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Article

Spatiotemporal hurdle models
for zero-inflated count data:
Exploring trends in emergency
department visits

Brian Neelon,1,2 Howard H Chang,3

Qiang Ling3 and Nicole S Hastings1,4,5

Abstract

Motivated by a study exploring spatiotemporal trends in emergency department use, we develop a class of

two-part hurdle models for the analysis of zero-inflated areal count data. The models consist of two

components—one for the probability of any emergency department use and one for the number of

emergency department visits given use. Through a hierarchical structure, the models incorporate both

patient- and region-level predictors, as well as spatially and temporally correlated random effects for each

model component. The random effects are assigned multivariate conditionally autoregressive priors,

which induce dependence between the components and provide spatial and temporal smoothing

across adjacent spatial units and time periods, resulting in improved inferences. To accommodate

potential overdispersion, we consider a range of parametric specifications for the positive counts,

including truncated negative binomial and generalized Poisson distributions. We adopt a Bayesian

inferential approach, and posterior computation is handled conveniently within standard Bayesian

software. Our results indicate that the negative binomial and generalized Poisson hurdle models vastly

outperform the Poisson hurdle model, demonstrating that overdispersed hurdle models provide a useful

approach to analyzing zero-inflated spatiotemporal data.
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1 Introduction

Emergency department (ED) visits have been rising steadily in the United States for more than a
decade. Between 1999 and 2009, ED visits increased 32%, to about 136 million per year.1 Many of
these visits were for nonurgent care and could have been managed in outpatient settings, saving an
estimated $4.4 billion in health care costs annually.2 Patient wait times in EDs also increased during
this time, from an average of 47min in 2003 to 58min in 2009.1 The use of EDs for routine care
places undue strain on the health system, increasing health costs, limiting access to services, and
reducing patient satisfaction.3

As with other health services, there is considerable geographic and temporal variation in ED use.
This variability is due in part to differences in population demographics such as age and overall
health status. Characteristics of neighborhoods themselves, such as lack of reliable public
transportation to primary care facilities, also contribute to increased ED use.4 In addition,
availability of outpatient clinics varies at a local level, although the findings regarding the
relationship between access to outpatient care and ED use are mixed.5,6 While some policy
makers have advocated measures such as neighborhood health centers to promote access to care,
it is not possible to identify areas in need of such services without an effective approach to tracking
ED trends spatially and over time. Methods for assessing spatiotemporal patterns in ED use are
therefore needed as a first step toward optimal design and targeting of community-level
interventions to reduce costly nonurgent ED care.

With these goals in mind, investigators at Duke University in Durham, North Carolina, recently
reviewed annual ED records from the Duke University Decision Support Repository (DSR), a
database containing demographic, diagnostic, and treatment information on over four million
patients seen within the Duke University Health System. The review was part of an ongoing
study examining patient- and neighborhood-level factors associated with ED use. By tracking
spatial trends over time, the investigators sought to identify areas where ED use remained
persistently high, fluctuated from year to year, or increased systematically over time.

From an analytic perspective, the DSR data posed a number of unique challenges. First, there was
an abundance of zeros: in any given year, over 70% of the patients made no ED visits, while others
mademultiple visits ranging upward of 90 per year in extreme cases. Thus, one of our chief aims was to
develop a set of spatiotemporal models that could account for zero inflation. Second, given the wide
range of positive counts, the models needed to address potential overdispersion in the data. Third, in a
previous cross-sectional study,7 we found that the probability of ED use was correlated with the
expected number of ED visits among users after adjusting for covariates; we therefore sought to
develop models to accommodate this source of dependence. And finally, to improve small-area
estimation, the models needed to provide adequate spatial and temporal smoothing.

This article describes a class of two-part hurdle models specifically designed to address these
multiple aims. The models consist of two components: a binary component that models the
probability of any ED use (i.e., at least one ED visit annually) and a truncated count component
that models the number of visits among users. Together, these components accommodate both the
high proportion of zeros and the right-skewness observed among the nonzero counts. To accurately
model the dispersion in the positive counts, we consider three distributions for the nonzero
observations: a truncated Poisson, a truncated negative binomial, and a truncated generalized
Poisson distribution. Taking advantage of the unique hierarchical structure of the DSR data, our
models incorporate both patient- and region-level predictors, as well as spatially and temporally
correlated random effects for each model component. The random effects are assigned multivariate
conditionally autoregressive priors that induce dependence between the components and provide
smoothing across adjacent spatial units and time periods.

2 Statistical Methods in Medical Research 0(0)
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Our approach builds on recent developments in spatial modeling of zero-inflated data. Agarwal
et al.8 developed a spatial zero-inflated Poisson (ZIP) model that introduced spatially correlated
random effects into the Poisson component. Rathbun and Fei9 proposed a similar model in which
the ‘‘extra-Poisson’’ zeros were fitted using a spatial probit model. Gschlößl and Czado10 developed
a spatial zero-inflated generalized Poisson model to study the incidence of meningococcal disease.
More recently, Recta et al.11 proposed a correlated spatial Poisson hurdle model for point-
referenced zero-inflated data. In the spatiotemporal setting, Fuentes et al.12 developed a
noninflated generalized Poisson model for fine particulate risk assessment, while Ver Hoef and
Jansen13 introduced spatiotemporal ZIP and Poisson hurdle models to investigate haulout
patterns among harbor seals.

The approach taken here extends this prior work in several ways. First, we propose dynamic
space-time models that provide temporal smoothing of each spatial unit through a set of
autoregressive interactions, thereby improving small-area estimation. Second, we include
multivariate space-time random effects linking the model components, which have been shown
to improve inferences.7 Third, we incorporate individual- and region-level information through a
hierarchical structure to better explain spatiotemporal trends. And finally, we consider a range of
distributional specifications designed to address overdispersion. The models have the additional
advantage of being easy to implement in standard Bayesian software packages, such as
WinBUGS.14

The remainder of the paper is organized into five sections: the following section describes the
DSR data, Section 3 outlines the proposed models, Section 4 details the Bayesian model-fitting
approach, Section 5 applies the models to the DSR data, and Section 6 provides a discussion and
points to areas for future research.

2 The DSR data

The Duke University DSR has been in existence for over a decade. Originally built as an
administrative and financial database, the DSR holds 17 years of demographic, diagnostic, and
billing data on over four million patients seen in the Duke University Health System. The data
have been deployed for secondary use in numerous research studies and quality improvement
initiatives.15,7

As part of an ongoing study exploring contributors to ED use, university researchers recently
reviewed patient records for Durham County residents who were seen at either an ED or non-ED
clinic at least once between 2007 and 2011, the most recent year for which records were available.
The records were georeferenced by residential address and subsequently linked at the Census block
group level to data from the 2005–2009 American Community Survey.16 Block groups are
collections of residential blocks, and as such, form the second-smallest geographic level set forth
by the US Census Bureau.

The final dataset contained over 122,000 records for approximately 40,000 patients and included
information on the annual number of ED visits for each patient; patient demographics, such as age,
race, gender, and insurance status; and median household income of each of the 129 Census block
groups in Durham County. Because patients could appear in the database in multiple years, the
number of records per subject ranged from one to five, with most patients having three or fewer
records over the course of the five-year study period.

Table 1 provides summary statistics for the DSR data. The majority of the sample was female and
of non-Hispanic White or non-Hispanic Black race. The median age was 37 years. About 60% had
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private medical insurance, 12% as part of a University-sponsored plan. The median block group
income was just over $45K, approximately $5000 below the national average.17 The median block
group sample size, combined over five years, was 776.

Figure 1 presents a partial histogram of the annual number of ED visits up to 10 visits. Over 70%
of the patient-year records were zero, meaning that a patient made no ED visits in a given year. The
number of nonzero visits ranged from one to 91, with 5% of the patients having greater than six
visits in any one year. Using Vuong’s procedure,18 we tested for zero inflation relative to standard
Poisson and negative binomial regression models that included gender, race, insurance, age, and
block group median income as predictors. The tests indicated significant zero inflation relative to
both count distributions (p5 0:0001 in each case).

Figure 2 displays the percent of ED users (upper panel) and the mean number of ED visits among
users (lower panel) by block group and year. Patients were considered ED users if they had at least
one ED visit during the year. In each year, the percent of ED users within block groups ranged from
under 10% to over 60%, with the highest rates occurring in the central part of the county. The
spatial pattern in ED use was fairly stable across years. There was considerably more variability in
the mean number of visits among users, although generally speaking there was an increase over time,
particularly along the county’s eastern border. The temporal variation seen here may be due in part
to small sample sizes in certain block groups. We therefore expect the proposed models to induce a
measure of spatial and temporal smoothing among these smaller areal units.

3 Proposed model

3.1 The hurdle model

For the analysis of the DSR data, we consider a broad class of two-part hurdle models to address
both zero inflation and potential overdispersion of the nonzero counts. Hurdle models are two-part

Table 1. Summary of DSR patient records ðN ¼ 122,273Þ.

Variables n %

Male 49,719 41

Race

Non-Hispanic White 56,734 46

Non-Hispanic Black 51,528 42

Hispanic 7523 6

Asian 3165 3

Other 3323 3

Insurance

Duke private insurance 13,932 12

Other private insurance 58,918 48

Medicaid 17,761 14

Medicare 19,493 16

Self-pay 12,169 10

Median Range

Age (years) 37 (51, 103)

Block group median household income ($) 45,330 (5980, 134K)

Block group sample size 776 (39, 3212)

4 Statistical Methods in Medical Research 0(0)
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mixtures consisting of a point mass at zero followed by a zero-truncated count distribution for the
positive observations.19,20 Letting Y denote a count-valued response, the generic structure of the
hurdle model is given by

PrðY ¼ 0Þ ¼ 1� �, 0 � � � 1

PrðY ¼ yÞ ¼
�pð y;�,�Þ

1� p 0;�,�ð Þ
, �4 0,�4 0, y ¼ 1, 2, . . . , ð1Þ

Number of Annual ED Visits

Pe
rc

en
t

20

40

60

0 1 2 3 4 5 6 7 8 9 10

Figure 1. Partial histogram of annual ED visits, 2007–2011.

ED: emergency department.
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where � ¼ PrðY4 0Þ is the probability of a nonzero response; p y;�,�ð Þ is an untruncated, or base,
probability distribution with mean � and dispersion parameter �; and p 0;�,�ð Þ is the base
distribution evaluated at 0. This can be written more compactly as

Y � ð1� �Þ1ð y¼0Þ þ �
pð y;�,�Þ

1� pð0;�,�Þ
1ð y40Þ

where 1ð�Þ denotes the indicator function. In health services research, � is known as the utilization
probability—i.e., the probability of using services at least once. When 1� � ¼ pð0;�,�Þ, the hurdle
model reduces to its base distribution; when ð1� �Þ4 pð0;�,�Þ, the zeros are inflated relative to the
base distribution; and when ð1� �Þ5 pð0;�,�Þ, there is zero deflation. Typically, one assumes that
� is strictly between 0 and 1, so that there is a nonzero utilization probability for all individuals
under study.

Zero-inflated models21 offer an alternative to hurdle models for the analysis of zero-adjusted
count data. Unlike hurdle models, zero-inflated models partition zeros into two types:
‘‘structural’’ zeros (e.g., those that occur because a patient is ineligible for health services) and

2007 2008 2009 2010 2011

0

% ED Use
< 0.1
0.1 − 0.2
0.2 − 0.3
0.3 − 0.4
0.4 − 0.5
0.5 − 0.6
> 0.6

2007 2008 2009 2010 2011

0

Mean Count 
 (> zero)
< 1.50
1.50 − 1.75
1.75 − 2.00
2.00 − 2.25
2.25 − 2.50
2.50 − 2.75
> 2.75

Figure 2. Percentage of ED users (upper panel) and mean number of ED visits among those with at least one ED

visit (lower panel) for each of the 129 Durham County block groups from 2007 to 2011.

ED: emergency department.
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‘‘chance’’ zeros (those that occur by chance among eligible patients). Zero-inflated models are thus
an ideal choice when one hypothesizes the existence of a latent population of individuals with
structural zeros. For the DSR analysis, we relied on hurdle rather than zero-inflated models
because we regarded all patients as eligible for ED care, and hence there was no need to
separately model the structural zeros.

3.2 Spatiotemporal hurdle model

To extend model (1) to the spatiotemporal setting, we propose the following space-time hurdle model

PrðYijk ¼ yijkj/i, mj, dijÞ ¼ ð1� �ijkÞ1ð yijk¼0Þ þ
�ijkpð yijk;�ijk,�Þ

1� pð0;�ijk,�Þ
1ð yijk 4 0Þ

logitð�ijkÞ ¼ x0ijkb1 þ f1ðzijkÞ þ �1i þ �1j þ �1ij

lnð�ijkÞ ¼ x0ijkb2 þ f2ðzijkÞ þ �2i þ �2j þ �2ij,

i ¼ 1, . . . , 129; j ¼ 1, . . . , 5; k ¼ 1, . . . , nij ð2Þ

where Yijk denotes the number of annual ED visits for the kth patient in block group i and year j;
�ijk ¼ PrðYijk 4 0Þ is the probability of a positive response; �ijk is the conditional mean of the base
distribution given a set of spatiotemporal random effects; xijk is a p� 1 vector of fixed-effect,
individual- and region-level predictors; bl is a p� 1 vector of fixed-effect regression coefficients
for component l ðl ¼ 1, 2Þ; f1ðzijkÞ and f2ðzijkÞ are optional smooth functions of a continuous
predictor zijk (e.g., patient age) to be modeled via splines; /i ¼ ð�1i,�2iÞ

0 is a vector of spatially
dependent ‘‘main effects’’ for the ith block group; mj ¼ ð�1j, �2jÞ

0 is a vector of temporal main
effects for year j; and dij ¼ ð�1ij, �2ijÞ

0 denotes a vector of space-time interactions.
Thus, we partition the spatiotemporal effects into three parts: a purely spatial component,

represented by /i; a purely temporal component, represented by mj; and a residual interaction
term, dij. Together, these parameters capture unobserved block group effects over time. For
example, /i þ m1 þ di1 represents the unobserved effect for block group i in year 1; /i þ m2 þ di2
denotes the effect for block group i in year 2; and so on. Autoregressive priors are subsequently used
to provide spatiotemporal smoothing and pooling of information across neighboring block groups
and adjacent years. Prior specification is discussed in greater detail in Section 4. For the analysis of
the DSR data, we assume identical sets of predictors for the two components. In general, however,
one might allow for unique predictors for the two components if the goal is to obtain a parsimonious
model by removing extraneous variables from one component, or if there is a priori scientific reason
to believe that the two components are associated with unique sets of predictors.

3.3 Choice of base distribution

To accurately capture the variability in the positive counts, we consider three choices for the base
distribution: the Poisson, negative binomial, and generalized Poisson distribution.22 The
spatiotemporal Poisson hurdle model is expressed as

PrðYijk ¼ yijkj/i, mj, dijÞ ¼ ð1� �ijkÞ1ð yijk¼0Þ þ �ijkTPoisð yijk;�ijkÞ1ð yijk 4 0Þ

¼ ð1� �ijkÞ1ð yijk¼0Þ þ
�ijk�

yijk
ijk e
��ijk

yijk! 1� e��ijkð Þ
1ð yijk 4 0Þ ð3Þ
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where TPoisð�;�ijkÞ denotes a truncated Poisson distribution, �ijk is the conditional mean of the
Poisson base distribution given the random effects, and �ijk and �ijk are modeled as in equation (2).
The Poisson distribution implies equidispersion, or equivalence of the conditional mean and
variance (hence no additional dispersion parameter, �). In many applications, this assumption is
restrictive and can result in poor model fit.

An alternative is to select a negative binomial base distribution, giving rise to the spatiotemporal
negative binomial hurdle model

PrðYijk ¼ yijkj/i, mj, dijÞ ¼ ð1� �ijkÞ1ð yijk¼0Þ þ �ijkTNegBinð yijk;�ijk,�Þ1ð yijk 4 0Þ

¼ ð1� �ijkÞ1ð yijk¼0Þ þ
�ijk

1� �
�ijkþ�

� �� �ð yijk þ �Þ

�ð�Þ yijk!

�
�ijk

�ijk þ �

� �yijk �

�ijk þ �

� ��
1ð yijk 4 0Þ, �4 0 ð4Þ

where TNegBinð�;�ijk,�Þ denotes a truncated type-2 negative binomial distribution, �ijk is the
conditional mean of the negative binomial base distribution, and �ijk and �ijk are modeled as in
equation (2). The negative binomial base distribution is appealing if there is evidence
of overdispersion relative to the Poisson—i.e., a variance exceeding the mean. In particular, if
X �NegBin ð�,�Þ, then EðXÞ ¼ � and VðXÞ ¼ �ð1þ �=�Þ, and hence ð1þ �=�Þ is a measure of
overdispersion. As �!1, the negative binomial converges to a Poisson distribution with mean and
variance equal to �. The added flexibility of the negative binomial in accommodating heterogeneity
can yield improved model fit for highly dispersed count data.

Lastly, we consider the spatiotemporal generalized Poisson hurdle model

PrðYijk ¼ yijkj/i, mj, dijÞ ¼ ð1� �ijkÞ1ð yijk¼0Þ þ �ijkTGPoisð yijk;�ijk,�Þ1ð yijk 4 0Þ

¼ ð1� �ijkÞ1ð yijk¼0Þ þ
�ijk

1� exp �
�ijk

1þ��ijk

� � �ijk

1þ ��ijk

� �yijk

�
ð1þ �yijkÞ

yijk�1

yijk!
exp �

�ijkð1þ �yijkÞ

1þ ��ijk

� �
1ð yijk 4 0Þ ð5Þ

for yijk ¼ 0, 1, . . . ,Cð�Þ. Here, TGPoisð�;�ijk,�Þ denotes a truncated generalized Poisson distribution
with (untruncated) conditional mean �ijk and dispersion parameter � 2 ð�1=ymax,1Þ, where ymax is
the maximum observed response. To ensure a valid probability distribution, Cð�Þ ¼ �1=�

� 	
for

�5 0, and Cð�Þ ¼ 1 otherwise, where �b c denotes the floor function. Finally, �ijk and �ijk are
modeled as in equation (2).

As in the negative binomial case, � functions as a heterogeneity parameter accommodating
departures from equidispersion. In particular, if X �GPois ð�,�Þ, then EðXÞ ¼ � and
VðYÞ ¼ �ð1þ ��Þ2. When � ¼ 0, the generalized Poisson reduces to the Poisson distribution;
when �4 0, VðXÞ4EðXÞ and there is overdispersion; and when �5 0, VðXÞ5EðXÞ and there is
underdispersion. Thus, unlike the negative binomial, the generalized Poisson allows for
underdispersion. Moreover, while both distributions accommodate overdispersion, the generalized
Poisson has a heavier tail compared to a negative binomial with the same first two moments and is
therefore well suited for highly skewed data such as ours.23

8 Statistical Methods in Medical Research 0(0)
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4 Bayesian inference

We adopt a Bayesian modeling approach and assign prior distributions to all model parameters. In
previous work, we found that the probability of ED use was positively associated with the expected
number of visits given use (i.e., the model components were correlated) after accounting for both
individual- and cluster-level covariates. We showed that explicitly modeling this between-component
correlation improved inferences. To accommodate this association in the current study, and to
provide adequate spatial and temporal smoothing, we assume bivariate intrinsic conditional
autoregressive model (BICAR) priors for the spatiotemporal random effects.24 For example, for
the spatial main effects, we assume the following BICAR prior

/ij/ð�iÞ,�� � N2
1

mi

X
l2@i

/l,
1

mi
��

 !
ð6Þ

where @i is the set of neighbors sharing a geographic border with block group i, mi is the number of
neighbors, and �� denotes the 2� 2 covariance of /i conditional on the remaining spatial random
effects, /ð�iÞ. To ensure proper posteriors, sum-to-zero constraints are applied to the random effects.
The correlation between �1i and �2i, denoted ��, is easily derived from��. This parameter is of interest
because it captures, in part, the within-block-group association between themodel components.When
��4 0, for example, block groups with higher rates of ED use tend to have higher mean counts among
users, after adjusting for observed factors such as median household income.

For the temporal main effects, we consider two specifications. First, we assign a BICAR prior to
mj ð j ¼ 1, . . . , 5Þ analogous to the prior for the spatial effects. This choice is particularly beneficial
when the temporal units are sparse, because it allows adjacent time periods to pool information to
improve efficiency. However, given that we have sufficient sample size per year in the current study
for estimating the temporal effects, any smoothing imposed by the BICAR prior is likely to be
minimal. Therefore, in addition to BICAR temporal effects, we consider models with fixed annual
effects; here, we assign independent normal priors to �1j and �2j ð j ¼ 2, . . . , 5Þ, with �11 and �21 set to
0 in correspondence with the reference year 2007.

For the space-time interactions, we assume a first-order dynamic BICAR prior,25 whereby
dij ¼ �dið j�1Þ þ wij ð j ¼ 2, . . . , 5), wij is BICAR, and � is a temporal smoothing parameter common
to both components. For identifiability, we set di1 ¼ 0 8i. Unlike with the annual main effects,
temporal smoothing is needed here to improve small-area estimation, particularly when one
considers that the minimum block group sample size in a given year is five, occurring in 2011.
Potentially, one might introduce separate temporal smoothing parameters (�1 and �2, say) for the
two model components. However, with only five years of data in our application, we assumed
similar levels of smoothing across components.

To complete the prior specification, we assign improper priors to the fixed-effect intercepts, diffuse
normal priors to the remaining fixed effects and spline coefficients, inverse-Wishart (IW) priors to
covariance matrices, and a uniformUð0, 1Þ prior to the temporal autoregressive parameter, �. For the
negative binomial hurdlemodel, we assign aGamma prior to �, and for the generalized Poisson hurdle
model, we assume � � Uð�1=ymax,MÞ where M4 0 is chosen large enough to account for possible
overdispersion. For example, with M¼ 10, the maximum allowable overdispersion under the
generalized Poisson with mean � is ð1þ 10�Þ2, which generally exceeds values one might expect in
practice. Detailed prior specification for the DSR analysis is provided in Section 5.

Posterior computation proceeds via Markov chain Monte Carlo (MCMC), which can be
implemented easily within WinBUGS. Although WinBUGS does not have a pre-designated
function for truncated count distributions, one can apply the ‘‘zeros trick’’ to explicitly define the
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hurdle likelihood.26 The BICAR prior can be specified with the mv.car function, and the remaining
MCMC steps are readily coded using standard WinBUGS syntax.

We monitor MCMC convergence using trace plots and Geweke’s z-test,27 which assesses the
compatibility of disjoint portions of the sampler. For model comparison, we adopt the deviance
information criterion (DIC) proposed by Spiegelhalter et al.28 DIC is defined as DIC ¼ �Dþ pD,
where �D is a measure of current model fit and pD is a penalty for model complexity. For fixed effect
models, the complexity—as measured by the number of model parameters—is easily determined. For
random effect models, the dimension of the parameter space is less clear and depends on the degree of
heterogeneity between subjects (more heterogeneity implies more ‘‘effective’’ parameters). The penalty
pD was designed as a way to estimate the number of effective parameters in Bayesian hierarchical
models. As with other penalized selection criteria, smaller values of DIC are considered preferable.

To further evaluate model fit, we propose a series of posterior predictive assessments, whereby the
observed data are compared to data replicated from the posterior predictive distribution.29 If the
model fits well, the replicated data should resemble the observed data. To quantify the degree of
similarity, one typically chooses a ‘‘discrepancy statistic,’’ such as a sample moment or quantile that
captures some important aspect of the data. For the DSR analysis, we adopt three discrepancy
measures: the sample proportion of zeros and the sample mean and variance among the positive
observations. For each measure, we compute the posterior predictive mean and 95% credible
interval (CrI). A 95% CrI that includes the observed sample value suggests adequate model fit. In
addition to the above measures, for the final model we also produce a histogram comparing the
observed and posterior-predictive counts of ED visits.

5 Analysis of the DSR data

We fit the Poisson, negative binomial, and generalized Poisson versions of the spatiotemporal hurdle
model to the DSR data, with a logit link for the binary component. For each choice of base
distribution, we considered two sub-models: a model with fixed temporal main effects and one
with BICAR temporal effects. The models also included patient race, gender, age, and insurance,
and block group median income as predictors. Since previous studies have suggested a nonlinear
effect for patient age,30 we modeled age using cubic B-splines with interior knots at the first, second,
and third quartiles of the age distribution (20, 37, and 55 years, respectively).

For the model with fixed annual effects, we assumed independent Nð0, 100Þ priors for the
temporal main effects; for the model with random temporal effects, we assumed a BICAR prior
with an IWð3, I2Þ prior for the conditional covariance ��, where I2 denotes the two-dimensional
identity matrix. For both sub-models, we assigned improper priors to the fixed intercept parameters
and Nð0, 100Þ priors to the remaining regression and spline coefficients. In addition, we assumed a
BICAR prior for /i, an IWð3, I2Þ distribution for ��, a dynamic BICAR prior for
dij 4 ð j ¼ 2, . . . , 5Þ, a U(0,1) prior for �, and a BICAR for wij with an IWð3, I2Þ prior for � .
For the negative binomial sub-models, we assumed � � Gað0:01, 0:01Þ; for the generalized
Poisson sub-models, we assumed � � Uð�1=91, 10Þ, where 91 represents the maximum observed
count and 10 was chosen as a conservative upper bound.

The models were fit in WinBUGS 1.4.3 and called into R31 using the function R2WinBUGS.32

We ran the sampler for 15,000 iterations, discarding the first 5000 as burn-in. Trace plots and
Geweke diagnostics indicated rapid convergence and efficient mixing of the chains.

Table 2 presents the model comparison results for the various models. The negative binomial and
generalized Poisson hurdle models substantially outperformed the Poisson models with respect to
DIC. Overall, the generalized Poisson model with fixed temporal effects had the lowest DIC value.
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In terms of posterior predictions, all models accurately reproduced the observed proportion of zeros
and the conditional mean among the positive counts. While none of the models did especially well in
capturing the observed conditional variance, the ordinary Poisson models showed the poorest fit,
further supporting the need to model overdispersion in the counts.

Table 3 presents the posterior means and 95% CrIs for the three hurdle models with fixed annual
effects. The effect estimates and intervals for the binary component were similar across models,
which is expected since this component has the same structure in all three models. Adjusting for
other predictors, male gender, non-Hispanic Black and Hispanic race/ethnicity, and nonprivate
insurance (i.e., federally subsidized or self-paid) were associated with increased ED use, while
Asian race and Duke insurance were associated with decreased rates of use. Median household
income had minimal impact on ED use.

In contrast to the binary component, the parameter estimates in the count component varied
substantially across the models, indicating that the choice of base distribution had a significant
impact on covariate effects. For example, non-Hispanic Black race showed a much stronger effect
for the negative binomial and generalized Poisson models than for the ordinary Poisson models. A
similar—albeit less transparent—phenomenon occurred for the federal and self-pay insurance
categories: while all models showed a positive effect, the effect was most pronounced in the two
overdispersed models.

Interestingly, for all models, the adjusted estimates for male gender and Hispanic race reversed
direction between the binary and count components. Hispanics, for example, were more likely than
non-Hispanic Whites to visit the ED at least once; however, among ED users, they tended to make
fewer visits than Whites. This points to a potential difference between the way Hispanics and non-
Hispanic Whites use ED services. In particular, although modest ED use seems to be more
ubiquitous among Hispanics, they are less inclined than Whites to use EDs repeatedly.

And finally, there was moderate positive correlation between spatial main effects for the two
components, with �� ranging from 0.46 (95% CrI ¼ ½0:29, 0:64�) for the Poisson hurdle model to
0.56 (95% CrI ¼ ½0:37, 0:72�) for the negative binomial and generalized Poisson models. This
suggests a modest benefit to modeling the spatial association between the components. In
particular, we find that block groups with a high proportion of ED users also tended to have
higher mean counts among users after adjusting for covariates.

Using the above parameter estimates, it is straightforward to make clinically meaningful
inferences of interest. For example, suppose one wishes to compute the incidence density ratio

Table 2. Model comparison results.

Base distribution Temporal effects DIC pD

Posterior predictive checks

PrðY ¼0Þ EðYjY 4 0Þ VðYjY 4 0Þ

Poisson Fixed 232,158 566 0.709 (0.705, 0.714)a 1.93 (1.90, 1.95) 1.48 (1.43, 1.55)

Poisson Bivariate CAR 232,171 574 0.709 (0.705, 0.714) 1.93 (1.90, 1.96) 1.49 (1.42, 1.56)

Negative binomial Fixed 211,198 367 0.709 (0.705, 0.713) 1.93 (1.89, 1.96) 3.76 (3.42, 4.20)

Negative binomial Bivariate CAR 211,209 377 0.709 (0.705, 0.714) 1.93 (1.89, 1.97) 3.78 (3.42, 4.20)

Generalized Poisson Fixed 211,035 367 0.709 (0.706, 0.713) 1.93 (1.89, 1.97) 4.66 (4.10, 5.46)

Generalized Poisson Bivariate CAR 211,046 374 0.710 (0.705, 0.714) 1.93 (1.89, 1.97) 4.67 (4.05, 5.45)

Observed: 0.709 Observed: 1.94 Observed: 5.89

CAR: conditional autoregressive model.
aPosterior median and 95% credible interval.
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Table 3. Posterior summaries for the Poisson, negative binomial, and generalized Poisson hurdle models.

Poisson Negative binomial Generalized Poisson

Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%

Logit(�)

Intercept �1.21 �1.31 �1.12 �1.21 �1.33 �1.09 �1.20 �1.36 �1.09

Yeara

2008 �0.00 �0.05 0.04 �0.01 �0.05 0.04 �0.00 �0.05 0.04

2009 0.00 �0.04 0.05 0.00 �0.04 0.05 0.01 �0.04 0.05

2010 �0.02 �0.07 0.02 �0.03 �0.07 0.02 �0.02 �0.07 0.03

2011 �0.02 �0.06 0.03 �0.02 �0.06 0.03 �0.02 �0.06 0.03

Male 0.19 0.16 0.21 0.19 0.16 0.22 0.19 0.16 0.22

Raceb

Black 0.69 0.65 0.72 0.69 0.65 0.72 0.69 0.65 0.73

Hispanic 0.49 0.43 0.55 0.49 0.42 0.55 0.48 0.42 0.54

Asian �0.42 �0.54 �0.31 �0.43 �0.54 �0.31 �0.42 �0.55 �0.31

Other 0.11 0.02 0.19 0.11 0.02 0.19 0.11 0.01 0.20

Insurancec

Duke �0.29 �0.35 �0.24 �0.29 �0.35 �0.24 �0.29 �0.35 �0.24

Medicaid 1.19 1.15 1.24 1.19 1.14 1.24 1.19 1.15 1.24

Medicare 0.81 0.75 0.87 0.81 0.74 0.87 0.81 0.75 0.87

Self-pay 1.54 1.49 1.58 1.54 1.49 1.58 1.54 1.49 1.59

Median income �0.01 �0.01 0.00 �0.01 �0.01 0.00 �0.01 �0.01 0.00

Logð�Þ
Intercept 0.31 0.23 0.39 �4.02 �4.70 �3.39 �1.35 �1.68 �1.13

Yeara

2008 0.05 0.01 0.08 0.08 0.02 0.15 0.09 0.01 0.16

2009 0.08 0.04 0.12 0.09 0.03 0.16 0.10 0.03 0.17

2010 0.10 0.06 0.14 0.12 0.05 0.19 0.14 0.06 0.22

2011 0.16 0.12 0.20 0.20 0.13 0.27 0.22 0.15 0.30

Male �0.07 �0.09 �0.05 �0.10 �0.14 �0.05 �0.08 �0.13 �0.04

Raceb

Black 0.04 0.01 0.07 0.19 0.13 0.25 0.18 0.12 0.24

Hispanic �0.61 �0.66 �0.55 �0.61 �0.70 �0.51 �0.52 �0.61 �0.44

Asian �0.77 �0.96 �0.57 �0.77 �1.06 �0.51 �0.70 �0.97 �0.44

Other �0.44 �0.54 �0.36 �0.44 �0.61 �0.28 �0.37 �0.53 �0.22

Insurancec

Duke �0.15 �0.22 �0.09 �0.16 �0.27 �0.04 �0.14 �0.24 �0.03

Medicaid 0.67 0.64 0.70 0.91 0.85 0.98 0.80 0.74 0.86

Medicare 0.74 0.70 0.78 0.89 0.80 0.97 0.77 0.69 0.84

Self-pay 0.41 0.38 0.44 0.58 0.51 0.64 0.51 0.46 0.57

Median income 0.00 �0.01 0.00 0.00 �0.01 0.00 0.00 �0.01 0.00

Spatial CAR covariance

Sigma.phi[1,1] 0.22 0.16 0.29 0.22 0.16 0.29 0.22 0.16 0.29

Sigma.phi[1,2] 0.12 0.07 0.19 0.16 0.10 0.24 0.14 0.09 0.21

Sigma.phi[2,2] 0.31 0.22 0.42 0.39 0.26 0.56 0.29 0.20 0.41

rho.phi 0.46 0.29 0.64 0.56 0.37 0.72 0.56 0.37 0.72

(continued)
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(IDR) comparing the mean number of visits over five years for self-pay patients to those with non-
Duke private insurance. The IDR in this case is defined as E1=E2, where E1 ¼ ��=½1� pð0;�,�Þ� is
the expected count for the self-pay group and E2 is defined similarly for the private group. The
expected counts, E1 and E2, are in turn derived using predictive margins,33 in which all patients are
assigned first to self-insurance to compute E1 and subsequently to private insurance to compute E2.
Applying this approach to the generalized Poisson model, the IDR is estimated to be
1:69 ð1:62, 1:78Þ, indicating that self-pay patients averaged nearly 1.7 times more ED visits during
the study period than those on non-Duke private insurance. Similar calculations can be made for
other comparisons of interest.

Figure 3 displays the age trends on the linear-predictor scale for the two components of the
generalized Poisson hurdle model. The figure shows a multimodal effect for age, with ED use
decreasing during the first decade of life, increasing steadily until around age 30, and then
declining until age 75 before a final upswing to its peak level late in life. A similar pattern is
observed for the number of visits among users, but here the mode occurs during infancy rather
than among the elderly.

Figure 4 presents yearly maps of the predicted spatiotemporal effects, g1 and g2, from the
generalized Poisson hurdle model, where 	1ij ¼ �1j þ �1i þ �1ij and 	2ij ¼ �2j þ �2i þ �2ij
ði ¼ 1, . . . , 129; j ¼ 1, . . . , 5Þ. The highest ED activity occurred among the central block groups and
the lowest among the block groups in the southwest corner of the county. Across years, the most
significant change took place between 2007 and 2008, with several central block groups transitioning
into the highest ED category (represented by the darkest shade), and the southwestern block groups
transitioning into the lowest category (represented by lightest shade). The spatial pattern stabilized
following 2008 with only minor fluctuations in select block groups.

The shift in spatial pattern from 2007 to 2008 is even more evident in Figure 5, which presents
caterpillar plots of the spatiotemporal effects for years 2007–2011 ranked in decreasing order on the
log-odds scale. Positive (negative) effects indicate above (below) average ED activity, adjusting for
other factors. Error bars denote 95% CrIs; intervals that exclude zero indicate significant effects.
Overall, there was a noticeable change in the magnitude of the effects following 2007, although the

Table 3. Continued.

Poisson Negative binomial Generalized Poisson

Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%

Dynamic CAR covariance

Sigma.psi[1,1] 0.03 0.02 0.04 0.03 0.02 0.04 0.03 0.02 0.04

Sigma.psi[1,2] �0.01 �0.03 0.02 0.00 �0.01 0.01 0.00 �0.01 0.01

Sigma.psi[2,2] 0.16 0.12 0.20 0.07 0.04 0.12 0.06 0.04 0.09

rho.psi �0.07 �0.35 0.24 �0.02 �0.30 0.25 �0.03 �0.28 0.25

Dynamic CAR

Autoregressive parameter

rho 0.64 0.45 0.78 0.62 0.28 0.88 0.59 0.25 0.84

Overdispersion parameter

alpha – – – 0.01 0.01 0.02 2.75 2.30 3.41

CAR: conditional autoregressive model.
aReference: Calendar Year 2007.
bReference: Non-Hispanic White.
cReference: Other Private Insurance.
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direction of the effects generally remained the same. The change in magnitude was not uniform
across block groups, however, with several block groups showing large increases and others showing
little or no change. This highlights the importance of modeling the space-time interactions in order
to capture block-group–specific temporal trends.

Consistent with Figure 4, the ‘‘high-ED’’ block groups (e.g., those indexed 1–20) were generally
situated in the center of the county, whereas the ‘‘low-ED’’ block groups (110 and above) tended to
be located on the outskirts of the county, particularly along the southwest border. The patterns for
2009–2011 are generally similar to the 2008 plot, suggesting that the main change in ED visits
occurred between the end of 2007 and the end of 2008, remaining relatively stable thereafter. This
is again consistent with the results from Figure 4.

As a final check of model fit, we compared histograms of the observed and posterior-predictive
counts generated from the generalized Poisson hurdle model (Figure 6). The generalized Poisson
model showed excellent fit, reproducing almost exactly the observed distribution of counts.

6 Discussion

We have introduced a series of two-part hurdle models for the spatiotemporal analysis of zero-
inflated count data. The proposed models have several attractive features: they provide spatial and
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Figure 3. Age effect on linear-predictor scale for the binary component (left panel) and count component (right

panel) for the generalized Poisson hurdle model. Horizontal lines denote effect at age¼ 0. Dashed lines denote 95%

posterior intervals.
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temporal smoothing to improve small-area estimation; they use multivariate space-time random
effects to link model components; they incorporate individual- and region-level information to
help explain spatiotemporal trends; and, depending on the choice of base distribution, they
address potential over- or underdispersion in the counts. In addition, the models can be
conveniently implemented in freely available packages such as WinBUGS.

In our application, models accommodating overdispersion, and in particular the generalized
Poisson hurdle model, substantially outperformed the ordinary Poisson hurdle model. Because the
negative binomial and generalized Poisson base distributions include the Poisson as either a
limiting distribution (in the case of the negative binomial) or as a specific sub-model (in the
case of the generalized Poisson), their performance should be comparable to the Poisson for
equidispersed data while providing a distinct advantage for overdispersed data. Indeed, since
both distributions arise as mixtures of ordinary Poissons,23 they reduce to the Poisson in the
case of a degenerate mixture. In the overdispersed (or nondegenerate) setting, the choice
between the negative binomial and generalized Poisson base distributions will depend on the
structure of the data, with the generalized Poisson typically providing better fit for highly
skewed data.23

Our analysis of the DSR data yielded several relevant public health findings. Nonprivate
insurance, male gender, and non-Hispanic Black race were associated with increased ED use.
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Figure 4. Spatiotemporal random effects for the binary (g1) and count (g2) components of the generalized Poisson

hurdle model.
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Compared to non-Hispanic Whites, Hispanics were more likely to use the ED at least once but less
inclined to make repeat visits. We also found a multimodal effect for age, with peak ED use
occurring just after birth, around age 30, and after age 75. This trend may be due in part to
increased rates of fever, cough, and upper respiratory infections among infants; injuries and
spinal disorders among young adults; and falls, strokes, and cardiac events among the
elderly.30,34 In all years, block groups in the center of county had the highest rates of ED use
while those in the southwest had the lowest. These geographic differences may reflect lack of
community resources, such as outpatient clinics, in some areas. And finally, the spatial pattern
across block groups changed most noticeably between 2007 and 2008 before stabilizing in the
later years. The increased ED use observed in central Durham following 2007 may be a result of
the recent economic downturn beginning in late 2007.35,36

These findings have important policy implications for the management of ED-related care. By
monitoring spatial patterns in ED use over time, policy makers can target communities with
continued need for services such as mobile clinics and community health centers to reduce
nonurgent ED visits. To maximize benefit, these facilities should accommodate a variety of
schedules through flexible evening and weekend hours in order to serve patients who require
routine care during nonbusiness hours.37 Local officials can also establish urgent care facilities
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Figure 6. Partial histograms of observed and posterior-predicted (‘‘fitted’’) counts from the generalized Poisson

hurdle model.
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that offer alternative outlets for primary medical, dental, and mental health care.38 Community-
based efforts such as these are essential to alleviating ED burden and reducing patient wait times.

As part of ongoing research, we are currently conducting an analysis of trends in ED-related costs
by developing a related two-part spatiotemporal model for semicontinuous data. For more on
semicontinuous models, see Olsen and Schafer39 and Neelon et al.40 Future work might also
incorporate individual-level random effects into one or both components of the hurdle model to
explicitly model between-subject heterogeneity. This would lead to a three-level model providing an
additional, though computationally more intensive, approach to modeling overdispersion in the ED
counts.

In general, the models developed here, particularly those accommodating overdispersion, should
prove useful for the spatiotemporal analysis of zero-inflated count data. The proposed Bayesian
approach provides a practical framework for fitting such models.
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