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A modified approach to PM2.5 source apportionment is
developed, using source indicative SO2/PM2.5, CO/PM2.5, and
NOx/PM2.5 ratios as constraints, in addition to the commonly
used particulate-phase source profiles. Additional
information from using gas-to-particle ratios assists in
reducing collinearity between source profiles, a problem
that often limits the source-identification capabilities and
accuracy of traditional receptor models. This is especially
true in the absence of speciated organic carbon
measurements. In the approach presented here, the
solution is based on a global optimization mechanism,
minimizing the weighted error between apportioned and
ambient levels of PM2.5 components, while introducing
constraints on calculated source contributions that ensure
that the ambient gas-phase pollutants (SO2, CO, and
NOy) are reasonable. This technique was applied to a 25-
month dataset of daily PM2.5 measurements (total mass
and composition) at the Atlanta Jefferson Street SEARCH
site. Results indicate that this technique was able to
split the contributions of mobile sources (gasoline and
diesel vehicles) more accurately than particulate-phase
source apportionment methods. Furthermore, this technique
was able to better quantify the direct contribution
(primary PM2.5) of coal-fired power plants to ambient
PM2.5 levels.

Introduction
Chemical mass balance (CMB) receptor models are a
common tool for apportioning of ambient levels of pollutants
(mainly particulate matter) among the major contributing
sources. CMB combines the chemical and physical charac-
teristics of particles or gases measured at sources and
receptors to quantify the source contributions to the receptor.
The quantification is based on the solution to a set of linear
equations that express each receptor’s ambient chemical
concentration as a linear sum of products of source-profile
abundances and source contributions (1, 2), as expressed by

where Ci ) ambient concentration of chemical species i
(µg/m3); fi,j ) fraction of species i in emissions from source
j; Sj ) contribution (source strength) of source j (µg/m3);
n ) total number of sources; and ei ) error term.

The source profile abundances (fij, the mass fraction of
a chemical in the emissions from each source type) and the
receptor concentrations (Ci), along with uncertainty esti-
mates, serve as input data to the CMB model. The output
consists of the contribution of each source category (Sj) to
the measured concentration of different species at the
receptor.

In CMB8 (2), the effective variance (EV) weighting for
least squares calculations is applied, to find the best solution
to the set of equations given by eq 1. The effective weighting
method takes into account both the uncertainties in the
ambient measurements and the uncertainties in the source-
profile compositions. In practice, CMB8 performs a series of
matrix operations to minimize ø2, given as (3)

where σCi ) one standard deviation precision of the Ci

measurement; σfij ) one standard deviation of the fij

measurement; and m ) total number of species.
If the σfij are set to zero, the solution reduces to the ordinary

weighted least-squares (OWLS) solution (3), taking only the
uncertainties in the ambient measurements into account.

CMB models are based on the following assumptions (2):
(i) Compositions of source emissions are constant over the
period of ambient and source sampling. (ii) Chemical species
do not react with each other, i.e., they add linearly. (iii) All
sources with a potential for significantly contributing to the
receptor are included in the analysis. (iv) The source
compositions are linearly independent of each other. (v) The
number of sources or source categories is less than or equal
to the number of chemical species. (vi) Measurement
uncertainties are random, uncorrelated, and normally dis-
tributed.

Of these, one of the major assumptions limiting the ability
of CMB models to identify and quantitatively provide impacts
of the major sources is the linear independence of source
profiles, when those profiles are based solely on traditional
species. For apportionment of PM2.5 (particulate matter with
a diameter less than 2.5 µm), source profiles including major
ions (SO4

-2, NO3
-, NH4

+, Cl-), elemental and organic carbon
fractions (EC, OC), and trace metals are typically used. Some
source categories share relatively similar profiles (e.g., diesel
and gasoline vehicles), limiting the ability of CMB to
accurately and consistently apportion the PM mass between
those sources, particularly in the presence of other sources
of OC and EC. To address this issue, recent source-
apportionment studies make use of speciated organic
compounds (“organic markers”) to apportion OC (4-6), a
major component in emissions from mobile sources, veg-
etative burning, and meat charbroiling. However, some
sources share organic markers (e.g., hopanes and steranes
in both gasoline and diesel vehicles), making it difficult to
accurately and consistently apportion the OC mass between
those sources. In addition, speciated ambient OC data are
not yet commonly available.

Model Description
Incorporating Gas-to-Particle Ratios in PM2.5 Source-
Apportionment. Here we apply an extended CMB approach
for PM2.5 source-apportionment which incorporates source-
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indicative SO2/PM2.5, CO/PM2.5, and NOx/PM2.5 ratios, in
addition to the commonly used PM2.5 source profiles. Such
ratios, along with ambient gas-phase data, can further assist
in identifying sources, as sources that may have fairly similar
PM2.5 emissions may have significantly different gaseous
emissions. Such gas-to-particle ratios may vary during
transport from source to receptor, due to different deposition
rates and reactivity. However, the atmospheric lifetimes of
SO2 (about a week), CO (1-4 months), and NOx (1-7 days)
(7) are long enough to assume that no major change in the
gas-to-particle ratio will occur within an urban to regional
airshed, given that the typical lifetime of a fine particle is in
the order of days to weeks, as well (8). Even so, variations in
the gas-to-particle ratios, along with uncertainties in the initial
estimate used, need to be considered.

A few studies have shown the increased resolution in
source apportionment of two-phase receptor models (9-
13), though this is not a common practice in the source
apportionment literature. Applying a two-phase receptor
model for PM10 and nonmethane-hydrocarbons (NMHC) has
shown to significantly reduce the collinearity problem (9).
A study dealing with decay-adjusted receptor modeling (13)
has shown small improvements in the agreement between
CMB-predicted and observed concentrations of individual
VOCs, but did not significantly change the estimated emis-
sions contributions. These studies made use of two-phase
source profiles in which the profile included the fractional
composition of both PM and gas-phase data (speciated VOC,
NOx, SO2, and CO) in a single profile, and ø2 was minimized
based on all these species. However, when eq 1 is solved in
this manner, several issues arise. First, since these gas-phase
species are reactive, the numerator in ø2 cannot be simply
expected to approach zero. In addition, the uncertainty in
the measured ambient concentration is likely lower for major
gas-phase species, compared to speciated PM2.5 components.
Hence, these major gaseous species are likely to drive the
minimization of ø2 (assuming uncertainties in the source
profile compositions are comparable), despite the fact that
for many sources of PM2.5 the fraction of PM2.5 emissions is
much smaller than that of gas-phase emissions. For example,
data from the national emission inventory for the United
States (14) indicate that only about 0.6% of the total mass
emissions from coal-fired power plants are PM2.5, with the
remaining and major part being gases (SO2 and NOx).

To avoid inaccuracies evolving from the use of two-phase
source profiles and the straightforward minimization of ø2

including gaseous species as fitting species, we suggest using
ratios of SO2/PM2.5, CO/PM2.5, and NOx/PM2.5 in emissions
from the various sources to bound acceptable solutions to
the source apportionment problem (eq 1), without directly
including these data in the process of minimizing ø2. That
is, this information is used as a constraint, but not directly
in the source profiles used by CMB. This information adds
three constraint equations to the apportionment process,
based on the same principles as in eq 1. The ambient SO2

levels can then be expressed as

where: [SO2] ) ambient SO2 concentration (µg/m3);

( SO2

PM2.5
)

j
) SO2/PM2.5 ratio in emissions from source j (mass/

mass); Sj ) contribution (source strength) of source j (µg/
m3) to the PM2.5 loading; and n ) total number of sources.

Similar equations can be expressed also for ambient CO
and NOx. Due to uncertainties in the initial estimate of the
gas-to-particle ratio at the source, and to account for possible
changes to these ratios during transport, we suggest using

these equations (eq 3) to bound acceptable solutions to the
PM2.5 source-apportionment problem (eq 1), but not as part
of the error minimization process. In practice, we suggest
that such an acceptable solution is one that predicts the
ambient SO2, CO, and NOx concentrations within a factor of
3 (under or over prediction) of the observed value (sensitivity
to this factor is addressed shortly). Hence, the goal is to find
an optimum solution based on the particulate-phase data,
which adhere to somewhat more flexible constraints on the
gaseous side.

Use of Global Optimization Models for Source-Ap-
portionment. To solve the PM2.5 source-apportionment
problem (eq 1), subject to gas-phase constraints, we use a
global optimization program. A large variety of quantitative
decision problems in the applied sciences, engineering, and
economics can be described by constrained optimization
models. In these models, the best decision is sought that
satisfies all stated feasibility constraints and maximizes (or
minimizes) the value of a given objective function. The
general mathematical form of these models is summarized
as follows (15, 16): (i) max f(x); (ii) a e x e b; and (iii) g(x)
e 0 where x ) a real n-vector (to describe feasible decisions);
a,b ) finite, component-wise vector bounds imposed on x;
f(x) ) a continuous function (to describe the model objective);
and g(x) ) a continuous vector function (to describe the
model constraints; the inequality is interpreted component-
wise).

The objective of global optimization is to find the best
solution of nonlinear decision models in the possible
presence of multiple locally optimal solutions. Here, LGO
(Lipschitz(-continuous) global optimizer) is used (15, 16).
LGO integrates a suite of robust and efficient global and local
scope solvers. These include the following: global adaptive
partition and search (branch-and-bound); adaptive global
random search; local (convex) unconstrained optimization;
and local (convex) constrained optimization. The LGO
implementation of these methods does not require derivative
information. Their operations are based exclusively on the
computation of the objective and constraint function values,
at algorithmically selected search points.

Here, LGO was applied to identify and quantify the sources
contributing to ambient levels of particulate matter. In
practice, LGO was applied to solve the set of equations
represented by eq 1 (22 eqs for 4 ions, 2 carbon fractions,
and 16 trace metals), by setting ø2 (eq 2) as the objective
function to be minimized. The solution was set subject to
the constraint that the total apportioned levels of SO2, CO,
and NOx (as calculated by eq 3) lie within a factor of 3 of the
observed ambient levels.

Model Implementation
Test Case: SEARCH 25-Month Dataset, Jefferson St.,
Atlanta, Georgia. To evaluate this modified approach for
source-apportionment, we used the SEARCH (Southeastern
Aerosol Research and Characterization) 25-month (8/98-
8/00) dataset for the Jefferson St. (JST) site in Atlanta, GA (17,
18), which included data on total PM2.5 mass (gravimetric
measure) and its components. The JST site is located 4 km
northwest of downtown Atlanta in an industrial and com-
mercial area. The main objectives of SEARCH include the
understanding of composition and sources of PM in the
southeast (17, 18). SEARCH data are being used for the Aerosol
Research Inhalation Epidemiological Study (ARIES) air-
quality health study in Atlanta, GA (17), and one motivation
of this work is to assess the possibility of using source
information derived from receptor modeling in epidemiologic
studies. For the speciation of PM2.5, a manual, filter-based,
particle composition monitor (PCM) was operated daily. The
PCM included three channels to collect 24-h integrated
samples for analysis of major ions, trace metals, and organic
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)
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and elemental carbon in PM2.5 size range (17). Ion chroma-
tography (IC) was used to quantify water-soluble ionic
species. Elemental and organic carbon collected on quartz
filters were measured by thermal optical reflectance (TOR).
Trace metals were measured by X-ray fluorescence (XRF).
Ambient values of daily SO2, CO, and NOy were reported as
well. Mean values and standard deviations measured at the
JST site for the species and time period (8/98-8/00) used in
this analysis are given in Table 1. Note that NOy was used
rather than NOx, to account for the amount of NO and NO2

oxidized to other nitrogen forms, such as HNO3 and peroxy
acetyl nitrate (PAN). The average NOx/NOy mass ratio was
0.89, indicating “fresh” local emissions (compared to 0.63 at
the rural Yorkville site, 55 km west northwest of Atlanta). The
concentration values were used for the measured data, and
the summation of the analytical uncertainty and 1/3 of the
detection limit value was used as the overall uncertainty
assigned to each measured value (18). Values below the
detection limit were replaced by half of the detection limit
values, and their overall uncertainties were set at 5/6 of the
detection limit values (18). Missing values were replaced by
the geometric mean of the measured values, and their
accompanying uncertainties were set at 4 times this geometric
mean value (18).

The major source categories used in the source ap-
portionment included light-duty gasoline vehicles (LDGV),
heavy-duty diesel vehicles (HDDV), fugitive soil dust (SDUST),
vegetative burning (BURN), coal-fired power plants (CFPP),
and cement kilns (CEM). To address the formation of
secondary pollutants, we also included theoretical profiles
based on the molecular weight fractions for ammonium
sulfate (AMSULF), ammonium bisulfate (AMBSLF), am-
monium nitrate (AMNIT), and secondary/other OC (OTH-
EROC). The secondary/other OC category will include any
OC not apportioned to one of the primary source categories
above. Of special note are emissions from meat charbroiling,
dominated almost solely by OC emissions (19), with no
unique inorganic marker, and characterized by low SO2/

PM2.5 and CO/PM2.5 ratios (19, 20). This makes it very difficult
to distinguish between emissions from meat charbroiling
and secondary OC formation. For this reason, meat char-
broiling emissions were not apportioned directly, but were
rather lumped into the secondary/other OC category.

Source profiles used for LDGV and HDDV were based on
measurements as part of the Northern Front Range Air Quality
Study (NFRAQS) (21). The profiles used for vegetative burning,
power plants, and cement kilns were based on measurements
done as part of the Big Bend Regional Aerosol Visibility and
Observational (BRAVO) study (19). The soil dust profile used
was from more regionally representative measurements in
Alabama (22). A summary of the source profiles used in this
study is given in Table 2. The LDGV profile is characterized
by high carbon content and a high OC/EC ratio (2.3). The
HDDV profile is also characterized by high carbon content,
but there the OC/EC ratio is much lower (0.27). The LDGV
had a higher abundance of trace metals, compared to the
HDDV profile. However, the relative amounts of EC and OC
in emissions from both gasoline and diesel vehicles is highly
variable, and there is significant overlap in the range of values
between the two mobile source types (23). Therefore, trying
to distinguish gasoline and diesel contributions separately
on the basis of just EC and OC mass fractions is suspect (23).
This further indicates the need for additional markers to
accurately separate the emissions from each of these sources.
The BURN profile is characterized by high carbon content
and a high OC/EC ratio (4.1), but also by a high K content
(0.057), which can serve as a marker for vegetative burning.
Crustal elements, Al, Ca, Fe, and Si, along with OC, are
abundant in the SDUST profile. The CFPP is characterized
by high fractions of SO4

-2, OC, Al, Ca, and Si, and by a relatively
high Se content compared to other sources. Selenium can
therefore serve as a marker for coal-fired power plants.
Emissions from cement kilns are characterized by high
fractions of SO4

-2, NO3
-, OC, Al, Ca, Fe, K, and Si. This shows

that differentiating emissions from power plants, cement
kilns, and fugitive soil dust might be subject to collinearity.

Adding information on gaseous emissions, in the form of
gas-to-particle ratios, can further assist in identifying sources.
Gas-to-particle ratios for mobile sources (LDGV, HDDV),
based on the 1999 National Emissions Inventory (14), show
very different patterns, with LDGV being characterized by a
significantly higher CO/PM2.5 ratio than HDDV (Table 3).
Uncertainties in these ratios were not available, but are likely
not large enough to mask the major differences between
gaseous emissions from gasoline and diesel vehicles. Ratios
for vegetative burning, coal-fired power plants, and cement
kilns were determined on the basis of data from the BRAVO
study (19) and the emission inventory for the State of Georgia
(24). CO and NOx ratios for cement kilns were modified to
describe the kiln, rather than the entire plant emissions, as
given by the inventory (which includes high particulate matter
emissions from all grinding operations). The modification
was based on the SO2 ratio for kilns (19) compared to the SO2

ratio obtained from the inventory. The high SO2/PM2.5 ratios
in power plants and cement plants (Table 3) can assist in
separating these emissions from fugitive soil dust (no gaseous
emissions). The higher NOx emissions from cement kilns,
along with the differences in PM emissions, can assist in
separating cement kilns and coal-fired power plant emissions.
The relatively low CO/PM2.5 ratios in vegetative burning
emissions can serve as an additional marker to assist in
separating this source from LDGV emissions (along with
potassium).

Results
Source apportionment was performed on the SEARCH 25-
month dataset using three different techniques. First, CMB8
(1, 2) was used, applying effective variance weighting for

TABLE 1. Mean, Standard Deviation, Minimum, and Maximum
of Ambient Levels of the Species Used for the Source
Apportionment, JST site, Atlanta, GA

µg/m3

species mean SD min max

PM2.5 19.1 8.9 1.9 54.6
SO4

-2 5.41 3.65 0.53 20.8
NO3

- 1.12 0.87 0.00 7.49
Cl- 0.11 0.08 0.02 0.83
NH4

+ 2.79 1.60 0.30 10.3
EC 1.98 1.36 0.17 11.9
OC 4.46 2.21 0.66 18.4
Al 1.61 × 10-2 4.52 × 10-2 6.16 × 10-3 9.00 × 10-1

As 1.42 × 10-3 1.35 × 10-3 5.05 × 10-4 1.51 × 10-2

Ba 1.81 × 10-2 8.01 × 10-3 1.45 × 10-2 5.69 × 10-2

Br 4.04 × 10-3 7.97 × 10-3 2.60 × 10-4 2.07 × 10-1

Ca 5.37 × 10-2 4.48 × 10-2 4.04 × 10-3 5.02 × 10-1

Cu 3.70 × 10-3 4.57 × 10-3 6.15 × 10-4 4.19 × 10-2

Fe 8.92 × 10-2 7.45 × 10-2 5.34 × 10-3 1.05 × 10+0

K 6.51 × 10-2 5.86 × 10-2 6.37 × 10-3 8.27 × 10-1

Mn 1.91 × 10-3 1.54 × 10-3 4.00 × 10-4 1.31 × 10-2

Pb 6.40 × 10-3 7.49 × 10-3 1.17 × 10-3 7.83 × 10-2

Sb 3.34 × 10-3 4.40 × 10-3 2.13 × 10-3 1.07 × 10-1

Se 1.32 × 10-3 1.26 × 10-3 3.50 × 10-4 1.01 × 10-2

Si 1.12 × 10-1 1.15 × 10-1 1.05 × 10-2 1.83 × 10+0

Sn 4.32 × 10-3 1.92 × 10-3 3.53 × 10-3 1.72 × 10-2

Ti 4.78 × 10-3 4.38 × 10-3 2.14 × 10-3 5.46 × 10-2

Zn 1.63 × 10-2 1.61 × 10-2 4.23 × 10-4 2.11 × 10-1

SO2 16.6 12.3 1.4 98.1
CO 560 423 180 4020
NOy 108 68.2 12.4 590
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least squares (EV) calculations (3) for PM2.5 components only
(i.e., gaseous species were not used as fitting species). Then,
the uncertainties in the source profiles were set equal to
zero, and CMB8 was run again, using the ordinary weighted
least-squares (OWLS) solution (3) (once more, without using
gaseous species in the weighting procedure). Finally, the
Lipschitz(-continuous) global optimizer (LGO) (15, 16) was
applied to perform the OWLS solution, forcing constraints
on the calculated levels of SO2, CO, and NOx. An LGO-derived
OWLS solution without forcing gas-phase constraints was
similar to the CMB OWLS solution. Applying an EV solution
to LGO and forcing gas-phase constraints turned out to be
too irregular, due to the rigidity of the EV weighting function.
The measures used to evaluate each individual solution
achieved were the chi-square (eq 2), the correlation coef-
ficient, the fraction of total PM2.5 mass apportioned, and the
calculated-to-observed ratios for the individual ratios. How-
ever, the chi-square values from EV are not comparable with
the ones achieved by OWLS, since the denominator in its
formula is different. Therefore, as a convenient uniform mea-

sure of the quality of the fit, we also calculated daily values
for the normalized mean-square-error (NMSE), given as

The NMSE has a range of 0 e NMSE e ∞, with 0 meaning
perfect agreement in value between modeled and ambient
values. A NMSE value of 0.5 represents a factor of 2, on the
average, between the two sets of data.

The average source-contributions, based on the entire
25-month dataset (average of 762 daily values) and using
these three techniques, indicate that a major part of the
ambient PM2.5 is of secondary origin (Figure 1; Table 4. The
apportionment of the primary pollutants differed among the

TABLE 2. Particulate Source Profiles Used in the Apportionment Process (Fraction of Total PM2.5 Emissions and Standard
Deviations over Multiple Measurements)

species LDGVa HDDVa SDUSTb BURNc CFPPc

SO4
-2 0.0133 ( 0.0056 0.0046 ( 0.0048 0.0010 ( 0.0004 0.0239 ( 0.0227 0.2874 ( 0.2256

NO3
- 0.0000 ( 0.0052 0.0020 ( 0.0014 0.0010 ( 0.0004 0.0024 ( 0.0018 0.0069 ( 0.0109

Cl- 0.0000 ( 0.0100 0.0011 ( 0.0003 0.0007 ( 0.0005 0.0761 ( 0.0730 0.0089 ( 0.0157
NH4

+ 0.0000 ( 0.0100 0.0000 ( 0.0100 0.0000 ( 0.0000 0.0165 ( 0.0253 0.0179 ( 0.0213
EC 0.2355 ( 0.0277 0.7351 ( 0.1014 0.0060 ( 0.0040 0.1575 ( 0.1545 0.0138 ( 0.0222
OC 0.5486 ( 0.0642 0.1981 ( 0.0774 0.0440 ( 0.0170 0.6441 ( 0.1645 0.2718 ( 0.2577
Al 0.0019 ( 0.0024 0.0000 ( 0.0100 0.0950 ( 0.0010 0.0011 ( 0.0010 0.0530 ( 0.0326
As 0.0000 ( 0.0006 0.0000 ( 0.0001 0.0000 ( 0.0000 0.0002 ( 0.0007 0.0000 ( 0.0006
Ba 0.0000 ( 0.0100 0.0000 ( 0.0100 0.0000 ( 0.0000 0.0000 ( 0.0003 0.0107 ( 0.0101
Br 0.0000 ( 0.0003 0.0000 ( 0.0000 0.0000 ( 0.0000 0.0008 ( 0.0009 0.0003 ( 0.0006
Ca 0.0118 ( 0.0016 0.0006 ( 0.0005 0.0180 ( 0.0040 0.0040 ( 0.0050 0.1655 ( 0.1053
Cu 0.0004 ( 0.0006 0.0000 ( 0.0001 0.0003 ( 0.0003 0.0000 ( 0.0000 0.0009 ( 0.0007
Fe 0.0120 ( 0.0016 0.0002 ( 0.0001 0.0530 ( 0.0060 0.0007 ( 0.0008 0.0361 ( 0.0202
K 0.0001 ( 0.0015 0.0001 ( 0.0002 0.0092 ( 0.0033 0.0573 ( 0.0563 0.0052 ( 0.0026
Mn 0.0001 ( 0.0008 0.0000 ( 0.0001 0.0016 ( 0.0007 0.0000 ( 0.0000 0.0012 ( 0.0011
Pb 0.0006 ( 0.0008 0.0000 ( 0.0001 0.0001 ( 0.0000 0.0000 ( 0.0000 0.0006 ( 0.0009
Sb 0.0000 ( 0.0100 0.0000 ( 0.0100 0.0000 ( 0.0000 0.0000 ( 0.0001 0.0001 ( 0.0005
Se 0.0000 ( 0.0003 0.0000 ( 0.0001 0.0000 ( 0.0000 0.0000 ( 0.0000 0.0058 ( 0.0083
Si 0.0121 ( 0.0193 0.0000 ( 0.0100 0.2660 ( 0.0140 0.0030 ( 0.0032 0.1069 ( 0.0681
Sn 0.0000 ( 0.0100 0.0000 ( 0.0100 0.0000 ( 0.0000 0.0000 ( 0.0001 0.0001 ( 0.0004
Ti 0.0001 ( 0.0067 0.0000 ( 0.0011 0.0100 ( 0.0010 0.0001 ( 0.0001 0.0085 ( 0.0052
Zn 0.0091 ( 0.0010 0.0006 ( 0.0003 0.0001 ( 0.0000 0.0003 ( 0.0002 0.0031 ( 0.0033

species CEMc AMSULFd AMBSLFd AMNITRd OTHEROCd

SO4
-2 0.3138 ( 0.0837 0.727 ( 0.036 0.835 ( 0.042 0.000 ( 0.000 0.00 ( 0.00

NO3
- 0.0891 ( 0.0734 0.000 ( 0.000 0.000 ( 0.000 0.775 ( 0.039 0.00 ( 0.00

Cl- 0.0712 ( 0.1255 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 0.00 ( 0.00
NH4

+ 0.0236 ( 0.0187 0.273 ( 0.014 0.156 ( 0.008 0.225 ( 0.011 0.00 ( 0.00
EC 0.0296 ( 0.0250 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 0.00 ( 0.00
OC 0.1278 ( 0.0603 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 1.00 ( 0.00
Al 0.0106 ( 0.0035 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 0.00 ( 0.00
As 0.0000 ( 0.0002 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 0.00 ( 0.00
Ba 0.0004 ( 0.0012 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 0.00 ( 0.00
Br 0.0011 ( 0.0013 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 0.00 ( 0.00
Ca 0.1748 ( 0.0526 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 0.00 ( 0.00
Cu 0.0002 ( 0.0001 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 0.00 ( 0.00
Fe 0.0134 ( 0.0052 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 0.00 ( 0.00
K 0.1159 ( 0.0618 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 0.00 ( 0.00
Mn 0.0010 ( 0.0004 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 0.00 ( 0.00
Pb 0.0006 ( 0.0008 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 0.00 ( 0.00
Sb 0.0000 ( 0.0003 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 0.00 ( 0.00
Se 0.0001 ( 0.0000 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 0.00 ( 0.00
Si 0.0426 ( 0.0219 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 0.00 ( 0.00
Sn 0.0001 ( 0.0002 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 0.00 ( 0.00
Ti 0.0015 ( 0.0007 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 0.00 ( 0.00
Zn 0.0041 ( 0.0059 0.000 ( 0.000 0.000 ( 0.000 0.000 ( 0.000 0.00 ( 0.00

a From the NFRAQS study (21). b From Cooper (22). c From Chow et al. (19). d Based on molecular-weight fractions.
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three techniques used. The CMB8 EV solution apportioned
3.4 µg/m3 to mobile sources, with a diesel-to-gasoline ratio
of 0.97. A slightly lower contribution was apportioned to
mobile sources using the OWLS solution (3.3 µg/m3), with
a similar diesel-to-gasoline ratio. The LGO based mobile
source contribution was slightly lower (3.2 µg/m3), with a
higher diesel-to-gasoline ratio (1.53). This lower gasoline
vehicle contribution is also evident in the lower calculated-
to-observed ratio for CO based on the LGO solution,
compared to the EV and OWLS solutions (all over-predicted).
Another notable difference between the three solutions was
the amount of PM2.5 attributed to power plants. CMB8-EV
estimated that contribution at 0.29 µg/m3, CMB-OWLS
estimated it at 0.62 µg/m3, and LGO estimated the contribu-
tion at 0.15 µg/m3. These differences are also evident in the
calculated-to-observed ratios for SO2, which are significantly
overpredicted in the EV and OWLS solutions. The amount
attributed to vegetative burning was fairly similar in the EV
and OWLS solutions (1.9 and 2.0 µg/m3, respectively),
significantly higher than that in the LGO solution (1.1 µg/
m3). Potassium, a marker for vegetative burning, is over-
predicted in the EV and OWLS solutions (calculated-to-ob-
served ratios of 2.2), and better predicted in the LGO solution
(ratio of 1.2). Differences were also noticed in the fugitive
soil dust contributions. The amount attributed to the “Other
OC” category was lower in the two CMB applications com-
pared to the LGO solution, most likely due to overestimation

of the OC contribution from gasoline vehicles and vegetative
burning.

It is interesting to note that all three solutions are char-
acterized by high correlation coefficients for the fit obtained
(0.97-0.99), good mass closure (91-93%), and calculated-
to-observed ratios nearing one for the major PM2.5 compo-
nents. In the EV solution, the average chi-square value, and
most individual values, lied within the acceptable range (<4)
(1, 2). The chi-square values based on the OWLS and LGO
solutions are not comparable to that of the EV solution. The
chi-square based on the LGO solution is significantly higher
than that in the OWLS solution, and reflects the “penalty”
of bounding acceptable solutions based on the gas-phase
species. However, the correlation coefficient is higher, and
the overall and trace-metal-based NMSE values are lower
for the LGO solution compared to the OWLS solution.

To address the sensitivity of the solution obtained to the
factor used as a constraint for the gas-phase species, we also
conducted the same analysis using a factor of 2 (instead of
three). Results obtained were nearly identical, with mass
contributions differing by less than 7% for most sources. The
major difference observed was for the average LDGV
contribution, 0.2 µg/m3 (18%). The source cross correlations
between these two sets of solution were higher than 0.92 for
all sources except cement kilns (R ) 0.62, but mass
contribution being extremely low).

To analyze the driving forces in the apportionment
process, we calculated the correlations between the daily
contributions of the various sources and the daily ambient
levels of the different species. These correlations (R values,
Table 5) indicate which are the species most highly correlated
with each source category, therefore driving the apportion-
ment. This is done on the entire dataset, as opposed to the
transpose of the normalized modified pseudo-inverse matrix
(MPIN) (2), which indicates the degree of influence each
species concentration has on the contribution, on a case by
case basis. Note that the correlations used here are not
normalized, hence the species with the highest correlations
are considered the ones most influential, even if the actual
correlation is somewhat low. The following is stated based
on these correlations.

LDGV. The LDGV contribution based on the CMB-EV
solution is correlated mainly with Zn, OC, and EC. A low
correlation with CO and NOy is observed in the EV solution.
The OWLS solution showed a fairly similar pattern, with
slightly higher correlations with CO and NOy, and a fairly
high correlation with Pb. However, the LGO solution was
highly correlated with CO and NOy, along with much of the
same PM species as the EV and OWLS solutions.

HDDV. The HDDV contribution generated by all three
source-apportionment techniques used here was most
correlated with EC, which is the major component of diesel
emissions. Stronger correlations with EC were observed in
the OWLS and LGO solutions. Correlation with NOy was the
highest in the LGO solution. Such a correlation is expected
because NOx emissions from diesel vehicles, on a per-mile
basis, are higher than those from gasoline vehicles (25, 26).

BURN. The vegetative burning contribution from the EV
and OWLS solution was correlated with chlorine, potassium,
EC, OC, and bromine. The LGO solution was correlated with
the same species except bromine. The correlation with
potassium was much higher in the LGO solution (0.62)
compared to that with the EV and OWLS solutions (0.37 and
0.43, respectively).

SDUST. Soil dust is characterized by a high abundance
of crustal elements, such as Al, Ca, Fe, Si, and Ti. Results
from the all three solutions are correlated with these elements.
However, the EV solution is most correlated with Fe, and to
a degree with Si, Ti, and Mn, while the OWLS and LGO
solutions are correlated mainly with Si, Al, Ti, and Fe. As

FIGURE 1. Source-contributions to PM2.5 levels at JST site, Atlanta,
GA, using CMB8 EV solution, CMB8 OWLS solution, and LGO.

TABLE 3. Gas-to-PM2.5 Ratios Used as Constraints in the
Optimization Process (Mass/Mass)

source SO2/PM2.5 CO/PM2.5 NOx/PM2.5

LDGV 4.0a 800a 83.7a

HDDV 0.71a 13.4a 21.9a

BURN 0.013 ( 0.0004b 10.1 ( 1.1b 0.24 ( 0.06b

CFPP 128 ( 29.4c 2.1 ( 0.7c 41.0 ( 14.5c

CEM 316 ( 210c,d 5.3 ( 6.5c,d 270 ( 344c,d

a Based on emission inventory data, no variability provided. b Based
on emission inventory data; standard deviations based on county level,
therefore low. c Based on emission inventory data; standard deviations
based on plant level, therefore higher. d Based on source-profile
measurements (19).

VOL. 39, NO. 9, 2005 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 9 3249



expected, low correlations with the gaseous species were
found. However, the EV solution seems to have picked a
contribution associated with motor vehicles (possibly re-
suspended paved road dust), as it is somewhat correlated
with EC and CO, as opposed to the OWLS and LGO solutions.

CFPP. The EV-generated power plant contribution is
mostly correlated with Cu, SO4

-2, Ca, and to a degree with
Se and Fe. The OWLS solution is mostly correlated with Cu,
Fe, and Mn. Both these solutions show no correlation with
SO2, and the OWLS solution shows a correlation with CO
and NOy, indicative of mobile sources. The LGO solution,
however, is mostly correlated with Ca, Se, and SO2. Se is a
unique marker for coal-fired power plant emissions (2). The
LGO solution, being correlated with both Se and SO2, is likely
truly indicative of power plants.

CEM. It is difficult to evaluate the driving species for the
cement kiln contribution, as it is very low. Nonzero contri-
butions were generated in only 33, 36, and 65 cases (out of
762 cases), using EV, OWLS, and LGO, respectively. On the
basis of these limited data, the EV solution was mainly
correlated with Ca; the OWLS solution was correlated with
Br; and the LGO solution was correlated with Ca and the
NOx.

OTHEROC. The other OC category includes any OC not
apportioned to one of the previous categories. If most of the
primary OC was accounted for, this category would include
mainly secondary OC. Since EC and OC often share the same
sources (25), a high correlation of the OTHEROC category
with either EC or OC would indicate a primary OC contribu-
tion. A good reference point is the correlation between OC
and EC in the ambient data, which is 0.82. The correlations
between EC and the contributions to the OTHEROC category
are lower: 0.44, 0.60, and 0.65 for the EV, OWLS, and LGO
solutions, respectively. This indicates a secondary component
in the OTHEROC category. These values, along with the
correlations with OC and the magnitude of the contribution,
suggest that LGO solution includes more primary OC than
the EV and OWLS solutions. This is likely due to an over
estimation of the mobile-source contribution by both EV
and OWLS, leaving less OC to be apportioned to the
OTHEROC category. This does mean, however, that there is
an unexplained source of OC in the LGO solution. One likely
source would be meat charbroiling, which, as previously
mentioned, emits almost solely OC, and is characterized by
low gas-to-particle ratios. For this reason, it is difficult to
distinguish meat charbroiling from secondary OC formation

TABLE 4. Average and Standard Deviation of the Source-Contributions to PM2.5 Levels Measured at JST Site, Atlanta, GA, Using
CMB8-EV, CMB8-OWLS, and LGO (Also Reported Are the Correlation (R), NMSE, % Total Mass, Chi-square and
Calculated-to-Observed Ratios)

mean (SD)

CMB8-EV CMB8-OWLS LGO

Ra 0.9734 (0.0298) 0.9661 (0.0357) 0.9879 (0.0324)
NMSE PM2.5

a 0.161 (0.362) 0.0327 (0.131) 0.026 (0.096)
NMSE metalsb 0.801 (0.966) 0.714 (0.901) 0.249 (0.346)
% total massc 93.4 (18.2) 93.1 (18.7) 90.5 (17.4)
Chi-squared 3.16 (3.47) 4.48 (6.45) 20.3 (16.8)
LDGV (µg/m3) 1.72 (1.61) 1.68 (1.55) 1.28 (0.90)
HDDV (µg/m3) 1.66 (1.53) 1.62 (1.52) 1.96 (1.63)
SDUST (µg/m3) 0.55 (0.61) 0.28 (0.45) 0.39 (0.48)
BURN (µg/m3) 1.90 (1.29) 2.01 (1.50) 1.13 (0.69)
CFPP (µg/m3) 0.29 (0.48) 0.62 (0.74) 0.15 (0.12)
CEM (µg/m3) 0.006 (0.04) 0.012 (0.08) 0.004 (0.02)
AMSULF (µg/m3) 7.23 (5.20) 7.19 (5.17) 7.03 (5.12)
AMBSLF (µg/m3) 0.54 (1.30) 0.50 (1.28) 0.64 (1.46)
AMNITR (µg/m3) 1.57 (1.25) 1.55 (1.25) 1.60 (1.34)
OTHEROC (µg/m3) 1.86 (1.55) 1.76 (1.50) 2.59 (1.64)
SO4

-2 ratioe 1.16 (0.47) 1.10 (0.12) 1.07 (0.07)
NO3

- ratioe 1.25 (1.02) 1.14 (0.75) 1.18 (0.87)
Cl- ratioe 1.81 (1.49) 1.85 (1.36) 1.06 (0.63)
NH4

+ ratioe 0.93 (0.38) 0.89 (0.14) 0.88 (0.15)
EC ratioe 1.09 (0.78) 0.97 (0.14) 0.98 (0.13)
OC ratioe 1.06 (0.51) 1.01 (0.19) 1.00 (0.03)
Al ratioe,f 7.82 (6.37) 6.64 (5.11) 4.67 (2.81)
As ratioe 0.53 (0.47) 0.55 (0.51) 0.32 (0.25)
Ba ratioe 0.18 (0.28) 0.38 (0.45) 0.10 (0.08)
Br ratioe 0.68 (0.92) 0.68 (0.84) 0.39 (0.38)
Ca ratioe 1.87 (1.48) 2.92 (2.60) 1.15 (0.34)
Cu ratioe 0.59 (0.57) 0.60 (0.52) 0.42 (0.39)
Fe ratioe 0.84 (0.66) 0.73 (0.38) 0.55 (0.17)
K ratioe 2.23 (1.72) 2.20 (1.55) 1.19 (0.49)
Mn ratioe 1.06 (1.08) 0.94 (0.88) 0.69 (0.58)
Pb ratioe 0.37 (0.38) 0.36 (0.36) 0.27 (0.23)
Sb ratioe 0.02 (0.02) 0.03 (0.03) 0.01 (0.01)
Se ratioe 1.99 (4.05) 4.66 (7.72) 1.11 (1.20)
Si ratioe 2.18 (1.54) 1.64 (0.77) 1.28 (0.12)
Sn ratioe 0.02 (0.02) 0.02 (0.02) 0.01 (0.00)
Ti ratioe 2.12 (1.59) 2.01 (1.57) 1.27 (0.70)
Zn ratioe 1.42 (1.95) 1.22 (0.73) 1.01 (0.35)
SO2 ratioe,f 4.37 (8.73) 8.24 (23.4) 1.99 (0.97)
CO ratioe,f 3.18 (3.43) 3.07 (3.56) 2.06 (0.83)
NOy ratioe,f 2.11 (1.83) 2.07 (1.51) 1.58 (0.66)

a Calculated based on all PM2.5 components. b Calculated based on trace metals only. c % of apportioned mass to total PM2.5. d Chi-square is
not comparable for the EV case and the two OWLS cases, as the denominator in its formula is different. e Ratio of apportioned mass to ambient
level (ideally would approach 1 for all species). f Not used as a fitting species.
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using either CMB (without organic markers) or this applica-
tion of LGO. An organic marker, such as cholesterol, is needed
to identify and quantify meat charbroiling emissions.

AMSULF, AMBSLF, AMNITR. These secondary “sources”
were all correlated with their major components, and low
correlations with gaseous pollutants were observed, for all
three cases.

To further illustrate the differences between the EV, OWLS,
and LGO solutions, we also calculated source intercorrela-
tions using these three solutions (Table 6). The diagonal terms
in these matrixes indicate that the contributions of am-
monium sulfate, ammonium bisulfate, and ammonium
nitrate are fairly similar in all three cases. However, major
differences are observed for the primary source categories.

The EV and OWLS gasoline vehicle contribution is signifi-
cantly different than the LGO LDGV contribution, as shown
by the low correlations. The differences in the HDDV
contributions are more subtle. Another major difference is
observed in the CFPP contribution: the OWLS CFPP con-
tribution is correlated more with the LDGV contribution from
LGO than the corresponding CFPP contributions, likely due
to collinearity.

Results from the LGO solution (based on inorganic
markers and inorganic gases) were also compared with results
from an organic markers source-apportionment study (4)
and the five-county Atlanta metropolitan area emissions
inventory (24) (Table 7). In the Zheng et al. study (4), average
monthly contributions to PM2.5 were calculated for the

TABLE 5. Correlations (R) between Source Contributions and Ambient Levels of Fitting Species

CMB-EV CMB-OWLS LGO CMB-EV CMB-OWLS LGO CMB-EV CMB-OWLS LGO CMB-EV CMB-OWLS LGO

LDGV HDDV BURN SDUST

SO4
-2 0.03 0.01 0.04 0.22 0.22 0.21 0.10 0.07 0.14 0.20 0.17 0.24

NO3
- 0.22 0.31 0.30 0.14 0.18 0.19 0.15 0.23 0.33 0.01 -0.09 -0.09

Cl- 0.16 0.17 0.09 0.05 0.04 0.11 0.35 0.45 0.52 0.02 -0.01 -0.01
NH4

+ 0.08 0.05 0.04 0.27 0.25 0.26 0.22 0.23 0.18 0.29 0.21 0.28
EC 0.42 0.53 0.39 0.69 0.94 0.96 0.34 0.43 0.41 0.40 0.21 0.25
OC 0.45 0.55 0.45 0.53 0.68 0.74 0.35 0.49 0.49 0.33 0.13 0.19
Al 0.00 0.04 0.07 0.05 0.09 0.08 0.03 0.04 0.13 0.29 0.91 0.87
As 0.26 0.32 0.27 0.21 0.23 0.29 0.30 0.42 0.29 0.16 0.05 0.05
Ba -0.01 0.01 0.03 0.09 0.13 0.10 0.04 0.05 0.10 0.11 0.21 0.22
Br 0.13 0.15 0.13 0.35 0.34 0.17 0.38 0.41 0.14 0.24 0.04 0.01
Ca 0.24 0.30 0.39 0.25 0.34 0.32 0.17 0.19 0.19 0.33 0.62 0.57
Cu 0.38 0.50 0.36 0.25 0.30 0.38 0.22 0.38 0.29 0.37 0.31 0.24
Fe 0.36 0.46 0.40 0.45 0.56 0.60 0.24 0.34 0.33 0.57 0.76 0.77
K 0.23 0.27 0.22 0.24 0.30 0.35 0.37 0.43 0.62 0.30 0.42 0.29
Mn 0.41 0.51 0.36 0.41 0.53 0.58 0.24 0.34 0.32 0.46 0.53 0.53
Pb 0.42 0.65 0.34 0.19 0.22 0.33 0.18 0.32 0.33 0.24 0.07 0.06
Sb 0.06 0.06 0.06 0.06 0.11 0.07 0.25 0.26 0.00 0.05 0.00 -0.01
Se 0.13 0.17 0.13 0.34 0.38 0.41 0.23 0.27 0.17 0.15 0.12 0.15
Si 0.12 0.17 0.20 0.22 0.27 0.27 0.12 0.16 0.22 0.48 0.95 0.99
Sn 0.16 0.21 0.16 0.13 0.14 0.14 0.08 0.13 0.11 0.08 0.06 0.12
Ti 0.14 0.18 0.18 0.27 0.35 0.37 0.19 0.25 0.29 0.44 0.83 0.84
Zn 0.58 0.86 0.46 0.31 0.38 0.42 0.20 0.37 0.33 0.29 0.08 0.12
SO2 0.18 0.23 0.25 0.21 0.31 0.33 0.17 0.20 0.20 0.09 -0.03 -0.03
CO 0.31 0.36 0.74 0.23 0.37 0.32 0.15 0.25 0.24 0.23 0.11 0.14
NOy 0.31 0.40 0.66 0.28 0.42 0.45 0.19 0.29 0.25 0.20 0.04 0.07

CMB-EV CMB-OWLS LGO CMB-EV CMB-OWLS LGO CMB-EV CMB-OWLS LGO

CFPP CEM AMSULF

SO4
-2 0.43 0.28 0.28 -0.11 0.15 0.02 0.85 0.94 0.93

NO3
- 0.07 0.17 0.14 0.29 0.37 0.04 -0.06 -0.01 -0.01

Cl- 0.01 0.10 0.08 -0.08 0.15 -0.18 0.04 0.07 0.07
NH4

+ 0.43 0.33 0.24 -0.12 0.10 -0.06 0.85 0.95 0.94
EC 0.34 0.54 0.42 -0.15 0.06 0.13 0.16 0.22 0.22
OC 0.27 0.48 0.38 -0.13 0.17 0.17 0.22 0.28 0.28
Al 0.03 0.13 0.09 0.09 -0.09 -0.13 0.00 0.03 0.03
As 0.07 0.23 0.18 0.24 0.46 0.23 -0.02 0.00 0.00
Ba 0.23 0.25 0.12 -0.04 -0.08 0.12 0.14 0.18 0.18
Br 0.10 0.16 0.12 0.01 0.58 0.11 -0.02 0.01 0.01
Ca 0.43 0.46 0.56 0.44 0.37 0.56 0.24 0.30 0.30
Cu 0.46 0.74 0.21 0.24 0.14 -0.03 0.07 0.10 0.10
Fe 0.36 0.62 0.40 0.18 0.28 0.05 0.20 0.27 0.27
K 0.17 0.34 0.17 -0.15 0.05 -0.05 0.12 0.15 0.15
Mn 0.33 0.61 0.33 0.18 0.23 -0.05 0.17 0.23 0.23
Pb 0.13 0.49 0.11 -0.07 0.18 0.16 -0.05 -0.03 -0.02
Sb 0.08 0.13 0.08 -0.28 0.04 0.11 -0.06 -0.05 -0.04
Se 0.36 0.29 0.50 0.12 -0.01 0.24 0.32 0.37 0.37
Si 0.22 0.34 0.28 0.22 0.07 0.02 0.23 0.28 0.28
Sn 0.02 0.21 0.05 -0.07 0.12 0.15 0.01 0.03 0.03
Ti 0.27 0.43 0.27 0.05 0.06 -0.13 0.25 0.31 0.30
Zn 0.14 0.50 0.27 0.29 0.24 0.25 0.01 0.04 0.05
SO2 0.11 0.21 0.45 0.18 -0.12 0.25 -0.12 -0.08 -0.08
CO 0.17 0.43 0.19 0.11 0.06 0.18 -0.03 0.00 0.00
NOy 0.16 0.41 0.31 0.14 0.11 0.40 -0.10 -0.07 -0.07
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months of April, July, August, and October of 1999, and
January 2002, for the JST site, and are averaged here. Source
categories included were diesel exhaust, gasoline exhaust,
vegetative detritus, meat cooking, road dust, wood combus-
tion, and natural gas combustion. Both the LGO solution
and the Zheng et al. (4) results indicate the dominance of

contributions from mobile sources to primary PM2.5 levels,
but the magnitude is somewhat different (66% and 58%,
respectively). The split between gasoline and diesel vehicles
also was different: a diesel-to-gasoline ratio of 1.5 using LGO
and 6.7 using organic tracers. For comparison, the diesel-
to-gasoline ratio in the emissions inventory for the five-county

TABLE 5. Continued

CMB-EV CMB-OWLS LGO CMB-EV CMB-OWLS LGO CMB-EV CMB-OWLS LGO

AMBSULF AMNITR OTHER OC

SO4
-2 0.46 0.52 0.54 0.04 0.05 0.06 0.22 0.23 0.29

NO3
- -0.01 0.04 0.05 0.68 0.87 0.82 0.08 0.08 0.14

Cl- -0.05 0.03 0.05 0.22 0.30 0.26 0.05 -0.01 0.08
NH4

+ 0.29 0.36 0.40 0.08 0.11 0.11 0.25 0.23 0.29
EC -0.07 0.03 0.00 0.17 0.22 0.21 0.44 0.60 0.65
OC 0.01 0.09 0.06 0.20 0.23 0.23 0.63 0.81 0.92
Al 0.09 0.15 0.09 -0.04 -0.03 -0.04 -0.03 0.00 -0.04
As -0.06 -0.01 -0.02 0.10 0.14 0.14 0.12 0.15 0.27
Ba 0.09 0.06 0.01 0.01 0.02 0.02 0.06 0.12 0.10
Br 0.00 0.07 0.09 0.08 0.09 0.09 0.29 0.30 0.14
Ca 0.07 0.16 0.17 0.04 0.06 0.05 0.15 0.20 0.21
Cu -0.02 0.06 -0.02 0.08 0.12 0.11 0.30 0.28 0.32
Fe 0.04 0.14 0.08 0.07 0.12 0.10 0.32 0.36 0.37
K 0.04 0.09 0.04 0.09 0.10 0.11 0.33 0.45 0.36
Mn 0.01 0.07 0.02 0.13 0.18 0.16 0.24 0.23 0.34
Pb -0.05 0.05 -0.04 0.14 0.22 0.20 0.25 0.25 0.35
Sb -0.07 0.02 -0.01 -0.01 0.01 0.01 0.03 0.07 0.07
Se 0.14 0.18 0.23 0.12 0.12 0.12 0.09 0.12 0.24
Si 0.22 0.25 0.23 -0.04 -0.04 -0.05 0.15 0.21 0.16
Sn 0.07 0.09 0.03 0.10 0.08 0.07 0.09 0.11 0.12
Ti 0.11 0.28 0.22 -0.03 -0.01 -0.01 0.17 0.23 0.21
Zn -0.07 -0.03 -0.06 0.16 0.19 0.17 0.27 0.24 0.39
SO2 -0.08 0.00 -0.02 0.16 0.18 0.18 0.08 0.12 0.24
CO -0.05 -0.02 -0.01 0.13 0.15 0.16 0.24 0.27 0.24
NOy -0.09 -0.05 -0.06 0.18 0.22 0.21 0.19 0.26 0.29

TABLE 6. Source Intercorrelations (R) Using CMB8-EV, CMB8-OWLS, and LGO

LDGV HDDV SDUST BURN CFPP CEM AMSULF AMBSLF AMNITR OTHROC

EV
OWLS LDGV 0.64 0.30 0.31 0.22 0.14 0.23 -0.03 -0.05 0.19 0.25

HDDV 0.26 0.69 0.33 0.21 0.34 -0.20 0.16 -0.10 0.12 0.39
SDUST 0.00 0.13 0.42 0.08 0.15 -0.10 0.16 0.25 -0.08 0.07
BURN 0.37 0.26 0.28 0.69 0.17 -0.08 0.07 -0.06 0.15 0.21
CFPP 0.41 0.40 0.41 0.28 0.65 0.15 0.25 -0.09 0.13 0.24
CEM 0.29 0.24 0.32 0.21 0.00 0.81 0.11 0.25 0.31 0.61
AMSULF 0.04 0.25 0.26 0.15 0.46 -0.14 0.90 0.19 -0.01 0.22
AMBSLF -0.03 0.00 0.16 -0.05 0.02 0.13 0.22 0.91 0.01 0.10
AMNITR 0.18 0.12 0.01 0.11 0.06 0.18 -0.04 0.01 0.77 0.10
OTHROC 0.16 0.44 0.16 0.15 0.17 -0.29 0.17 0.05 0.08 0.68

LGO
EV LDGV 0.44 0.36 0.07 0.30 0.16 0.15 0.04 -0.02 0.16 0.32

HDDV 0.17 0.74 0.19 0.28 0.31 0.19 0.25 0.00 0.11 0.45
SDUST 0.23 0.38 0.47 0.23 0.16 -0.03 0.26 0.08 0.00 0.23
BURN 0.16 0.32 0.10 0.46 0.16 0.07 0.14 0.04 0.11 0.24
CFPP 0.14 0.33 0.20 0.13 0.37 0.31 0.46 0.02 0.06 0.21
CEM 0.18 -0.23 0.20 -0.06 0.25 1.00 -0.14 0.22 0.16 -0.23
AMSULF -0.01 0.16 0.23 0.07 0.21 -0.05 0.89 0.27 -0.03 0.22
AMBSLF -0.03 -0.09 0.22 0.00 0.02 0.24 0.18 0.86 0.00 0.04
AMNITR 0.20 0.12 -0.07 0.24 0.06 -0.05 -0.01 0.05 0.76 0.13
OTHROC 0.18 0.43 0.13 0.26 0.17 0.35 0.21 0.09 0.09 0.66

LGO
OWLS LDGV 0.54 0.45 0.11 0.33 0.25 0.20 0.01 -0.03 0.24 0.40

HDDV 0.24 0.93 0.23 0.29 0.40 0.13 0.23 0.01 0.17 0.58
SDUST 0.08 0.18 0.96 0.16 0.16 -0.02 0.20 0.19 -0.08 0.06
BURN 0.26 0.40 0.13 0.59 0.16 0.12 0.12 0.02 0.16 0.34
CFPP 0.43 0.51 0.31 0.31 0.37 0.00 0.32 -0.08 0.17 0.33
CEM 0.06 0.11 0.09 0.29 0.13 0.30 0.11 0.45 0.35 0.08
AMSULF 0.02 0.23 0.28 0.13 0.26 -0.02 0.99 0.27 0.00 0.28
AMBSLF -0.02 0.02 0.24 0.09 0.13 0.51 0.20 0.95 0.05 0.14
AMNITR 0.25 0.19 -0.07 0.27 0.10 0.03 -0.02 0.09 0.97 0.16
OTHROC 0.18 0.58 0.18 0.24 0.21 0.31 0.20 0.08 0.12 0.88
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Atlanta metropolitan area is 3.0 (22). Other differences were
the somewhat lower vegetative burning contribution using
LGO compared to organic markers (23% and 30%), the higher
LGO soil dust contribution (7.9% compared to 2.5%), and
the meat charbroiling contribution identified by the organic
markers study (6.4%). The LGO solution generated a higher
“secondary/other OC” contribution compared to the organic
marker study (not presented in Table 7), which may include
meat cooking emissions (characterized almost solely by OC
emissions). In contrast to the receptor model results, the
emissions inventory is dominated by area sources other than
soil dust and wood combustion (44% of total PM2.5 emissions).
Wood combustion and road dust are the next two major
sources in the inventory (15% each), followed by diesel and
gasoline engines (11.5% and 3.9%, respectively). The road
dust emissions seem to be over estimated, as shown by the
receptor model results and measured levels of crustal species.
Incorporating preliminary data on emissions from meat
charbroiling (27) into the inventory suggests these emissions
contribute 5% of total PM2.5 emissions (not formally reported
in the inventory, 24). Given the dominance of “other” area
sources (waste disposal treatment, recovery, and incineration;
industrial oil and gas production; agriculture production;
other sources) in the emissions inventory, it is difficult to
compare the inventory to the source apportionment results
directly. It seems that the “other” area source category is
over-estimated, as four different sets of source apportionment
results presented here (CMB EV, CMB OWLS, LGO, and the
Zheng et al. study from 2002) indicate the dominance of
contributions from diesel and gasoline engines to primary
PM2.5 levels (58-66% of PM2.5 emissions, compared to 15%
in the inventory). The contributions of coal-fired power plants
and cement kilns, as indicated by the inventory, are relatively
small, similar to findings from the LGO solution.
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