 ± 0.00

SO2 1.52 ± 0.04 0.80 ± 0.02 2.09 ± 0.01 0.71 ± 0.00 0.78 ± 0.00 0.46 ± 0.00

VOCA 3.70 ± 0.00 0.27 ± 0.00 0.42 ± 0.67 0.28 ± 0.01 3.62 ± 0.05 0.34 ± 0.10

VOCB 0.29 ± 0.01 0.29 ± 0.00 3.45 ± 0.00 3.63 ± 0.00 2.75 ± 0.28 3.67 ± 0.00
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(US-EPA, 2012g). Emissions of all other sources were modeled

using the annual emissions (1999 National Emission Inventory:

NEI 99) (US-EPA, 2012c). The annual emissions were allocated

for each month, day of week, and hour of day according to the

temporal allocation file in SMOKE (US-EPA, 2012h). Thus,

the accuracy of the hourly or daily emissions is limited by the

accuracy of temporal allocation as well as that of the annual

emissions. The temporal allocation used in SMOKE does not

always reflect the actual temporal variation. It is usually

smoother than the real variations (Unal et al., 2005; Park et al.,

2013). Therefore, the different model performance between

July 2001 and January 2002 for sources other than SO2 is also

partly attributed from the temporal allocation used in SMOKE.

Emission scaling factors of PEC carbon were less than 1.0 in

most cases suggesting the overestimation of the PEC emissions.

The low scaling factor of PEC reflects the overestimation of

the elemental carbon concentrations because the weighting

factor for sensitivity coefficient (δij) for PEC is positive only

for elemental carbon species (Table 2). Results may vary de-

pending on the year of analysis as well as monitoring networks

chosen (Hu et al., 2009a). POA emissions were overestimated

in most regions. This result is partly due to the underestimation

of the secondary organic carbon concentrations.

PMFINE emissions were underestimated in July 2001, but

overestimated in January 2002. These results are also directly

related with the performance of the crustal PM2.5 concentrations

because δij for PMFINE is positive only for crustal PM2.5.

Studies showed that the modeling of crustal PM2.5 has difficulty

due to the uncertainty in fugitive dust emissions. Zero to 100%

of the fugitive dust emissions are emitted very near ground

level where it can immediately be re-deposited on the ground

or trapped in vegetation depending on the regions (Pace,

2003). Here, 75% of the fugitive dust emissions are assumed

that they are not mixed in the modeling grid. 

Before assimilation, sulfate (SO4

2−PM2.5) concentrations in

July 2001 and nitrate (NO3

−PM2.5) concentrations in January

2002 were overestimated, whereas organic carbon concen-

trations (OC PM2.5) in July 2001 were underestimated for the

midWestern, Northeastern, Southeastern, and Georgia regions

(Fig. 3). After assimilation, sulfate concentrations in July 2001

and nitrate concentrations in January 2002 decreased, and

organic carbon concentrations in July 2001 increased (Fig. 3). 

The biogenic VOC emissions were underestimated in the

Pacific region in July 2001, and those in the midWestern, the

Northeastern, and the Southeastern regions and the State of

Georgia in January 2002 (Fig. 2). Previous studies indicated

that the emissions of isoprene estimated using BEIS3 were

lower than the measured value in the southeastern United

States (Warneke et al., 2010). In addition, isoprene emissions

in the United States from BEIS3 were lower than those

estimated using the Model of Emissions of Gases and Aerosols

from Nature (MEGANv2.02) (Sakulyanotvittaya et al., 2008).

The anthropogenic VOC emissions were overestimated in

most cases, consistent with the previous study (Chang et al.,

1996). VOC emission adjustments involved fifteen VOC

species, O3 and other species (Table 2). ALK1 and ALK2 are

underestimated in most regions. Other VOC species concen-

trations were higher or lower than the measured values depend-

ing on the regions and on the episode (Table 4 and Fig. 4).

These different model performances of multiple VOC species

complicated the VOC emission adjustment. 

The emission adjustment in this work was performed for the

emissions inventory, so the adjustment is for the sum of the

VOC emissions, not for the individual VOC emission sources

(e.g., isoprene, etc.). Thus, after the sum of VOC emissions are

adjusted, the emissions of individual VOC emissions sources

Fig. 3. Average observed and modeled concentrations of PM2.5 species in µg m−3. (a) is for July 2001, and (b) is for January 2002.
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were recalculated based on the VOC speciation profile (US-

EPA, 2012i). Therefore, even though the sum of VOC emis-

sions is properly adjusted, the adjusted VOC species concen-

trations could be incorrectly estimated if the VOC speciation

profile is not correct. The relative contribution of fourteen

VOC species to the sum of them indicates that the contribution

Table 4. Average observed and modeled concentrations, and mean biases and errors of O3, CO, NO2, NOx, NOy, SO2, and TNMOC in ppb (a) is for
July 2001 and (b) is for January 2002. 

 (a) July 2001

July 2001

Region Species OBS MODEL conc. MB ME

conc. (Base) (Adjusted) (Base) (Adjusted) (Base) (Adjusted)

Pacific O3 50.25 40.92 39.57 −9.3 −11.0 13.5 18.4

CO 452.53 327.87 294.81 −124.7 −166.6 267.3 262.9

NO2 11.48 12.25 18.32 0.8 6.3 7.2 11.7

NOx 16.64 15.93 28.20 −0.7 10.8 10.6 19.7

NOy NA NA NA NA NA NA NA

SO2 2.44 1.17 0.90 −1.3 −1.6 1.5 1.8

TNMOC 56.18 23.84 25.74 −32.3 −31.2 40.9 39.8

Mountain O3 46.40 45.59 44.25 −0.8 −2.7 6.3 9.5

CO 565.50 404.70 361.28 −160.8 −215.8 318.0 326.1

NO2 11.94 11.39 6.70 −0.6 −5.5 7.5 7.3

NOx 16.50 9.63 4.83 −6.9 −11.3 14.0 12.9

NOy NA NA NA NA NA NA NA

SO2 6.03 1.15 2.23 −4.9 −5.3 4.9 6.1

TNMOC 47.79 139.85 45.23 92.1 −2.6 99.7 42.7

Midwest O3 49.60 63.67 58.45 14.1 9.0 16.4 14.5

CO 569.43 424.80 433.52 −144.6 −127.3 286.1 293.3

NO2 14.88 15.19 17.30 0.3 2.4 7.1 8.2

NOx 20.73 19.45 26.62 −1.3 4.7 10.2 15.4

NOy 11.19 17.83 19.28 6.6 8.4 11.9 13.3

SO2 5.85 4.51 2.33 −1.3 −3.1 4.2 3.8

TNMOC 54.45 43.20 26.60 −11.3 −24.5 48.4 40.3

Northeast O3 51.70 62.90 62.26 11.2 10.6 14.7 14.1

CO 544.89 401.19 411.82 −143.7 −126.4 268.9 269.9

NO2 15.36 15.04 12.24 −0.3 −2.6 8.3 7.6

NOx 20.59 17.32 14.04 −3.3 −6.3 11.3 11.3

NOy 9.46 9.34 7.99 −0.1 −1.5 3.6 3.5

SO2 5.56 6.51 4.91 1.0 −0.4 4.2 3.7

TNMOC 25.94 39.58 36.13 13.6 10.8 28.6 26.3

South O3 47.66 61.15 54.98 13.5 7.3 15.9 15.4

CO 523.24 296.49 391.41 −226.7 −129.0 270.4 255.5

NO2 10.32 10.94 17.16 0.6 6.9 6.7 10.7

NOx 12.12 13.12 25.23 1.0 13.2 7.4 15.9

NOy 9.34 9.84 15.38 0.5 6.0 5.5 9.0

SO2 5.35 5.39 3.34 0.0 −2.0 3.7 3.4

TNMOC 33.81 35.26 25.63 1.5 −7.1 28.8 24.7

Georgia O3 47.55 68.71 62.25 21.2 14.2 21.6 19.3

CO 460.21 472.31 397.62 12.1 −40.8 216.4 186.3

NO2 9.57 12.54 7.81 3.0 −1.4 5.8 5.5

NOx 15.64 13.35 8.34 −2.3 −6.3 10.9 11.1

NOy 25.00 24.92 15.61 −0.1 −7.9 15.3 14.5

SO2 1.90 3.40 2.09 1.5 0.1 2.1 1.3

TNMOC 24.16 54.89 22.62 30.7 0.0 38.3 15.0
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of individual VOC species were quite different between

observed and measured concentrations (compare first and

second bar graphs in Fig. 5). Even after the assimilation, the

contribution of individual VOC species did not change much

(compare second and third bar graphs in Fig. 5) indicating that

the adjustment of VOC speciation profile also needed to better

Table 4. (Continued) Average observed and modeled concentrations, and mean biases and errors of O3, CO, NO2, NOx, NOy, SO2, and TNMOC in
ppb (a) is for July 2001 and (b) is for January 2002. 

 (b) January 2002

January 2002

Region Species OBS MODEL conc. MB ME

conc. (Base) (Adjusted) (Base) (Adjusted) (Base) (Adjusted)

Pacific O3 43.10 29.59 28.74 −13.5 −14.5 13.9 14.8

CO 909.53 564.40 560.41 −345.1 −358.2 539.0 543.9

NO2 20.83 20.80 24.41 0.0 3.4 10.4 12.9

NOx 49.05 32.21 46.45 −16.8 −3.8 30.4 36.6

NOy NA NA NA NA NA NA NA

SO2 2.52 2.18 2.81 −0.3 0.2 1.9 2.2

TNMOC 118.13 31.47 60.60 −86.7 −54.1 90.3 85.2

Mountain O3 44.41 36.43 37.09 −8.0 −7.4 9.3 8.5

CO 1074.17 440.47 647.55 −633.7 −440.6 667.8 627.3

NO2 24.18 16.42 8.55 −7.8 −15.5 11.1 16.3

NOx 63.63 16.52 7.29 −47.1 −57.4 52.4 58.6

NOy NA NA NA NA NA NA NA

SO2 4.97 1.50 1.08 −3.5 −4.1 3.7 4.1

TNMOC NA NA NA NA NA NA NA

Midwest O3 NA NA NA NA NA NA NA

CO 626.68 501.55 486.48 −125.1 −125.0 325.2 309.3

NO2 15.38 14.27 8.63 −1.1 −6.4 4.7 6.9

NOx 32.19 28.25 12.89 −3.9 −18.2 17.2 19.4

NOy NA NA NA NA NA NA NA

SO2 5.65 4.82 4.10 −0.8 −1.6 3.6 3.6

TNMOC 107.01 18.63 12.76 −88.4 −94.3 88.9 94.3

Northeast O3 NA NA NA NA NA NA NA

CO 716.64 742.53 574.50 25.9 −119.2 392.3 333.3

NO2 22.64 21.77 14.79 −0.9 −6.9 6.9 8.7

NOx 44.94 39.60 20.42 −5.3 −21.6 25.6 24.6

NOy 28.89 18.63 9.77 −10.3 −17.3 18.3 18.6

SO2 8.36 10.76 8.14 2.4 0.0 5.3 4.4

TNMOC 58.22 65.38 47.33 7.2 −10.1 31.5 25.2

South O3 44.65 24.07 32.30 −20.6 −12.4 21.3 13.2

CO 754.76 435.28 557.39 −319.5 −192.7 414.7 403.8

NO2 14.81 13.25 8.71 −1.6 −6.0 6.0 7.6

NOx 28.87 19.39 11.03 −9.5 −17.6 16.0 19.0

NOy 11.24 10.41 5.74 −0.8 −4.9 5.7 7.4

SO2 6.23 6.25 4.42 0.0 −1.7 3.9 3.6

TNMOC 53.46 18.25 38.66 −35.2 −13.7 35.8 29.0

Georgia O3 NA NA NA NA NA NA NA

CO 833.38 628.18 677.84 −205.2 −149.8 313.2 313.9

NO2 17.19 16.65 8.54 −0.5 −9.1 7.0 9.7

NOx 42.22 24.72 9.78 −17.5 −34.0 26.8 34.8

NOy 50.29 31.48 13.72 −18.8 −39.1 32.2 39.8

SO2 2.73 3.97 2.52 1.2 −0.6 2.2 1.8

TNMOC 28.09 21.97 16.45 −6.1 −11.6 11.0 12.3
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improve the model performance. 

The performance of the model using base level emissions

was compared with that using adjusted emissions (Fig. 6). The

mean errors decreased in the Mountain, the midWesten, and

the Northeastern regions, and the State of Georgia. However,

the mean errors rather increased in the Pacific and South-

eastern regions partly due to the uncertainty in the VOC

speciation profile. 

The overall mean fractional bias (MFB) of the modeled

concentrations from the base emissions were compared with

that from the adjusted emissions (Fig. 7). A scatter plot was

drawn with MFBs from the base emissions of each species of

each region to X axis, and those from the adjusted emissions to

Y axis. The slope of the first order regression line was less than

one suggesting that the FDDA approach helped to minimize the

systematic bias of the emissions. However, the overall mean

fractional error (MFE) did not improve, indicating that there

are other sources of error (e.g., the speciation profile of VOC),

which cannot be reduced by emission adjustments alone (Fig. 7).

It is also interesting to compare the emission adjustment

through the FDDA with the relatively recent emission inven-

Fig. 4. Average observed and modeled concentrations of VOC species [ppb]. (a) is for July 2001, and (b) is for January 2002. Observed VOC
specie concentrations were not available in the Mountain region (M) in January 2002.

Fig. 5. The relative contribution of HCHO, CCHO, acetone, ethylene,
isoprene, ALK1, ALK2, ALK3, ALK4, ALK5, ARO1, ARO2, OLE1,
OLE2 to the sum of those species in the Southeastern region. (a) is for
July 2001, and (b) is for January 2002.

Fig. 6. Normalized change* of Mean Errors (MEs) between base
emissions and adjusted emissions.
*Normalized change of MEs (Park et al., 2006): (ME|

adjusted emissions
−

ME|
base

 
emissions

) / ME|
base

 
emissions

× 100(%)
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tory, which is prepared using the bottom-up approach. Here,

NEI2001 and NEI2002 prepared by the bottom-up approach

(US-EPA, 2012k, 2012l) are compared with the adjusted

emissions from the FDDA. Since NEI99 projected to 2001 are

the original emissions used as the starting guess for 2001, the

ratio of ‘NEI2001’ to ‘NEI99 projected to 2001’ becomes the

emission adjustment through the bottom-up approach. 

The ratio of ‘NEI2001’ to ‘NEI99 projected to 2001’ for

each source is illustrated in Fig. 8a and that of ‘NEI 2002’ to

‘NEI99 projected to 2002’ is represented in Fig. 8b. The ratio

calculated in Fig. 8 is based on the annual emissions, while the

emission adjustment scaling factor represented in Fig. 2 is

based on the monthly emissions. Thus, please note that the

exact comparison of emission adjustment of the FDDA with

the bottom-up should not be made based on Figs. 2 and 8.

Results show that, in general, the emission adjustment from

the bottom-up approach is relatively mild compared with that

from the FDDA (Fig. 8). However, an obvious decrease of the

adjusted emissions from the bottom-up approach for PM2.5 in

January 2002 (Fig. 8) is consistent with the results from the

FDDA for PEC and PMFINE in January 2002 (Fig. 2).

4. Concluding remarks

Emission strengths biases were identified using FDDA.

Regionally separate scaling factors were calculated to account

for the regionally different biases. Further, a separate scaling

factor is calculated for weekdays and weekends to capture the

day-of-week variation in the emission bias. This study consi-

dered the adjustment of the strength for ten emission sources:

CO (total), NH3 (total), SO2 (total), NOx (area/mobile/nonroad),

NOx (point), VOC (area/mobile/nonroad/point), VOC (biogenic),

POA (total), and PMFINE (total). 

Results showed that base emissions for CO and SO2 sources

were estimated reasonably well, while emissions for NH3, NOx,

PEC and PMFINE, POA, and VOC require more significant

revision. After assimilation, NH3, NOx, PEC, and PMFINE

emissions decreased in overall. The adjustment of POA and

VOC emissions was significantly different among regions. The

different model performance between VOC species complicated

the VOC emission assimilation. This suggests that a modifi-

cation of speciation profile of VOC is needed. The difference

in the emission adjustment between weekdays and weekends

was minor in most cases. The model performance was

relatively better in July 2001 compared with that in January

2002. Those differences were partly due to the temporal

allocation used in SMOKE. The emission adjustment improved

the air quality model performance. However, this method

could not improve the VOC speciation profile or temporal

allocation of the emissions since the assimilation was per-

formed on the annual emissions inventory. Further application

of the FDDA to the speciated and temporally allocated

emissions could improve the speciation profile or temporal

allocation used to process emissions in SMOKE as well. 

Fig. 7. Comparison of the air quality model performance. X-axis is the
model performance with base emissions, and y-axis is that with
adjusted emissions. The slope less than 1.0 indicates that the model
error (or bias) decreases, so the model performance improves. The
equations for MFB and MFE is available elsewhere (Boylan et al.,
2006).

Fig. 8. (a) is the ratio of ‘NEI2001’ to ‘NEI1999 projected to 2001’,
and (b) is the ratio of ‘NEI2002’ to ‘NEI1999 projected to 2002’ for
each region.
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The importance of the emission adjustment has been dis-

cussed in previous studies. When NOx and VOC emissions are

adjusted, the ratio of the VOC to NOx can change from 2 (NOx

scavenges O3) to 11 (O3 production is favored by NOx) (Chang

et al., 1996). Thus, the emission control strategy needed to be

modified with the changes of the sensitivity of O3 to NOx emis-

sions after the adjustment (Mendoza-Dominguez and Russell,

2001b). Also, the relative importance of the contributed mass to

PM2.5 changes as the emission adjustment is performed. For

example, if the PEC emissions are adjusted negatively and

POA emissions are adjusted positively, the resulting mass

contributions from diesel exhaust (one of the large source of

PEC emissions) would decrease, whereas those from meat

cooking combustion (one of the large source of POA emissions)

would increase. Therefore, accurate emissions increase the re-

liability of the air quality model, and thus enhance the

confidence of further applications.
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