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TECHNICAL PAPER

Development of outcome-based, multipollutant mobile source
indicators
Jorge E. Pachon,1,3 Sivaraman Balachandran,1 Yongtao Hu,1 James A. Mulholland,1

Lyndsey A. Darrow,2 Jeremy A. Sarnat,2 Paige E. Tolbert,2 and Armistead G. Russell1,⁄
1School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
2Rollins School of Public Health, Emory University, Atlanta, GA, USA
3Programa de Ingeniería Ambiental, Universidad de La Salle, Bogota, Colombia⁄Please address correspondence to: Ted Russell, School of Civil and Environmental Engineering, Georgia Institute of Technology, 331 Ferst Drive,
Atlanta, GA 30332, USA; phone: þ1-404-894-3079; fax: þ1-404-894-8266; e-mail: ted.russell@ce.gatech.edu

Multipollutant indicators of mobile source impacts are developed from readily available CO, NOx, and elemental carbon (EC)
data for use in air quality and epidemiologic analysis. Two types of outcome-based Integrated Mobile Source Indicators (IMSI) are
assessed. The first is derived from analysis of emissions of EC, CO, and NOx such that pollutant concentrations are mixed and
weighted based on emission ratios for both gasoline and diesel vehicles. The emission-based indicators (IMSIEB) capture the impact
of mobile sources on air quality estimated from receptor models and their uncertainty is comparable to measurement and source
apportionment uncertainties. The IMSIEB have larger correlation between two different receptor sites impacted by traffic than single
pollutants, suggesting they are better indicators of the local impact of mobile sources. A sensitivity analysis of fractions of pollutants
in a two-pollutant mixture and the inclusion in an epidemiologic model is conducted to develop a second set of indicators based
on health outcomes. The health-based indicators (IMSIHB) are weighted combinations of CO, NOx, and EC pairs that have the lowest P
value in their association with cardiovascular disease emergency department visits, possibly due to their better spatial
representativeness. These outcome-based, multipollutant indicators can provide support for the setting of multipollutant air
quality standards and other air quality management activities.

Implications: Integrated mobile source indicators (IMSI) were developed and assessed for use in air quality and epidemiologic
analysis. IMSI contribute to fill the gap in the path towards a multipollutant air quality approach in two aspects: IMSI represent an
innovative way to identify mixtures of pollutants based on outcomes and constitutes an alternative approach to assess multipollutant
health effects. IMSI developed for mobile sources can be easily applied to other sources. Results can support the setting of
multipollutant air quality standards.

Supplemental Material: Supplemental materials are available for this article. Go to the publisher’s online edition of the Journal of
the Air &WasteManagement Association for materials showing the estimation of uncertainties using propagation of errors, comparison
of source impacts from CMB and PMF and wind direction and speed for the Jefferson Street monitoring location in Atlanta.

Introduction

Air quality standards, such as the National Ambient Air
Quality Standards (NAAQS) in the United States, have tradition-
ally focused on setting maximum limits to ambient concentra-
tions of individual pollutants. The NAAQS, and air quality
standards in general, are developed from available studies, both
mechanistic and epidemiological, that seek to deduce the
impacts to human health from air pollution. To date, most air
pollution epidemiologic work has examined associations
between health outcomes and individual pollutants. However,
human exposure to air pollution occurs in a multipollutant set-
ting. Thus, a multipollutant approach may be more realistic to
understanding risks and regulating urban air pollution.

Multipollutant approaches have been extensively applied in
controlling emissions of pollutants to the atmosphere. Pollutants
are rarely emitted in isolation by a source, and control devices for
one pollutant can usually modify emissions of all of the com-
pounds. For example, a three-way catalytic converter for gaso-
line vehicles is able to control nitrogen oxides, carbon monoxide,
and unburned hydrocarbons at the same time (Takahashi et al.,
1996; Westerholm et al., 1996). Furthermore, multipollutant
control has been demonstrated to be cost-effective
(U.S. Environmental Protection Agency, 2007a).

From a regulatory viewpoint, multipollutant regulations
already exist for emission standards. For example, heavy- and
light-duty fleets are required to meet nitrogen oxide (NOx),
carbon monoxide (CO), particulate matter (PM), hydrocarbon
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(HC), nonmethane HC (NMHC) standards (U.S. Environment
Protection Agency, 2011a). In addition, U.S. Environmental
Protection Agency (EPA) recently proposed the aquatic acidifi-
cation index (AAI), a multipollutant index developed based on
analysis of ecological effects, to be used as part of a potential
combined NAAQS standard considering the combined effects of
NOx and sulfur oxide (SOx) deposition on aquatic ecosystems
(EPA, 2011b). In the past years, substantial progress has been
made to move towards a result-oriented, risk-based, multipollu-
tant approach in air quality management (NARSTO, 2010). A
consistent limitation of adopting this multipollutant approach
has been the identification of mixtures of pollutants in the atmo-
sphere and the health effects of such mixtures (Hidy and Pennell,
2010; National Research Council, 2004; EPA, 2007). Statistical
tools, such as factor analysis (FA), have been suggested to over-
come this limitation (EPA, 2011c). Receptor models have also
been used to combine pollutants in source categories and source
impacts have been associated with health outcomes (Sarnat et al.,
2008; Thurston et al., 2005). However, these techniques rely on
an abundant amount of air quality data, including availability of
specific components that are not routinely measured.

Multipollutant models in epidemiologic analysis have gener-
ally included two or more pollutants at a time within a model,
with the goal of identifying confounders in associations with
health rather than the effects of a mixture of pollutants (Bell
et al., 2011; Dominici et al., 2010; Mauderly and Samet, 2009;
Mauderly et al., 2010). Multipollutant models are subject to
exposure measurement error (e.g., when surrogate measure-
ments from central monitoring sites are used to assess human
exposure), but can also have differential errors (e.g., where the
pollutant measured with the least amount of error is the one with
the strongest signals) and reduced statistical power (when more
than one pollutant at a time is included) (Vedal and Kaufman,
2011). Moreover, the mixtures included in multipollutant models
do not always represent an actual or unique source of emissions,
which complicates designing effective measures to improve
public health (Franklin et al., 2008; Hart et al., 2011; Lenters
et al., 2010; Metzger et al., 2004; Peng et al., 2009).

Mobile source emissions have been identified as a key urban
air pollution component adversely affecting public health
(Beelen et al., 2008; Tonne et al., 2007). In the Atlanta area,
elevated NO2, CO, PM with an aerodynamic diameter <2.5 mm
(PM2.5), organic carbon (OC), and elemental carbon (EC) con-
centrations, pollutants traditionally related to traffic, have been
associated with emergency department (ED) visits for cardio-
vascular disease (CVD) (Health Effects Institute, 2010; Metzger
et al., 2004). Results from using receptor models in epidemio-
logic analysis provide further support that combustion-related
sources are associated with CVD (Sarnat et al., 2008).

The adverse impact of mobile sources on health is due to the
magnitude of these sources in the Atlanta area, where traffic
emissions are estimated to account for 30% of the PM2.5, 84% of
the NOx, and 97% of the CO emissions (EPA, 2007b). Results
from source apportionment indicate that the contribution of
tailpipe mobile source emissions to ambient PM2.5 varies from
17% to 26%, and the total impact from mobile sources is likely
larger considering that a significant amount of crustal material

(i.e., Al, Si, Ca, Fe, K) originates from the resuspension of dust
due to vehicles (Lee et al., 2008b; Liu et al., 2005; Kim et al.,
2003, 2004).

Our objective in this work is to develop and assess outcome-
based, multipollutant indicators for mobile sources here called
integrated mobile source indicators (IMSI). We aim to investi-
gate if more refined indicators of mobile sources are more likely
to explain associations with health outcomes. IMSI are simple to
construct and calculate from readily available data, and can be
used in air quality and epidemiologic analyses. The species
considered are CO, NOx, and EC available from routine air
quality monitoring networks. Two sets of IMSI are developed:
the first is based on outcomes from analysis of pollutant emis-
sions and observed concentrations (here called IMSIEB). A sen-
sitivity analysis is used to refine the indicators based on two-
pollutant mixtures of NOx&EC, NOx&CO, and CO&EC and
develop a second set of indicators based on health outcomes
(here called IMSIHB). Temporal and spatial variability of IMSI
are assessed and compared with source impacts from receptor
models.

Methods

IMSI development and assessment follows four steps: (i)
selection of pollutants and analysis of emission inventories; (ii)
development of the emission-based integrated indicators
(IMSIEB); (iii) comparison of air pollutant impact analysis
using indicators with results from receptor models; and (iv)
associations with acute health responses in Atlanta and develop-
ment of health-based indicators (IMSIHB).

Pollutant selection and analysis of emission
inventories

Traditionally, CO and NOx have been used as gaseous indi-
cators of vehicular activity. CO is emitted primarily by gasoline-
fueled engines, whereas both gasoline and diesel engines have
substantial NOx emissions. Mobile source–based PM2.5 is gen-
erated not only via combustion processes but also mechanical
grinding and secondary formation (i.e., formation in the atmo-
sphere from PM2.5 precursors under photochemical conditions).
Because PM2.5 can have several sources, it is preferable to use
components that are better indicators of PM2.5 from combustion
sources. PM2.5 EC and OC are formed during combustion, with
OC being produced in early stages of combustion and EC at later
stages and higher temperatures (Watson et al., 2001). OC is also
formed from other processes, including secondary formation
from biogenic emissions. Gasoline vehicles (GVs) usually have
a higher OC/EC ratio than diesel vehicles (DVs), with values
around 3.0–4.0 for GVs and below 1.0 for DVs (Lee and Russell,
2007; Zheng et al., 2007). Because diesel exhaust contains much
higher EC concentrations than gasoline exhaust, EC has been
used as a tracer for diesel impacts on PM (Marmur et al., 2005).

Other PM2.5 components, including heavy metals such as
zinc (Zn), nickel (Ni), vanadium (V), copper (Cu), and lead
(Pb), have also been used as tracers to identify mobile source
impacts on air quality, and specifically to split calculated impacts
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between gasoline and diesel vehicles (Lee et al., 2008a). Zn is
used as a tracer of GV, and is a component of additives in
lubricating oil, Pb and Cu are produced from brake wear and
road traffic, and Ni and V are found in diesel exhaust. Organic
compounds, such as hopanes and polycyclic aromatic hydrocar-
bons (PAHs), are used as tracers of traffic-related PM impacts as
well (Brook et al. 2007; Zheng et al. 2002). Although these
organic compounds are very useful in the identification of spe-
cific source impacts, their measurement is more resource inten-
sive and their concentrations are not as widely available.

We chose CO, NOx, and EC to develop the traffic-related
IMSI because these species are ubiquitous to monitoring stations
in the United States and emission inventories. A detailed analysis
of CO, NOx, and EC emissions and ambient air concentrations in
downtown Atlanta (Fulton County) was conducted for the period
1999–2007. Emissions from mobile sources (on-road and non-
road) were obtained from the EPA National Emission Inventory
(NEI) (E.P.A., 2007) and the Visibility Improvement State and
Tribal Association (VISTAS) project (Georgia-DNR, 2007). The
2002 EPA NEI was consulted for emission estimates, but esti-
mates from earlier years are expected to be used in the develop-
ment of this inventory.

Additionally, we applied the EPA Motor Vehicle Emissions
Simulator (MOVES 2010) to identify the fraction of emissions
from on-road GVs and DVs (EPA, 2010). Both NEI andMOVES
use nationwide information of vehicle miles traveled (VMT) to
estimate on-road emissions, but emissions factors used in
MOVES 2010 have been revised from those used in NEI.

Ambient air quality data were obtained from the Jefferson
Street monitoring location (JST), a site operated by the
Southeastern Aerosol Research and Characterization Study
(SEARCH). Description of the measurement methods is
found elsewhere (Edgerton et al., 2005; Hansen et al., 2003).
Briefly, elemental carbon (EC) is measured on 24-hr PM2.5

samples using quartz filters from a particle composition moni-
tor (PCM) and analyzed by the thermal-optical reflectance
(TOR) method at the Desert Research Institute (DRI) following
the Interagency Monitoring of Protected Visual Environments
(IMPROVE) protocol (Chow et al., 1993). CO, NO, and NO2

are measured every minute and averaged to the hour. CO is
measured using nondispersive infrared spectrophotometry.
NO2 is measured via photolytic conversion to NO, followed
by chemiluminescence. NO and NO2 are summed and reported
as NOx. For the period 1999–2004, a total of 1701 days were
selected for use after removing days with missing data or data
with high uncertainty.

An additional site, the South DeKalb (SD) monitoring station
from the EPA’s Speciation Trends Network (STN) located 15.3
km to the southeast of JST (Figure 1) was examined to assess the
spatial variability of IMSIEB. JST site is located within 3.2 km of
interstate I-85 and 8.0 km of interstate I-20, and in close proxi-
mity to the intersection of these two highways. SD is located
within 3.2 km of interstate I-285, and in close proximity to the
intersection of this highway and I-20. Both JST and SD are
heavily impacted by traffic emissions. The air quality monitoring
is conducted at street level in both sites. At SD, NOx was avail-
able in the same number of days at JST. For CO, SD did not

record measurements before 2003, and therefore, only 562 days
were available. EC is measured every third day at SD, therefore
only 462 days were available.

Carbon monoxide (CO)
The NEI reports total CO emissions of approximately

295,000 tons/year for Fulton County in 2002, of which 97%
are from mobile sources (75% on-road and 22% non-road).
The on-road CO emissions estimated with MOVES are lower
(approximately 190,000 tons/year) due to revisions in the
emission factors from 1992 to 2002. MOVES estimates that
98% of the on-road CO emissions are from GVs and 2% are
from DVs.

On a daily basis, on-road CO emission estimates are 20%
higher during weekdays than weekends, indicating a decrease in
GV travel during weekends. On a monthly basis, CO emissions
fromGVs have two periods of increase during the year (Figure 2a):
June through August due to the use of air conditioning in summer,
and December through February as result of cold start emissions
and lower ambient temperatures (EPA, 2008).

Ambient CO concentrations are the lowest during the
summer months (Figure 2a), especially during June and
July when dispersion of contaminants is favored and CO
photochemical destruction is faster. The highest concentra-
tions are found from October through December when
wind speeds are slower (Figure S1 in the Supplemental
Material) and thermal inversion episodes trap pollutants
nearer the ground. From January through March, inversions
are still present, but wind speeds are significantly higher
than prior months resulting in greater dispersion of
pollutants.

On an annual basis, there is a clear trend between reductions
in ambient air concentrations of CO and emission reductions
from 1999 to 2007 (Figure 2b). Comparison of CO emission

Figure 1. Location of Jefferson Street (JST) and South DeKalb (SD) monitoring
stations in Atlanta. Area in gray is Fulton County in Atlanta.
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estimates fromMOVES and NEI in 1999, 2002, and 2005 shows
good agreement between both methods. The reduction of CO
emissions in 2007 with respect to 1999 was 48% in NEI and 45%
in MOVES.

These results support using CO concentrations as an indicator
of GV impacts, though this indicator is limited to local sources
and can lead to potential biases in a regional assessment.

Nitrogen oxides (NOx)
The NEI reports total NOx emissions of approximately 47,000

tons/year for Fulton County in 2002, of which 87% are from
mobile sources (72% on-road and 15% non-road). NOx emissions
estimated with MOVES are lower than the NEI estimates
(approximately 38,000 tons/year) due to lower exhaust emissions
from heavy-duty vehicles (U.S. Environmental Protection
Agency, 2010). MOVES estimates that 60% of the on-road NOx

emissions are from GVs and 40% are from DVs. Although diesel
engines emit more NOx than spark ignition engines per mile
traveled, the gasoline fleet is significantly larger (about 10 times)
than the diesel fleet for Fulton County (Blanchard et al., 2010).
Other sources contributing to NOx emissions are classified as area
and point sources, in particular fuel combustion in electrical
generating utilities (EGUs) and biomass burning. It is expected,
however, that most of the NOx impacting the receptor stations

come from mobiles sources, because EGUs have high effective
stack heights such that pollutants are better dispersed before
impacting the monitor station at the surface. Further, NOx emis-
sions from point sources were 13% of the total emissions in 1999,
but only 2% in 2007. EPA has estimated that nationwide reduc-
tions of NOx are the result of emissions reductions at electrical
utilities and among on-road mobile sources (EPA, 2008).

On a weekly basis, NOx ambient air concentrations are 24%
higher on weekdays than on weekends, consistent with a larger
reduction of DV than GV traffic during weekends. On a monthly
basis, NOx follows a similar trend to CO, with higher concentra-
tions inwinter and lower concentrations during summer (Figure 2c)
when NOx is more rapidly removed by photochemical reactions.
NOx emissions from DVs are relatively constant throughout the
year, whereas NOx emissions fromGVs have a similar trend to CO
emissions, increasing in summer months due to the use of air
conditioning (A/C) systems and in winter months due to cold
start emissions and lower ambient temperatures (EPA, 2008).

On a yearly basis, NOx ambient concentrations decreased
from 1999 to 2001, increased during 2002 and 2003, and
decreased again until 2007 (Figure 2d). The significant reduc-
tion during the period 1999–2001 (from 154 to 103 ppb) is likely
a result of the implementation of the EPA acid rain program and
stationary controls to reduce ozone, combined with mobile

Figure 2. Monthly and annual trends of CO, NOx, and EC. Bars represent emissions estimates from MOVES in tons/month (a, c, e) or tons/yr (b, d, f). Bold line
represents ambient air concentrations of CO (ppm), NOx (ppb), and EC (mg/m3) on right vertical scale. Error bars are the root mean square (RMS) error of daily
uncertainties from measurements. R2 denotes the correlation between annual emissions and annual average concentrations.
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source reductions (EPA, 2005). From 2002 to 2007, reductions
in ambient NOx are attributed largely to decreases in on-road
NOx emissions. NOx emissions from on-road sources have a
stronger correlation with ambient NOx during the period
2002–2007 (R2 ¼ 0.65) than 1999–2007 (R2 ¼ 0.36).

These results indicate that mobile source NOx emissions have
a large impact on ambient NOx concentrations, but are not as
dominant as mobile source CO emissions on ambient CO
concentrations.

Elemental carbon (EC)
VISTAS estimates of EC emissions for 2002 is 92% from

mobiles sources (on-road and non-road) and 8% from other
sources, such as biomass burning. From the on-road fraction,
MOVES estimates 91% from DVs and 9% from GVs. On a
weekly basis, EC concentrations are 30% higher during week-
days than weekends, due to the higher fraction of diesel vehicle
traffic on weekdays. On a monthly basis, EC concentrations are
lowest in spring and summer as compared with the October–
December period. During the cooler months, dispersion of pol-
lutants is not favored due to increased thermal inversions and
reduced wind speeds (Figure 2e).

EC emissions from DVs increase in summer due to an
increase in VMT and greater construction activity with the sub-
sequent increase in non-road emissions. Although not as large as
emissions from DVs, EC emissions from GVs can be an impor-
tant source during winter time because of cold starts and lower
ambient temperatures (U.S. Environmental Protection Agency,
2008).

On an annual basis, EC concentrations decreased from
1.97 mg/m3 in 1999 to 1.13 mg/m3 in 2007 (Figure 2f) as a result
of changes in fuel composition and controls on mobile sources,
such as the introduction of low- (50 ppm) and ultra-low- (15 ppm)
sulfur diesel in 2002 and 2006, respectively (EPA, 2000).
Controls in point and open fires might also have helped on this
reduction, such as the open burning ban implemented in the 13-
county metro Atlanta area in 1996. These results indicate that EC
emissions are dominated by mobile sources for Fulton County,
particularly by DVs.

In summary, data from Atlanta using a number of emissions
and monitoring databases show that CO and EC are likely good
indicators of GVs and DVs, respectively. NOx appears to be an
indicator of overall mobile sources and cannot be easily used to
discern between GVs and DVs. Because only 20% of the total
OC emissions are from mobiles sources (on-road and non-road)
(Georgia-DNR, 2007) and a fraction between 26% and 47% of
ambient OC can be formed secondarily (Pachon et al., 2010), our
development of IMSIEB does not use OC, though the indicators
can be used to estimate the OC from mobile sources.

Development of the emission-based integrated
indicators

We propose a multipollutant indicator of CO, NOx, and
EC to assess mobile source impacts on air quality. In this
work, the highest 1-hr values at each day for CO and NOx

were chosen because the 1-hr metric has been found more

associated with health outcomes than other metrics (Metzger
et al., 2004). The IMSIEB uses ratios of mobile-source-to-
total emissions for each pollutant as weighting coefficients
(eq 1). Mobile source fractions of each pollutant can be
estimated by multiplying these ratios by the ambient air
concentrations. For example, the fraction of ambient EC
from mobile sources is estimated here as the total EC con-
centration multiplied by the ratio (EEC,mobile/EEC,total), where
Ei,j represents the emission of pollutant i for source category
j, in units of tons/year estimated at Fulton County in Atlanta.
Pollutant concentrations for EC are in units of mg/m3, which
differ from the units of ppm used for CO and NOx.
Therefore, a normalization of ambient air concentrations by
the standard deviation of 1701 samples for EC, CO, and
NOx was performed (Bevington and Robinson, 2003). The
normalization is also useful in this case because each pollu-
tant has a different range of measurements.

IMSIEB ¼
EEC;mobile

EEC;total
� C0

EC þ ENOx;mobile

ENOx;total
� C0

NOx þ ECO;mobile

ECO;total
� C0

CO

EEC;mobile

EEC;total
þ ENOx;mobile

ENOx;total
þ ECO;mobile

ECO;total

(1)

where C0
i ¼ Ci=si denotes the normalized concentrations (Ci

and si represent the average concentration and standard devia-
tion of pollutant i in the period 1999–2007) at the Jefferson
Street receptor site. The IMSIEB uses normalization by the sum
of the emission ratios in such a way that the indicator can be
easily compared with other IMSIs.

The ratios between mobile emissions (Ei,mobile) and total
emissions (Ei,total) in eq 1 are defined as the weighting coeffi-
cients. These weighting coefficients for NOx and CO, obtained
from the NEI database, are 0.84 � 0.03 and 0.97 � 0.01,
respectively. Uncertainties in the NOx and COmobile/total ratios
are obtained as 1 standard deviation of the estimated ratios in the
period 1999–2007. The weighting coefficient for EC was esti-
mated from VISTAS in 2002 to 0.92 � 0.04. Uncertainty in the
ECmobile/EC total ratio is obtained as one standard deviation of
the monthly values during 2002. After replacing the values of the
weighting coefficients into eq 1, this can be expressed as

IMSIEB ¼ 0:33� C
0
EC þ 0:31� C

0
NOx þ 0:36� C

0
CO (2)

We were also interested in differentiating impacts from gasoline
and diesel exhaust emissions, because the contribution at the
receptor site can be quite different and the control mechanisms
are specific to each type of vehicle. Therefore, we define inte-
grated indicators for gasoline vehicles (IMSIEB,GV) and diesel
vehicles (IMSIEB,DV) using specific emission ratios from gaso-
line and diesel emissions estimated with MOVES.

The ratio of gasoline-to-mobile emissions was used as a
weighting coefficient for each species, being 0.58 � 0.02 for
NOx and 0.98 � 0.01 for CO, obtained from the application of
MOVES. For EC, the ratio of gasoline-to-mobile emissions is
more seasonally dependent, with a summer value of 0.06� 0.01
and a winter value of 0.12 � 0.04. These results indicate more
weight on the CO and NOx than EC. Therefore, IMSIEB,GV was
defined as a weighting mixture of CO and NOx only:
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IMSIEB;GV ¼
ENOx;GV

ENOx:total
C0
NOx þ ECO;GV

ECO:total
C0
CO

ENOx;GV

ENOx:total
þ ECO;GV

ECO:total

(3)

where ENOx;GV

ENOx;total
¼ ENOx;GV

ENOx;mobile
� ENOx;mobile

ENOx;total
, ECO;GVECO;total

¼ ECO;GV

ECO;mobile
� ECO;mobile

ECO;total
.

After replacing the values of the weighting coefficients into eq 3,
this can be expressed as

IMSIEB;GV ¼ 0:37� C
0
NOx þ 0:63� C

0
CO (4)

Similarly, the ratios of diesel-to-total mobile emissions obtained
from MOVES, used as weighting coefficients, for NOx was 0.42
� 0.02 and for CO 0.02 � 0.01. For EC, the ratio of diesel-to-
total mobile emissions was more seasonally dependent, with a
summer value of 0.94� 0.01 and a winter value of 0.88 � 0.04.
These results imply more weight on EC and NOx than
CO. Therefore, IMSIEB,DV was defined as a weighting mixture
of EC and NOx only:

IMSIEB;DV ¼
ENOx;DV

ENOx:total
C0
NOx þ ECO;DV

ECO:total
C0
CO

ENOx;DV

ENOx:total
þ ECO;DV

ECO:total

(5)

where ENOx;DV

ENOx;total
¼ ENOx;DV

ENOx;mobile
� ENOx;mobile

ENOx;total
, ECO;DVECO;total

¼ ECO;DV

ECO;mobile
� ECO;mobile

ECO;total
.

After replacing the values of theweighting coefficients into eq 5,
this can be expressed as

IMSIEB;DV ¼ 0:31� C
0
NOx þ 0:69� C

0
EC (6)

Specification of the IMSIEB has limitations. First, the emission
fraction for a pollutant is translated to an ambient fraction
assuming that the average source and receptor fractions are the
same. This assumption has been tested in the past with good
results: gas-to-PM2.5 emission ratios were used to optimize
source profiles in Atlanta, leading to a more accurate apportion-
ment of PM2.5 from mobile sources and coal-fire power plants
(Marmur et al., 2005). A second limitation is the assumption that
emission ratios are constant on a daily basis and equal to the
annual average. However, daily variations in the indicators are
captured by the use of ambient air concentrations.

Comparison of air pollutant impact analysis using
indicators with results from receptor models

The IMSIEB were compared with source apportionment from
receptor models. The chemical mass balance method CMBv.8.2
(Watson et al., 1984) and the positive matrix factorization
method PMFv3.0 (Norris and Vedantham, 2008) were applied
to the same period of time as the indicators. For PMF, strong
species (i.e., species with signal/noise ratio >2.0) were NO3,
SO4, NH4, EC, four OC thermal fractions, Al, Si, Fe, K, Ca,
Br, Mn, and Zn, and weak species (i.e., species with signal/noise
ratio <2.0) were PM2.5, Cu, Pb, and Se. The temperature-
resolved OC fractions were chosen to improve the separation
between gasoline and diesel source impacts (Kim et al., 2004;
Liu et al., 2005). Missing data were replaced by their geometric
mean to conserve the original number of samples for better
performance of the PMF algorithm (Reff et al., 2007). For

CMB, optimized source profiles were chosen from a previous
study in Atlanta and sources, such as coal-fire power plant and
cement production, were eliminated to avoid negative source
impacts (Marmur et al., 2005).

Associations between pollutant mixtures and acute
health responses in Atlanta

We have assumed that pollutants mix based on emission
ratios, but this mixture can be influenced by meteorological
conditions. The sensitivity analysis aims to assess different frac-
tions on which pollutants can combine once in the atmosphere.
Based on the combination of pollutants in the IMSIEB,GV and
IMSIEB,DV, a sensitivity analysis was performed between two-
pollutant mixtures. For IMSIEB,GV mixtures of CO and NOx

were evaluated and for IMSIEB,DV mixtures of EC and NOx

were chosen. In addition, mixtures of EC and CO were also
evaluated. The sensitivity analysis was performed as follows.

NOx&EC ¼ a� C
0
NOx þð1� aÞ � C

0
EC (7)

NOx&CO ¼ a� C
0
NOx þð1� aÞ � C

0
CO (8)

CO&EC ¼ a� C
0
CO þð1� aÞ � C

0
EC (9)

where C
0
EC, C

0
CO, and C

0
NOx represent the normalized concentra-

tions and a is a parameter that varies from 0 to 1, in such away that
allows comparing pollutants individually (when a is equal to 0 or
1) versus two-pollutant mixtures. In particular, the combination of
NOx&CO at a¼ 0.4 (i.e., 0.4� C

0
NOxþ 0.6� C

0
CO) is equivalent

to IMSIEB,GV (eq 4) and the combination of NOx&EC at a ¼ 0.3
(i.e., 0.3 � C

0
NOxþ0.7 � C

0
EC) is equivalent to IMSIEB,DV (eq 6).

The association of mobile source multipollutant metrics with
health effects was assessed in an epidemiologic analysis. CVD
ED visits were chosen as the health endpoint for this analysis,
given that those have been found to be associated with
combustion-related activities in Atlanta (Metzger et al., 2004;
Sarnat et al., 2008). Our epidemiologic models only assess short-
term effects of these pollutants (i.e., we look at the daily measure
of the indicator and see if it predicts that same day’s CVD count).
Assessing relationships between chronic exposures to the indi-
cators (i.e., long-term averages of the exposures) is beyond the
scope of analysis. Briefly, data were collected for ED visits
related to CVD from 41 hospitals in metro Atlanta from 1999
to 2004. Daily ED counts are regressed with air pollution indi-
cators using a Poisson generalized linear model (GLM).We used
a similar epidemiologic model to the model applied in previous
analyses of CVD outcomes in these data; this Poisson general-
ized linear model is described in more detail elsewhere (Metzger
et al., 2004; Sarnat et al., 2008). However, for this analysis, as
well as other more recent analyses of these data, we included
more stringent control for temperature (Strickland et al., 2010).

Unlike traditional multipollutant models that solve for differ-
ent regression coefficients, our approach solves for only one b
for a multipollutant indicator. The values of a at which the two-
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pollutant mixtures show the strongest association with CVD
define the health-based integrated indicators (IMSIHB).

Results

The assessment of the IMSIEB was conducted as follows: (i)
analysis of IMSIEB trends; (ii) comparison with mobile source
impacts from receptor models; (iii) uncertainties in the estima-
tion of the indicators; (iv) comparison with IMSIHB derived from
associations with CVD ED visits; and (v) implication for multi-
pollutant air quality standards.

IMSIEB trends

IMSIEB exhibit similar temporal trends as ambient EC, CO,
and NOx, with a decrease during summer and increase during fall
and reduction in annual averages from 1999 to 2007 (Figure 3).
On a monthly basis, IMSIEB,GV showed a larger reduction in
concentrations during summer than IMSIEB,DV consistent with
less commuting from light-duty traffic during the summer
months. On an annual basis, there is a larger decrease in
IMSIEB,GV than IMSIEB,DV explained by a more rapid introduc-
tion of new control technologies in the gasoline fleet than diesel
vehicles. The comparison of IMSIEB annual averages with
reduction in emissions of CO, NOx, and EC with respect to
1999 shows a similar trend, suggesting a good agreement
between indicators estimated with ambient air concentrations
and emissions from mobile sources.

On a daily basis, IMSIEB is 22% larger during weekdays than
weekends, capturing the increase in traffic during the week. The
IMSIEB,DV trend has a large decrease during weekends (30%)
than IMSIEB,GV (14%), and is explained by reduced diesel traffic
during the weekend.

Comparison with results from receptor models

CMB and PMF methods yield similar estimates for PM air
quality impacts for the chosen sources (Table S1 in the
Supplemental Material). The correlation between gasoline and
diesel source impacts resolved by CMB and PMF (Table 1) was
substantially lower than the correlation of the combined fractions
into one mobile source (R2 ¼ 0.75/0.51 in winter/summer),
which demonstrates the difficulties receptor models have in

adequately capturing the split between gasoline and diesel
daily contributions. The proposed IMSIEB correlates more
strongly with total mobile source impacts from CMB (R2 ¼
0.73/0.53 in winter/summer) than PMF (R2 ¼ 0.72/0.48 in
winter/summer). The IMSIEB,DV correlates stronger with diesel
source impacts from CMB and PMF than the corresponding
correlation of IMSIEB,GV with gasoline source impacts from
the receptor models. This is due to both CMB and PMF using
EC as a fitting species to solve for diesel contributions, and
IMSIEB,DV is heavily weighted by EC, whereas IMSIEB,GV uses
CO, a species that is typically not used to fit the CMB or PMF
gasoline source categories.

In the southeastern United States, biomass burning can also be
a significant source of EC, CO, and NOx to ambient air (Lee
et al., 2008a). IMSIEB does not seem to be influenced by daily
impacts from this source. On selected days with biomass burning
activity over 4.0 mg/m3 of PM2.5 identified by both CMB and
PMF, the integrated indicators were more strongly correlated
with source impacts from mobile sources than wood burning.
On those days, the correlation between IMSIEB and mobile
source impacts from CMB (R2 ¼ 0.86) or PMF (R2 ¼ 0.83)
were significantly higher than the correlation between IMSIEB
and source impacts from biomass burning from CMB (R2 ¼
0.13) or PMF (R2 ¼ 0.34). This result supports the emissions
estimates and analyses detailed above that found emissions of
EC, CO, and NOx in Atlanta predominantly frommobile sources.

Uncertainties in mobile source indicators

Uncertainties are involved in several steps of the calculations
(e.g., emission estimates, ambient measurements, receptor mod-
els), and we estimate uncertainties in IMSIEB and compare them
with uncertainties from singles species and receptor model
source contributions. Uncertainties in ambient measurements
(EC, CO, NOx) were estimated as one-third of the detection
limit (mg/m3 or ppm) plus the product of analytical uncertainty
(percentage) and concentration (Polissar et al., 1998). Both
detection limit and instrument uncertainty were obtained from
the SEARCH study (Hansen et al., 2003). Uncertainties in CMB
source impacts are estimated using the effective variance
method, which considers uncertainties in both source profiles
and ambient concentrations (Lee and Russell, 2007). In PMF,

Figure 3. Temporal trends (a) monthly (b) annual of IMSIEB, IMSIEB,GV, and IMSIEB,DV (unitless). The indicators are normalized such as they have a standard
deviation of 1. Annual trend is compared with reduction in emissions of CO, NOx, and EC with respect to 1999 (on right y-axes).
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uncertainties in factor contributions are not given explicitly by
the model, so a bootstrapping procedure is used (Norris and
Vedantham, 2008). Uncertainties in IMSIEB are propagated
from individual uncertainties taking into account that CO,
NOx, and EC are correlated between each other and, therefore,
covariance terms need to be included (International Organization
for Standardization, 1993). Application of the propagation of
errors in the estimation of the IMSIEB uncertainties is explained
in detail in the Supplemental Material.

Among single species, CO and NOx have lower uncertainties
than EC because gas species are typically more precisely mea-
sured than filter-based PM2.5 speciesmeasurements (Table 2). The
IMSIEB show uncertainties larger than the ambient measurements,
because uncertainties in emissions ratios are involved in addition
to the ambient measurement uncertainties. Furthermore, the

calculation of uncertainties in IMSIEB includes the uncertainty
provided by correlated quantities, as it has been demonstrated they
can impact uncertainty results (Espinosa et al., 2010). Here, the
uncertainty in IMSIEB is primarily driven by the uncertainties in
the covariance relationships between EC, CO, and NOx. For
IMSIEB,GV, the uncertainties are driven by the covariance relation-
ships of CO and NOx. For IMSIEB,DV, uncertainties are mostly
driven by uncertainties in EC measurements and emissions ratios
and the covariance relationships of EC and NOx.

The range of uncertainties of IMSIEB (0.51–0.68) is compar-
able to the range of uncertainties in PMF (0.26–0.67), which is a
typical method to estimate contributions from mobile sources.
The high range of uncertainties in CMB (1.00–1.48) is mostly
explained by uncertainties in the source profiles (Lee and
Russell, 2007).

Table 1. Correlations between IMSIEB, IMSIEB,GV, and IMSIEB,DV with single species and daily source impacts from CMB and PMF

(R2)

EC NOx, 1-hr CO, 1-hr PMFDV PMFGV PMFmob CMBGV CMBDV CMBmob IMSIEB IMSIEB,GV IMSIEB,DV

EC 1.00 0.46 0.57 0.49 0.56 0.72 0.43 0.88 0.86 0.77 0.64 0.9
NOx, 1-hr 0.37 1.00 0.53 0.32 0.40 0.50 0.26 0.38 0.45 0.79 0.76 0.75
CO, 1-hr 0.28 0.49 1.00 0.41 0.43 0.58 0.39 0.42 0.58 0.87 0.94 0.67
PMFDV 0.34 0.23 0.17 1.00 0.20 0.75 0.46 0.31 0.57 0.49 0.44 0.50
PMFGV 0.25 0.11 0.11 0.00 1.00 0.69 0.28 0.47 0.51 0.55 0.49 0.59
PMFmob 0.55 0.31 0.27 0.63 0.44 1.00 0.51 0.53 0.75 0.72 0.64 0.75
CMBGV 0.17 0.10 0.08 0.20 0.01 0.17 1.00 0.13 0.78 0.43 0.41 0.43
CMBDV 0.86 0.27 0.20 0.22 0.26 0.44 0.01 1.00 0.58 0.62 0.49 0.78
CMBmob 0.77 0.32 0.23 0.39 0.16 0.51 0.62 0.45 1.00 0.73 0.64 0.81
IMSIEB 0.66 0.81 0.77 0.32 0.19 0.48 0.15 0.52 0.53 1.00 0.97 0.92
IMSIEB,GV 0.39 0.76 0.92 0.23 0.13 0.34 0.11 0.29 0.33 0.92 1.00 0.81
IMSIEB,DV 0.91 0.67 0.43 0.37 0.23 0.56 0.18 0.76 0.72 0.86 0.62 1.00

Notes:Values in the upper right represent correlations during winter time (October–March); values in the lower left represent correlations during summer time (April–
September). PMF¼ positive matrix factorization model; CMB¼ chemical mass balance method; GV ¼ gasoline vehicles; DV ¼ diesel vehicles; mob¼ mobile
sources ¼ GVþDV.

Table 2. Comparison of uncertainties between indicators

Indicator Indicator Valuea Standard Deviationb Uncertaintyc Relative Uncertainty

CO, 1-hr (ppm) 1.16 1.00 0.16 0.14
NOx, 1-hr (ppm) 0.12 0.10 0.03 0.25
EC (mg/m3) 1.53 0.97 0.64 0.42
IMSIEB 1.31 0.90 0.72 0.55
IMSIEB,GV 1.17 0.96 0.80 0.68
IMSIEB,DV 1.48 0.94 0.76 0.51
PMFmob 2.94 2.30 1.11 0.38
PMFGV 1.37 1.21 0.36 0.26
PMFDV 1.57 1.65 1.05 0.67
CMBmob 2.54 1.70 2.53 1.00
CMBGV 1.34 1.15 2.00 1.48
CMBDV 1.27 1.02 1.60 1.26

Notes: aAverage of daily values from 1999 to 2004. bFor daily values from 1999 to 2004. cUncertainties are estimated as the RMS average si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
s2
i

q� �
of daily

uncertainties from 1999 to 2004.
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IMSIHB derived from associations with CVD ED
visits

The epidemiologic model was implemented with time series
of pollutant concentrations (CO, NOx, EC), sources impacts
(from CMB and PMF), IMSIEB, IMSIEB,GV IMSIEB,DV and the
two-pollutant mixtures from the sensitivity analysis. A total of
40 metrics were evaluated and compared for the daily association
between the metric and corresponding ED visits for CVD in the
period 1999–2004. Within the single species, NOx, 1-hr, was the
most strongly associated with CVD, followed by CO, 1-hr; EC
was found borderline significant (Table 3). Pollutants that are
better measured such as CO and NOx typically have stronger
associations in epidemiologic models (Vedal and Kaufman,
2011), and NOx has been proposed as indicator of toxic species
emitted by traffic (Brook et al., 2007). When the three pollutants
are combined to form the IMSIEB, the strength of association is
only slightly greater than either for EC or CO, 1-hr, separately,
but less than NOx, 1-hr. Using IMSIEB,GV and IMSIEB,DV as
predictors of CVD-related ED visits in the model resulted in
statistically significance associations. Gasoline and diesel source
impacts from CMB and PMF were not found to be significantly
associated with CVD. The lack of significance may be due to the
use of EC as a fitting species in both CMB and PMF. Differences
in time periods, health outcomes, and analytic methods
(e.g., tighter controls in the epidemiologic analyses) may explain
the significant association between mobile source daily contri-
butions and CVD found in other studies in the Atlanta area
(Metzger et al., 2004; Sarnat et al., 2008).

The inclusion of the two-pollutant mixtures (NOx&EC,
NOx&CO, CO&EC) in the epidemiologic model is represented
in three curves with a minimum point where the association with
CVD is strongest (Figure 4). The minimum point suggests that
the combinations of pollutants at specific fractions are more
likely to explain associations with health outcomes than indivi-
dual species. The minimum point in the curves occurs at a¼ 0.6
for NOx&CO, at a ¼ 0.7 for NOx&EC, and at a ¼ 0.5 for
CO&EC. It would seem reasonable that a large fraction of NOx

in the NOx&CO and NOx&EC pairs would give a stronger

significance to the association with CVD outcomes, but this is
not the case. Similarly, for the CO&EC pair one could also
expect that a larger fraction of CO in the mixture would give
greater significance. The minimum occurs when both pollutants
are approximately equally weighted.

The points where the association of the two-pollutant mixtures
and CVD is strongest defined the health-based indicators. That
is, we define IMSIHB,NC at a ¼ 0.6 for NOx&CO, IMSIHB,NE
at a ¼ 0.7 for NOx&EC, and IMSIHB,CE at a ¼ 0.5 for
CO&EC. Pollutants used in the two-pollutant IMSIHB are
denoted by a subscript, e.g., “NE” for NOx and EC mixture.
The IMSIHB hold different fractions of pollutants than the
IMSIEB, suggesting that other sources, such as biomass burn-
ing, may be contributing in the association with CVD though
the P values are relatively constant between both integrated
indicators. The advantage of using IMSIEB is that specific
control mechanisms can be suggested to mobile sources facil-
itating the work of policy makers.

The IMSI and the two-pollutant mixtures showing different
associations with CVD outcomes at different a values can be

Table 3. Results for the associations of ED for CVD with mobile source impacts metrics (sorted by P value)

Indicator IQRa RRb per IQR 95% CIc P Value

CMB-DV 1.0 mg/m3 1.005 0.997–1.014 0.206
PMF-GV 2.3 mg/m3 1.005 0.997–1.012 0.206
PMF-DV 2.3 mg/m3 1.006 0.998–1.014 0.168
CMB-GV 1.0 mg/m3 1.006 0.999–1.012 0.079
EC 1.0 mg/m3 1.008 1.000–1.017 0.054
CO, 1-hr 0.9 ppm 1.007 1.001–1.014 0.033
IMSIEB 0.9 1.007 1.001–1.014 0.029
IMSIEB,DV 0.7 1.010 1.001–1.018 0.022
NOx, 1-hr 0.1 ppm 1.008 1.001–1.015 0.018
IMSIEB,GV 0.8 1.009 1.002–1.017 0.018

Notes: aInterquartile range; brisk ratio; cconfidence interval. CMB ¼ chemical mass balance method; PMF ¼ positive matrix factorization model; GV ¼ gasoline
vehicles; DV¼ diesel vehicles; IMSIEB¼ emission-based integrated mobile source indicator; IMSIEB,GV¼ IMSIEB estimated for gasoline vehicles; IMSIEB,DV¼
IMSIEB estimated for diesel vehicles.

Figure 4. Sensitivity analysis of the association between pairs of pollutants and
CVD outcomes; the dashed line represents P value ¼ 0.05.
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partially explained by the correlations between individual pollu-
tants and the two-pollutant mixture and more clearly by the
correlation between indicators at two different receptor sites.

With respect to the first explanation, the correlation of each
pair of pollutants and the third pollutant not included in the pair
changes with the a fraction (Figure 5). For example, the correla-
tion between the NOx&EC mixture and CO has a maximum
value at a¼ 0.5 (R2 ¼ 0.63), which is larger than the correlation
between CO and EC (R2 ¼ 0.49) or CO and NOx (R

2 ¼ 0.55).
Similarly, the binary mixtures NOx&CO and CO&EC have
stronger correlations with EC and NOx at a ¼ 0.4 and a ¼ 0.6,
respectively.

A higher correlation of a binary mixture with a third pollutant
more strongly associated with CVD, may explain the higher
association of that mixture with the health outcome. For exam-
ple, the strongest association of the CO&EC mixture with CVD
at a ¼ 0.5 (Figure 4) might be explained by the higher correla-
tion of the CO&EC pair and NOx at that particular alpha
(Figure 5). However, this is not the case for NOx&EC and
NOx&CO pairs, which already include the statistical power of
NOx in the health association.

A more clear explanation can be found in the correlation
between indicators at different receptor sites. We observe that
the correlations between pairs of pollutants estimated at JST
and the corresponding pairs calculated at SD are stronger at
certain value of a than others (Figure 6). These values are a
¼ 0.5 for NOx&EC (R2 ¼ 0.72) and NOx&CO (R2 ¼ 0.72)
and a ¼ 0.4 for CO&EC (R2 ¼ 0.76). The correlations
between pair of pollutants at JST and SD are stronger than
the correlations between single pollutants at both receptor
sites (R2 ¼ 0.64 for EC; R2 ¼ 0.55 for CO; R2 ¼ 0.59 for
NOx). Previous studies have found that for pollutants with
large spatial error, health associations are likely attenuated
(Goldman et al., 2010). Pollutant mixtures having a stronger
correlation between sites than single pollutants may offer a
better explanation of the stronger association with health.

As a result of the greater correlation between sites, IMSIEB,GV
and IMSIEB,DV constitute better indicators for mobile sources,

which are expected to be ubiquitous in the area. This result
complements a previous analysis in which mobile source
impacts were classified as having “intermediate” spatial repre-
sentativeness of the Atlanta area due to the lack of a unique
marker (EC was used as the only mobile tracer) (Marmur et al.,
2006). Using IMSIEB, mobile source impacts show amore robust
representativeness in the area.

Finally, the association of pollutant mixtures with health out-
comes could be related to interaction between pollutants as has
been shown in laboratory studies (Mauderly and Samet, 2009).
This hypothesis needs further study.

Implications for multipollutant air quality standards

IMSIEB and IMSIHB can provide support to the setting of
multipollutant air quality standards in a manner similar to that
used in the development of the aquatic acidification index (AAI)
(EPA, 2011b). The AAI was designed to take into account the
combined effects of NOx and SOx in the acidification of aquatic
ecosystems, given that these two species are linked from
atmospheric chemistry. Similarly, IMSIHB assess the effects
of mixtures of pollutants associated with mobile sources on
health and IMSIEB assess mixtures representing the gasoline
and diesel vehicle impacts on air quality. Because mobile sources
and their composition are ubiquitous, it is expected that the
integrated indicators can be applied in other cities. IMSI are
simple to construct and calculate and can be estimated at any
monitoring site where EC, CO, and NOx concentrations are
available.

Conclusions

This study proposed an approach to develop multipollutant
indicators based on analysis of emissions inventories and health
outcomes. The IMSIEB are simple to construct and calculate and
demonstrate advantages over the use of single species: IMSIEB
have stronger correlation between two different receptor sites

Figure 5.Correlation (R2) between binary mixtures and the pollutant not included
in the mixture (NOx&EC vs CO; NOx&CO vs EC; CO&EC vs NOx). Vertical
scale starts at 0.3 to emphasize correlations.

Figure 6. Correlation (R2) between binary mixtures at two different receptor sites
JSTand SD. Vertical scale starts at 0.3 to emphasize correlations. Overlapped days
at JSTand SD: NOx&EC (n¼ 398), NOx&CO (n¼ 560), and CO&EC (n¼ 173).
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than single pollutants, suggesting they are better indicators of the
local impact of mobile sources, they agreewellwith the observed
trends of traffic, and they have stronger associations with
observed health effects, possibly due to their stronger correlation
between sites. Uncertainties in IMSIEB are similar to uncertain-
ties in ambient measurements and receptor models. A sensitivity
analysis of fractions in IMSIEB led to the development of
IMSIHB, suggesting mixtures of pollutants more strongly asso-
ciated with CVD outcomes.

The use of IMSI in epidemiologic modeling constitutes an
alternative approach to assess the health impact of pollutant mix-
tures. Although the approach presented in this article was devel-
oped for mobile sources, this work can be extended to other
sources. IMSI can support the setting of multipollutant air quality
standards because they represent the impact of traffic on health.
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