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Abstract

Elevated levels of fine particulate matter (PM; s) have been associated with adverse effects on human health, but whether
specific components of PM, s are responsible for specific health effects is still under investigation. A complementary
approach to examining species-specific associations is to assess associations between health outcomes and sources
contributing to PM; 5. This approach could help target and regulate the sources that contribute most to adverse health
effects. Various techniques have been developed to quantify source impacts on air quality, allowing examination of their
health impacts. We compare two conceptually different approaches to source apportionment (SA): a receptor model and
an emissions-based air-quality model. Daily source impacts for July 2001 and January 2002 at four sites in the southeastern
US were calculated using CMB-LGO, an extended chemical mass balance receptor model incorporating the Lipschitz
global optimizer, and EPA’s Models-3 emissions-based air-quality modeling system (MMS5-SMOKE-community
multiscale air-quality (CMAQ)). The receptor model captured more of the temporal variation in source impacts at a
specific receptor site compared to the emissions-based model. Driven by data at a single site, receptor models may have
some significant shortcomings with respect to spatial representativeness (unless a reduced study area is used or data from
multiple sites are available). SA results from emissions-based models, such as CMAQ, may be more spatially representative
as they represent an average grid-cell value. Limitations in the ability to model daily fluctuations in emissions, however,
lead to results being driven mainly by regional meteorelogical trends, likely underestimating the true daily variations in
local source impacts. Using results from either approach in a health study would likely introduce an attenuation of the
observed association, due to limited spatial representativeness in receptor modeling results and to limited temporal
representativeness in emissions-based models results.
© 2006 Elsevier Ltd. All rights reserved.
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health effects and mortality in studies covering
> 150 cities (Dockery et al., 1993; Pope et al., 1995,
2002). Both acute and chronic exposures to PM; 5
have been associated with increased mortality rates
and hospital visits, as well as cardiopulmonary
disease, heart attacks, decreased lung function, and
asthma (Dockery et al., 1993; Ebelt et al., 2000;
Peters et al., 2001; Pope et al., 1995; Vedal, 1997).
PM is chemically complex, being comprised of
numerous primary and secondary components,
including ionic and organic compounds and dozens
of trace elements. It is still unknown which spe-
cific components of PM, 5 are more prone to cause
specific health effects, although recent studies
have started to address this issue (e.g., Metzger
et al., 2004a,b; Peel et al., 2005, Hauck et al.,
2004; Heal et al., 2005). However, the association
between health outcomes and specific PMj;s
components raises several issues: it is not obvious
that the major cause for the health outcome is
actually measured (it is impractical to measure every
single PM, s species) or is possibly measured
inaccurately due to analytical issues; the actual
health effects may be due to a combination of
pollutants; many species are correlated which limits
the ability to isolate species health impacts. A
complementary approach is to examine associations
between health outcomes and sources contributing
to ambient PM, 5 (Laden et al., 2000; Manchester-
Neesvig et al., 2003; Mar et al., 2000; Tsai et al.,
2000). By means of source apportionment (SA),
source impacts on the receptor can be quantified,
and their health impacts examined. A source-impact
oriented approach could help target and regulate
the sources that contribute most to adverse health
effects. It could also allow for better multi-
component epidemiologic modeling, as the number
of major source-impact categories is typically far
fewer than the number of PM components. Finally,
this approach can help identify health effects of
unmeasured species present in emissions from
specific source categories. For example, preliminary
studies have found an association between mortality
and combustion-related PM, 5 (from motor vehi-
cles, coal combustion, and wood burning), but not
soil-related PM, 5, in both cohort (Laden et al.,
2000) and time-series (Mar et al., 2000) studies. Ito
et al. (2004) mention that source-oriented evalua-
tion of PM health effects need to take into
consideration the uncertainty associated with spa-
tial representativeness of the species measured at a
single monitor.

Here, we compare two conceptually different
approaches to PM, s SA, receptor-based modeling
(represented in this study by the chemical mass
balance (CMB) model) and emissions-based air-
quality models (represented in this study by EPA’s
Models-3 suite of models). We address issues
associated with using these techniques for time-
series health studies, with special emphasis on the
degree to which these approaches provide source
impact estimates that are both spatially and
temporally representative. So far, the focus in the
SA and health literature has been on the use of
various factor analytical (FA) techniques (such as
PCA or PMF), to associate health outcomes with
factors associated with sources of PM,s (Laden -
et al., 2000; Manchester-Neesvig et al., 2003; Mar
et al., 2000; Tsai et al., 2000). Here, we address a
slightly different approach, using the CMB receptor
model, which, especially in its extended form
presented here (CMB-Lipschitz global optimizer
(LGO)), is more explicit in terms of identifying the
sources in question. The main difference between
CMB and FA approaches is that CMB uses
emission composition data to derive source impacts,
whereas FA techniques derive the source composi-
tions from trends in the ambient data during the
process of estimating source impacts. In an FA
application, the investigator assigns names to the
obtained factors (i.e., identifies the factors as
sources) based on their chemical composition; the
factors are unique for each data set/site analyzed.
For example, Ito et al. (2004) illustrate that
uncertainties in ‘“naming” the factors in FA
applications might cause source impacts to appear
less spatially representative than the true case
because the derived factor for a given source
category will be different at each site. Both
approaches have advantages and disadvantages;
however, in terms of assessing the spatial and
temporal representativeness of receptor and emis-
sions-based models for use in health studies, FA
techniques share many of the same characteristics
and issues as presented here for CMB (both being
based on measured ambient data).

2. Methods

We used both receptor-based (CMB) and. emis-
sions-based (EPA’s Models-3) air-quality modeling
approaches to conduct SA of PM; 5 in Atlanta, GA
and other sites in the southeastern US. The CMB
receptor-based model (US-EPA, 2001) makes use of
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speciated ambient PM, 5 measurements (major ions,
carbon fractions, trace elements) and typical com-
positions of emissions from various source cate-
gories to quantify the source contribution to
measured concentrations at the receptor. It is based
on the following mass balance equation, which is
solved for S; (a vector of source contributions) (US-
EPA, 2001):

Ci=Y 1S+ e M
J=1

where C; is the ambient concentration of chemical
species i (ugm ™ in PM, 5), f; ; the fraction of species
i in emissions from source j, S; the contribution
(source-strength) of source j (ugm™> in PM, s), n the
total number of sources, and e; the error term.
Here, we applied both an extended version of
CMB, referred to as CMB-LGO (Marmur et al.,,
2005) and the standard CMB. CMB-LGO uses
measured ambient gaseous concentrations (SO,,
CO, and NO,) to bound acceptable solutions to
the mass balance equation above. For each solution
obtained, ambient SO,, CO, and NO, concentra-
tions are calculated based on the obtained PM, s
source contribution and typical gas-to-particle
ratios at the source (e.g., SO,/PM,s from the
various sources). The calculated value is then
compared to the ambient measurement and, in case
of significant differences (e.g., under/overprediction
of more than a factor 3), the model then searches for
the next best fit to the mass balance equation that
would also adhere to the gas-phase constraints
(Marmur et al.,, 2005). This approach reduces
collinearity between sources, which is one of the
major limitations to source identification using
CMB (i.e., the inability to distinguish between
sources with similar PM, 5 emissions compositions).
The reduced collinearity is because sources that
share fairly similar PM, s composition may have
very different gaseous emissions. For example,
gasoline and diesel engines have fairly similar
PM; 5 compositions (rich in organic and elemental
carbon), but differ significantly with regards to CO
and NO, emissions. Likewise, collinearity caused by
crustal elements found in both soil-dust and coal-
fired power-plant emissions is significantly reduced
with the introduction of the SO, constraint (SO, is
abundant in power-plant emissions, but not present
in resuspended soil dust). However, use of
CMB-LGO has some limitations, some of which
might be important in time-series health studies.

First, collinearity is not eliminated completely, and
part of the daily fluctuations in the amount of mass
apportioned between several sources might be due
to collinearity, hence introducing an error to the
time-series epidemiologic analysis. There are also
uncertainties associated with the source profiles
used. The composition might not necessarily repre-
sent typical local source compositions since locally
accurate source profiles are not always available.
The composition may vary temporally (e.g., the
eftect of driving mode on the composition of PM, s
from mobile sources) whereas constant values are
used. Finally, the model relies on local (receptor)
ambient measurements which might be significantly
affected by local sources within 1-2km and, there-
fore, might not represent the health study area, and
might also contain measurement errors.

For these reasons, we also evaluated the use of
emissions-based air-quality models for epidemiolo-
gic analyses. Such models have been used for gas-
phase simulations and source-impact analysis of
ozone for decades, and are typically three-dimen-
sional (3-D) representations of the atmosphere.
More recently, they are being applied to PM, 5 SA
as well, apportioning mass the either sources or
regions (Boylan et al.,, 2002; Held et al., 2005;
Odman et al., 2004). The 3-D air-quality model
simulates the source impacts by solving the con-
servation equation expressed as

dc: ;
a—ct’+ V. (Ue) = v;;p,v(%) F Ric1, ¢y Ty )

+ Sdx, 0, i=12,...,n, )
where ¢; is the concentration of species i, U the wind
velocity vector, D; the molecular diffusivity of
species i, R; the rate of concentration change of
species i by chemical reaction, Si(x, ) the source/
sink of 7 at location x and time ¢, p the air density,
and » the number of predicted species.

The conservation equation describes the forma-
tion, transport, and fate of air pollutants, including
components for processing emissions, meteorol-
ogy, topography, and atmospheric chemistry
(Russell and Dennis, 2000). SA can be performed
using direct sensitivity methods, such as direct
decoupled method (Dunker, 1981; Hakami et al.,
2003), inert tracer methods, or by multiple applica-
tions of the model with and without emissions from
target sources (“brute force”). Here, we applied
brute force to the US-EPA’s Models-3 suite of
models, including MMS35 (Grell et al., 1995) as the
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meteorological model to simulate atmospheric
physical dynamics; SMOKE (Houyoux et al.,
2003) as the emissions processor to calculate spatial
and temporal trends in emissions based on the
annual emissions inventory; and the community
multiscale air-quality (CMAQ) model (Byun and
Ching, 1999) to simulate atmospheric reactivity,
transport, and deposition of chemical contaminants.

In terms of PM,s SA, the major difference
between a receptor model and an emissions-based
air-quality model is the starting point. While a
receptor model’s starting point is the ambient
measurement, from there going backwards to
estimate source contributions, the starting point of
the air-quality model is the processed emissions
inventory, going forward by simulating the trans-
port and transformation of pollutants and ultimate
air-quality impact. The emissions used are typically
processed from annual, county level emissions,
using statistical daily/weekly/seasonal temporal
trends (such as peak morning rush hour and lower
weekend emissions from mobile sources) and spatial
information. Starting from an estimate of expected
emissions at a location and time, atmospheric
processes taking place during transport from source
to receptor are simulated. CMAQ results provide
more regionally representative values than those
provided by an analysis based on a local measure-
ment. However, results from air-quality models
include uncertainties arising from each step of the
process (meteorological modeling, emission esti-
mates, air-quality modeling). Studies have shown
that the emission inventory is one of the more
uncertain, but particularly important, inputs to the
air-quality modeling process (NRC, 1991; Seinfeld,
1988). This is especially important in the current
application where daily variability in source impacts
is sought.

2.1. Model application

SA using CMAQ was performed on a daily basis
for the months of July 2001 and January 2002. For
actually applying either of these methods to a time-
series health study, a much larger data set is desired
(typically, several years of data). However, focusing
on the reduced time periods allows more detailed
examination of the issues involved in using results
from either approach. Also, obtaining several years
of CMAQ-based SA results using the brute-force
method requires significant computational re-
sources. As tracer and other direct SA methods

become available in CMAQ, it will be possible to
expand this type of analysis by tracking source
impacts efficiently, without having to re-apply the
model for each source category examined. A longer
CMB-LGO analysis has been completed and
analyzed (Marmur et al., 2005).

The Models-3 air-quality modeling system was
applied over much of the US using a 36km grid,
and a finer 12km grid was used over northern
Georgia (Fig. 1). More detailed model information
is presented elsewhere (Park et al., 2005, 2006a, b).
We focused on two urban (Atlanta, GA and
Birmingham, AL) and two rural (Yorkville, GA
and Centerville, AL) southeastern aerosol research
and characterization (SEARCH) sites (Fig. 1),

-‘which include data on total PM, 5 mass (gravimetric

measure) and its components (Hansen et al., 2003;
Kim et al., 2003). The main objectives of SEARCH
include the understanding of composition and
sources of PM in the southeast (Hansen et al,
2003; Kim et al., 2003). The SEARCH data are also
being used for health studies in Atlanta in which
associations of PM, 5 with respiratory illnesses and
cardiovascular disease have been observed (Metzger
et al., 2004a, b; Peel et al., 2005). In the southeastern
US, a major part of the total PM, s is secondary
(Hansen et al., 2003; Kim et al., 2003; Marmur
et al., 2005), i.e., formed in the atmosphere from
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Fig. 1. Locations of SEARCH monitoring sites in Georgia (JST
and YK) and Alabama (BHM and CTR), over plotted by the
grids (36 km) of the air-quality model (only a part of the 36km
domain is shown here). The rectangle that contains the YRK and
JST sites is the sub-domain of the air-quality model with a grid
size of 12km (12km grids are not shown here).
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precursor gases. The major secondary PM; s com-
ponents are sulfate from the oxidation of SO, and
secondary OC particles formed from volatile
organic compounds emissions. The emphasis in this
study is on sources of primary PM,s, ie., PM
emitted directly from emissions sources, due to the
fact that receptor models are limited in their ability
to link secondary compounds to emission sources
(Burnett et al., 1998). We focused on primary PM; 5
emissions from five source categories: gasoline
vehicles, diesel vehicles, soil dust, vegetative/wood
burning, and coal-fired power plants (in the
CMB-LGO analysis these were noted as LDGYV,
HDDYV, SDUST, BURN, and CFPP, respectively).
These categories were previously identified as
affecting the Atlanta airshed (Kim et al., 2004;
Marmur et al., 2005; Zheng et al., 2002). Other
categories, such as meat cooking, were not quanti-
fied due to lack of tracers and collinearity issues
(Marmur et al., 2005), and were likely apportioned
to the unexplained fraction of OC (which also
includes secondary organic aerosol (SOA)). Regard-
ing the major secondary PM, 5 compounds, relating
ambient sulfate concentrations to power-plant
emissions is fairly straight forward since these
account for the vast majority of SO, emissions
(US-EPA, 1999). The sources and chemistry of SOA
are still being investigated; biogenic compounds,
such as monoterpene emissions from vegetation, are
believed to be a major source of SOA (Carreras-
Sospedra et al., 2005; Lim and Turpin, 2002). As the
chemistry of SOA becomes better understood, air-
quality models, such as CMAQ, may be able to
provide a useful tool to assess the health outcomes
associated with elevated levels of SOA.

For each one of the primary source categories
investigated, emissions from SMOKE were tracked
separately, and the air-quality model was applied six
times: a base-case run including all sources, and five
additional runs withholding one source category at
a time (domain-wide exclusion) (Park et al., 2005,
2006b). A “‘source category” in this case is defined
as a summation of emissions from numerous source
classification codes from the emissions inventory.
Specifically, the “gasoline” SMOKE category is a
summation of emissions from on-road and off-road
gasoline-engine powered vehicles; the ‘“‘diesel”
category is a summation of emissions from on-road
and off-road diesel-engine powered vehicles; “dust”
emissions are a summation of emissions from both
paved and unpaved roads; ‘“‘wood-burning” emis-
sions are a summation of emissions from industrial

and residential wood burning, prescribed burning
and wildfires; “power-plant” emissions are a sum-
mation of emissions from all coal-fired boilers.
Emissions from natural-gas combustion and meat
charbroiling were tracked separately as well (Park
et al., 2005, 2006b), but are not presented here, as
they were not resolved by the receptor model
(Marmur et al., 2005). Withholding emissions of
primary PM, s particles may shift secondary for-
mation products to other particles, changing their
size and deposition velocities and change their rate
of coagulation with particles from other sources.
However, a comparison of the results obtained by
the brute-force method and a tracer method (where
no sources are being withheld) showed very minor
differences in the amount of mass apportioned to
each source category and near perfect agreement in
modeled daily variability of source impacts (Baek et
al., 2005). CMB-LGO (Marmur et al., 2005) was
also applied for the same time periods, using source
profiles representing these five source categories
(Chow et al., 2004b; Cooper, 1981; Zielinska et al.,
1998). We compared the two models used here in
terms of their ability to estimate long-term
(monthly) and short-term (daily) source impacts,
the degree of correlation between the various source
categories, and the factors driving each model. In
addition, we also addressed the issue of spatial
variability in source impacts using concentrations of
major PM, 5 tracers from an additional monitoring
site in the Atlanta metropolitan area (South-Dekalb
(SDK) site).

3. Results

SA results were analyzed for average source
contributions, daily variability, and factors/species
driving the apportionment process. Source impacts
at four sites were studied using CMB-LGO and
CMAQ: Jefferson Street (JST), an urban site in
Atlanta, GA; Yorkville (YK), a rural site in
northwestern GA; Birmingham (BHM), urban site
in Birmingham, AL; and Centerville (CTR), a rural
site in AL (Fig. 1). We report the calculated source
contributions using CMB-LGO and CMAQ, as
well as those using regular CMB (without incorpor-
ating the gaseous data as in CMB-LGO) for
reference.

When analyzing these results for use in a time-
series health study, it is important to consider two
aspects: temporal (daily) variation and spatial
representativeness. Inaccuracies in either introduce
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Fig. 2. Average source contributions (pgm™) to primary PM, 5 over a 2-month period (July 2001 and January 2002) of gasoline vehicles
(LDGYV), diesel vehicles (HDDV), soil dust (SDUST), vegetative/wood burning (BURN), and coal-fired power plants (CFPP) at four

SEARCH sites in Georgia and Alabama.

errors in the epidemiologic analysis. The temporal
(daily, in this case) variation in source impacts is the
major factor driving a time-series health study, as
short-term health effects are sought (other trends in
the data, such as seasonal effects, are controlled
for). For other purposes, such as air-quality
management and control strategy development,
longer-term results (e.g., seasonal) can be used.
Obtaining such results involves less uncertainty; as
demonstrated above (Fig. 2), the two approaches
agree reasonably well on a monthly average basis,
but differences in the daily source impacts are
evident (Figs. 3-6). Spatial representativeness of air-
quality data is an important issue when such data
are used in health and exposure studies. This is
especially true in this type of application because the
spatial heterogeneity of source impacts is likely
higher than that of individual species. Though there
are not many data available to fully investigate this
issue, consider the extreme example of two different
but constant sources, both emitting significant
amounts of the same pollutant (e.g., OC from wood
burning and meat charbroiling), each located next
to a monitoring site. Both sites will show an OC
impact and likely follow similar meteorological
trends, resulting in high correlations between OC
levels at the two sites. However, the dominant
source contributing to the OC is completely
different. This need for increased temporal and

spatial accuracy places greater burdens on the SA
approach than might be demanded for air-quality
management that focuses on reducing annual
averaged levels.

3.1. Average source impacts

Analyzing the average source contributions at the
four sites examined (Fig. 2), biomass burning
appears to be a major source of primary PM, s in
the region, with contributions ranging between 27%
and 77% (higher fractions in the rural sites).
Average wood-burning contributions obtained
using the three techniques were fairly similar at
YRK and BHM, while CMAQ -values were
significantly higher at CTR and JST. Calculated
average source contributions of primary PM; 5 from
coal-fired power plants are small, <4% for all sites
using all techniques, and the average values
obtained using the various techniques are in good
agreement. Calculated impacts from diesel vehicles
were quite different at JST (CMAQ value higher)
and BHM (CMB-LGO value higher). The average
contribution ranged between 5% and 31% of the
primary PM, s, with higher fractions at the urban
sites. Major differences were observed for the
gasoline-vehicle primary PM; 5 contributions, with
consistently higher values obtained by CMB com-
pared to CMB-LGO. This is likely caused by some
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Fig. 3. Daily source-specific contributions (ugm=>) to primary PM, s at JST from gasoline vehicles, diesel vehicles, soil dust, vegetative/
wood burning, and coal-fired power plants for the periods July 2001 (a) and January 2002 (b) using CMAQ. Also plotted are modeled EC

levels at JST.

collinearity between the gasoline-vehicle source
profile (OC fraction of 0.55) and the secondary/
other OC profile (OC fraction of 1.0), included to
account for secondary OC (and any OC not
apportioned to one of the primary sources included
in the analysis). Without bounding acceptable

solutions based on the gaseous species, the optimal
solution obtained by CMB contains a high gasoline-
vehicle contribution, likely including some second-
ary OC formation. Such a high gasoline-vehicle
contribution would suggest much higher ambient
CO concentrations should be present than are
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measured. When the acceptable solutions are even at the rural sites (YK and CTR),

bounded by CO, as done in CMB-LGO, lower
gasoline-vehicle contributions and higher second-
ary/other OC contributions are obtained, 3.1 pgm™
on average, compared to 1.2 pgm > using regular
CMB. The solutions obtained by CMB indicate that

contributions from mobile sources comprise ap-
proximately 50% of the primary PM, s, and that the
gasoline-vehicle contribution at BHM is nearly 70%
of the primary PM,s, with an extremely high
gasoline-to-diesel ratio of 10.4. On the other hand,
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Fig. 6. Daily fractional source contribution (relative to overall contribution from the five categories examined) at JST using CMB-LGO.

solutions obtained by CMB-LGO and CMAQ
indicate that the gasoline-to-diesel ratio is <1 and
that wood burning is the major source of primary
PM, 5 at the rural sites. These results demonstrate
the collinearity problem often encountered with
regular CMB SA. Significant differences in the soil-

dust contribution are observed when CMAQ
estimates are compared to the CMB and
CMB-LGO results. CMAQ soil-dust impacts seem
to be extremely overpredicted, up to 10 times
compared to the receptor-based results (the ambient
data shows much lower levels of crustal elements
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than is modeled using CMAQ). This is a well-
known issue in CMAQ, where resuspended dust is
assumed to be uniformly vertically mixed in the
bottom layer of the model grid, while in practice,
much of the resuspended dust is removed locally by
impaction to surfaces (vehicles, leaves, etc.). Often a
75% removal factor (DRI, 2000) is applied for soil
dust (as in this case); however, soil-dust impacts are
still overpredicted.

Power Plants
(CMAQ)

Wood
burning
(CMAQ)

3.2. Conceptual differences between CMB and
CMAQ

Dust
(CMAQ)

To illustrate the conceptual differences between
SA from a receptor model and a 3-D air-quality
model, we will focus on the results from CMB-LGO
and CMAQ for the Atlanta urban site (JST).
Different source impacts using CMAQ follow a
similar day-to-day trend (Fig. 3), driven mainly by
meteorology (mixing height and ventilation). This
trend is also similar to the temporal trend in
modeled EC levels (also shown in Fig. 3), which
further indicates the strong effect of meteorology on
the temporal variation. CMB-LGO results, on the
other hand, exhibit less correlated source-category
trends (Fig. 4). In the case of CMB-LGO, the
trends in the diesel source-category and measured
EC levels (also shown in Fig. 4) are similar, but
these trends are different than the trends of other
source categories. These differences between the
daily trends in CMAQ and CMB-LGO are more
clearly shown when the fraction of each source
category’s contribution to the total is plotted as a
time series (Figs. 5 and 6). CMAQ SA results show
little variation in relative source impact while
CMB-LGO results show substantial variation.

Another useful way of interpreting these results
is by means of a correlation matrix (R-values in
Table 1). Relatively high correlations between the
CMAQ source categories and low correlations
between the CMB-LGO categories are observed.
As an example, in terms of the health study, the
high correlation (0.94) between the gasoline and
diesel categories using CMAQ might limit the
ability to distinguish between the health outcomes
of these two categories (even if these were a true
reflection of the source impacts), while the results
from CMB-LGO (significantly lower correlation,
R =0.54) will allow such differentiation (even if
these variations were mainly a reflection of colli-
nearity). These correlations (Table 1) also indicate
the level of agreement between the two techniques.

(CMAQ)

Diesel

Gasoline

BURN CFPP

1.00
-0.04
0.10
-0.05
0.03
—0.24
—0.33
—0.10

SDUST

1.00
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HDDV
(CMB-LGO) (CMB-LGO) (CMB-LGO) (CMB-LGO) (CMB-LGO) (CMAQ)
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1.00
0.53
—0.32

Correlations (R) between CMB-LGO and CMAQ-based source contributions to PM, s at JST

LDGV (CMB-LGO)
HDDV (CMB-LGO)
SDUST (CMB-LGO)

Table 1

1.00

1.00
0.38

1.00
0.86
0.39

1.00
0.85
0.63
0.49

1.00
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0.85
0.67
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—0.06
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0.28
0.27
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0.18
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0.52
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0.61
0.42
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0.25

BURN (CMB-LGO)
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Power Plants (CMAQ)
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Dust (CMAQ)
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The sources of the discrepancy include errors of
both CMAQ and CMB results. However, these have
different magnitudes with respect to different
sources. Correlations between the corresponding
source impacts using the two techniques are poor
for soil dust (—0.24), wood burning (0.18), and
power plants (0.16), and more reasonable for the
mobile sources (0.58 for gasoline vehicles, 0.52 for
diesel vehicles, and 0.59 for the sum of these two
categories).

One of the major sources of possible error in
results from CMAQ comes from the uncertainty in
emissions estimates. Emissions used as input to
CMAQ have little daily variation (Fig. 7). Soil-dust
and wood-burning PM, s daily emissions are
assumed to be constant (except for power plants
on the 4 July and New Year’s Day holidays).
Mobile-source and power-plant emissions are given
a weekly trend, with emissions modified on the 4

41 of July

8.0
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July and New Year’s Day holidays. In reality, soil-
dust emissions would depend on wind speed,
humidity and recent rain fall, all having a significant
effect on the amount of soil resuspended into the air
(Hien et al., 2002). Stronger winds will lead to
increased resuspension of dust (though this also
leads to increased mixing of the atmosphere, low-
ering concentrations of pollutants). On the other
hand, relatively small amounts of dust will be
resuspended following rain events. Such effects are
not captured by SMOKE, which can explain the low
correlation with the CMB-LGO results (—0.24).
Also, wood burning is a source with varying
activity, including prescribed and agricultural burn-
ing, residential wood combustion, and industrial use
of wood bark as fuel, that is not captured by
SMOKE (unless specific information about wild
fires and prescribed burning is incorporated). The
constant emission rate used might explain the low
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correlation with the receptor model results (0.18).
The differences between the variations in power-
plant contributions may partially be due to a
relatively coarse plume characterization using a
12km grid (and a 36 km grid for the Alabama sites),
though uncertainties in the Se measurement and
source profile fraction may contribute to the
discrepancy as well. The temporal pattern of
mobile-source emissions has been studied in detail
(Sawyer et al., 2000). Therefore, actual mobile-
source emissions are probably more like the typical
trends used in the model than the emissions from
other sources. So it is not surprising that the
correlations for the mobile sources are signifi-
cantly higher (0.59 for the sum of the mobile
sources). Further, mobile-source emissions are
more ubiquitous, so a specific local source will
have a smaller effect. Results from the other three
sites studied, BHM, CTR, and YK, show similar
trends in differences between CMAQ and
CMB-LGO results, as shown by correlation ma-
trices (Tables 2—-4).

When comparing the results it is important to
recognize some of the limitations and issues arising
from the use of CMB-LGO, contributing to the
discrepancy between the two sets of results. First, as
previously mentioned, there is some collinearity
between the source categories, introducing more
fluctuations in source impacts than is likely true. In
addition, CMB-LGO is limited by the availability
of ambient data. One such example is the zero
contribution of diesel vehicles on 28 July 2001
estimated using CMB-LGO (see Fig. 4), which is
unlikely. This “error” is the result of there being no
EC measurement on that day, so EC concentration
was estimated as the monthly average. The high
uncertainty associated with that value resulted in a
low EC weighting in the error function; thus, EC
levels were very poorly reconstructed for that day
(17% of the filled-in value) and nearly no mass was
apportioned to the HDDV category. There are also
issues pertaining to the use of temporally constant
source profiles in CMB applications. For instance,
PM, 5 composition from mobile sources depends on
driving mode (Shah et al., 2004), and the composi-
tion of PM, 5 from wood burning depends on the
type of wood and the burning practices (Chow et
al., 2004b). Also, any receptor-based analysis is
driven by point measurements, with very local
influences. Finally, measurement error of PM;
components introduces noise to the apportionment
process.

Table 2

Correlations (R) between CMB-LGO and CMAQ-based source contributions to PM, 5 at YK
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Table 5
Correlations (R) between source contributions and ambient species concentrations measured at JST
CMB-LGO CMAQ
LDGV HDDV SDUST BURN CFPP Gasoline Diesel Dust Wood Burning Power Plants

EC 0.67 0.94 ~0.22 0.25 0.00 0.56 0.55 0.64 0.64 0.36
oC 0.69 0.76 —-0.25 0.34 0.13 0.48 0.45 0.58 0.57 0.30
Al —0.23 —0.12 0.96 -0.02 0.06 —0.03 0.03 —0.18 —0.25 -0.07
As 0.21 0.23 —0.01 0.15 0.34 0.15 0.14 0.19 0.15 —0.06
Br 0.59 0.40 —0.24 0.46 -0.02 0.41 0.40 0.46 0.43 0.29
Ca —0.08 0.17 0.63 0.19 0.53 0.18 0.28 0.00 —0.05 0.00
Fe 0.37 0.42 0.60 0.29 0.18 0.42 0.44 0.30 0.16 0.15
K 0.46 0.24 0.09 0.71 -0.01 0.25 0.24 0.29 0.23 -0.04
Mn 0.19 0.29 0.43 0.14 0.24 0.42 041 0.20 0.15 0.24
Pb —0.04 0.03 0.03 —0.03 0.51 —0.02 —0.02 —0.07 —0.06 —0.07
Se —0.08 0.15 0.13 0.08 0.58 0.07 0.09 —0.05 —0.03 0.01
Si —0.19 —0.10 0.98 0.03 0.19 0.02 0.10 -0.14 —0.26 —0.06
Ti —0.12 0.00 0.90 0.09 0.15 0.07 0.12 —-0.10 —0.23 —0.06
Zn 0.82 0.44 —0.32 0.41 —0.11 0.54 0.42 0.58 0.53 0.17
SO, 0.41 0.24 —0.15 0.34 0.58 0.32 0.28 0.40 0.31 0.20
CO 0.81 0.67 —0.24 0.34 —0.06 0.58 0.53 0.77 0.67 0.31
NO, 0.90 0.63 —0.23 0.33 —0.09 0.57 0.49 0.73 0.64 0.17

3.3. Temporal variation in source impacts

To assess the degree to which results from
CMB-LGO and CMAQ track the temporal varia-
tion in expected source tracer species, we calculated
the correlations between these modeled daily source
impacts and the daily ambient species concentra-
tions at JST (Table 5). CMB-LGO source impacts
are correlated with the expected tracers: EC, OC,
Zn, CO, and NO, for gasoline and diesel vehicles;
crustal elements (e.g., Si and Al) for the soil-dust
contribution; potassium (K) for wood burning;
selentum (Se) and SO, for power plants. CMAQ
SA is not based on the ambient data, but a similar
test gives additional insight to the factors driving the
CMAQ SA results. All of the source impacts are
most correlated with EC. EC is the most abundant
component of PM, 5 that is entirely primary and,
therefore, is in part an indicator of atmospheric
stability. (Other major PM, s components, such as
sulfate or OC, are either nearly entirely secondary in
nature, or contain a large portion that is secondary.)
Variations in CMAQ-based source impacts are
mainly due to variations in meteorology, and more
specifically to the results of meteorological model-
ing; hence, these impacts are mostly correlated with
measured EC (R-values ranging between 0.36 and
0.64). Hogrefe et al. (2001) showed that meteor-
ological models, and hence air-quality simulations

based on those results, do not capture fine-scale
temporal and spatial variations.

We also performed a sensitivity analysis for
the CMB-LGO solution, changing the ambient
concentrations of one PM,s component by
one (&) standard deviation of the log-normalized
values per analysis. Results from this analysis
(Table 6) indicate that the gasoline-vehicle
contribution is most sensitive to Zn, CO, and
NO, concentrations. (Zn is present in the lubri-
cating oil of both gasoline and diesel vehicles;
however, its fraction in emissions from gasoline
vehicles is higher.) The diesel vehicle category
is most sensitive to EC. Soil dust is most sensitive
to Si concentrations (Al was not included in the
model error function, Marmur et al., 2005 and,
therefore, was not included in the sensitivity
analysis). Vegetative burning is most sensitive to
K levels. The power-plant contribution is most
sensitive to SO, and Ca. The sensitivity of the
secondary/other OC category to OC levels, and the
lack of such sensitivity in the other categories,
indicates that OC is not a driver of the SA of
primary PM, s (OC is first apportioned to the
sources of primary PM,;, and only thereafter
any OC unaccounted for is apportioned to the
other/secondary OC category; hence, any change in
OC levels would affect the other/secondary OC
category first).
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Table 6

Change in average species concentrations and average source attributions corresponding to a decrease/increase of one standard deviation

of the log-normalized species concentrations

Average conc. relative to base

Average source-attribution relative to base case (—0jog/ + 010)

case (—0iog/ + Olog)

LDGV HDDV SDUST BURN CFPP Other OC
EC 0.55/1.81 1.04/0.89 0.34/2.13 0.99/1.02 0.98/1.00 1.03/0.98 1.06//0.91
ocC 0.57/1.77 0.97/1.01 1.02/1.00 1.00/1.00 0.95/1.01 1.01/1.00 0.30/2.27
As 0.45/2.22 1.00/1.00 1.00/0.99 1.00/1.00 0.98/1.04 1.00/1.00 1.01/0.99
Br 0.48/2.07 1.00/1.00 1.01/0.99 1.01/0.99 0.94/1.06 1.00/1.00 1.02/0.98
Ca 0.57/1.76 0.98/1.02 1.01/0.98 1.01/0.97 0.98/1.02 0.72/1.44 1.01/0.99
Cu 0.31/3.20 0.99/1.03 1.00/0.99 1.00/1.00 1.00/1.01 1.00/1.00 1.00/0.99
Fe 0.60/1.67 0.98/1.00 1.01/1.00 0.91/1.00 1.01/1.00 0.99/1.00 1.00/1.00
K 0.63/1.59 1.01/1.00 1.06/0.90 1.01/0.98 0.69/1.47 1.03/0.96 1.09/0.86
Mn 0.46/2.18 1.00/1.00 1.00/1.00 0.95/1.07 1.00/1.00 1.00/1.00 1.00/1.00
Pb 0.34/2.93 0.99/1.04 1.00/0.99 1.00/1.00 1.00/1.01 1.00/0.99 1.00/0.99
Se 0.48/2.10 1.00/0.98 1.00/1.00 1.00/0.97 1.03/1.00 1.03/1.19 1.00/1.00
Si 0.41/2.46 1.01/0.97 0.99/1.02 0.40/2.07 1.02/0.96 1.04/0.84 0.99/1.01
Ti 0.64/1.55 1.01/0.99 1.00/1.00 0.94/1.08 1.00/1.00 0.99/1.01 1.00/1.00
Zn 0.53/1.88 0.62/1.23 1.12/0.93 1.05/0.96 1.00/1.01 1.22/0.95 1.07/0.95
SO, 0.34/2.95 0.89/0.97 0.99/1.02 1.10/0.82 1.66/1.05 0.37/2.23 1.00/0.99
CO 0.58/1.72 0.72/1.08 1.14/0.97 1.03/0.99 0.99/1.00 1.19/0.96 1.05/0.98
NO, 0.53/1.88 0.71/1.06 0.93/1.03 1.05/0.99 1.09/0.99 1.06/0.98 1.04/0.99
Table 7 soil-dust, vegetative-burning, and power-plant cate-

Average and standard deviation of the ratio of ambient
concentration (Conc.) to minimum detection limit (MDL)

Species (Conc./MDL),y,
As 1.8242.01
Ba 0.58+40.25
Br 5.55+3.26
Ca 4.15+2.59
Fe 161+89.1
K 8.68+4.58
Mn 2.01+1.43
Pb 4.02+11.63
Se 2.11+1.86
Si 9.91+115
Ti 0.77+0.56
Zn 14.5+8.81

The higher the ratio, the more accurate the measurement.

It is important to analyze the measurement
accuracy of the driving species, especially in the
case of trace level metals, to ensure that they are
significantly above the detection limit. Average
ratios of ambient concentrations to the minimum
detection limits for various trace metals (Table 7)
indicate that Zn concentrations are typically well
above the detection limit, adding confidence in the
gasoline-vehicle source attribution; so are the
concentrations of Si, K, and Ca, which were
identified as key species in the attribution to the

gories, respectively. One interesting result of the
sensitivity analysis was that the CFPP contribution
was not very sensitive to Se levels, even though Se is
a unique marker for coal combustion. However, the
data in Table 7 indicate that the accuracy of the Se
measurement is low compared to Ca, and in some
cases Se concentrations may be near or lower than
the detection limit. This explains why lowering the
Se concentrations did not cause a reduction in the
CFPP contribution (as the concentration ap-
proaches the detection limit, the weight in the error
function is reduced), and why increasing Se
concentration did cause an increase in this con-
tribution (as Se levels increase above the detection
limit, so does the weight in the error function).

In terms of the number of species influencing each
category, if each category was driven by only one
species, one might consider doing the health
analysis using ambient concentrations of that
species, without the apportionment into categories.
However, most of these key species are not unique
indicators of a single source category; they are
present in emissions from several categories (e.g., Si
and Ca in both soil-dust and power-plant emissions)
and do not represent one specific source category.
Some of the categories are driven by more than one
species, such as Zn, CO, and NO, for LDGV and
SO, and Ca for CFPP, and others have “secondary”
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driving species, such as Fe and Mn for SDUST and
Br for BURN. Finally, SA results can be used to
reveal which are the species most associated with
various source categories, if one were to interpret an
association with a species as an indication of a
source-related health outcome.

3.4. Spatial representativeness

A major issue regarding the use of receptor-based
SA results in health studies is the spatial representa-
tiveness of the site. For example, Ito et al. (2004)
report that the temporal correlation of source
impacts across three monitors in New York city,
2-6 miles apart, varied significantly for sources of
primary PM. To address this issue for the Atlanta
study, we also examined speciated PM, 5 data from
the EPA-STN (Speciation Trends Network) moni-
tor at SDK, located 15.3km south east of the JST
site. The SDK site is located near the I-285
interstate (“‘perimeter”) that encircles much of the
Atlanta metropolitan area, while the JST site is
located more towards the center of Atlanta,
approximately 2km east of the I-75/85 interstate
(Fig. 8). As the STN and SEARCH networks differ
with respect to the carbon analyses method, thermal
optical transmittance (TOT) and thermal optical
reflectance (TOR), respectively (Chow et al., 2004a),
it is not possible to conduct a CMB analysis of the

Fig. 8. Location of JST and SDK monitoring sites with respect
to major interstates in Atlanta.

- SDK data using the same source profiles used for

the JST case (these were based on TOR carbon
measurements). Also, SO, and CO were not
monitored at the SDK site, so CMB-LGO cannot
be used. Instead, we compared levels and variations
in major tracers for the various categories at the two
sites. Data from March 2001 to December 2002
were used (samples at SDK were collected every
third day, so 220 samples were available for
comparison). We looked at K as an indicator for
wood burning, Si and Fe as indicators for soil dust,
and Se for coal-fired power plants (even though the
CFPP contributions were more sensitive to Ca
concentrations, Ca is by no means a unique tracer
for CFPP, and is often correlated with elements,
such as Si and Fe, indicative of soil dust). There is
no unique PM, s marker to separate gasoline and
diesel vehicles contributions. To evaluate mobile
sources as a whole, EC seems to be the most suitable
(OC is partially secondary), but the comparison

- between EC at JST and SDK will include some

noise due to the two different techniques used (TOR
and TOT). EC is also emitted from wood-burning
and other processes, so it cannot be view entirely as
mobile-source related. We also examine Zn data, as
it was correlated with gasoline vehicles impacts at
the other sites examined.

Potassium levels at JST and SDK are highly
correlated (Fig. 9). This likely indicates a spatially
homogeneous source (residential/industrial wood
combustion) or distant plume sources (prescribed
agricultural burning) hitting the two monitors
similarly. Crustal elements (Si, Fe) are also highly
correlated, indicating regional/global dust events,
and/or soil moisture resuspension effects, assuming
that rain events occur similarly at the two sites, and
that soil moisture and wind speed have a strong
influence on the resuspension of local dust. How-
ever, when high Si events are excluded, the
correlation is lower, indicating local effects (though
Fe correlations still remain high). Se is poorly
correlated between the two sites, likely representing
the directionality of impacts from power-plant
plumes. This is also demonstrated in Wade et al.
(2004), where SO, concentrations (as a power-plant
marker) were the least spatially homogeneous of the
primary gaseous pollutants. EC correlations are
surprisingly high, considering the differences in
measurement (TOR vs. TOT) and location in
proximity to major highways. One possible expla-
nation for the high correlation can be the role of
atmospheric stability in daily variations of EC (and
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Fig. 9. Time-series comparison between ambient concentrations at two Atlanta monitoring sites located 15.3 km apart (SDK and JST) for

K (a), Si (b), Fe (c), Se (d), EC (e), and Zn (f).

other pollutants) concentrations. Zn correlations
are also relatively high, but drop when outliers are
excluded. These findings are in overall agreement
with data from Wade et al. (2004) in which CO (as a
mobile-source tracer) measurements at three sites in
Atlanta, 11.5-16.8km apart, were correlated at
levels of 0.65-0.76. Such results provide information
about spatial variability of source impacts and site
representativeness in the Atlanta area. Wood-
burning and soil-dust contributions found at either
site seem to be relatively spatially representative of
the Atlanta urban area, as indicated by the
correlations of potassium, silicon, and iron.
Power-plant impacts seem to be local, based on
the low inter-site selenium correlations. It is difficult
to draw conclusions regarding the spatial represen-
tativeness of mobile-source impacts due to the lack
of a unique marker and CO data. However,
weighing both the EC and zinc correlations, it
seems that mobile sources impacts are “intermedi-
ately”” representative, i.e., likely more spatially
representative than power-plant impacts, but less
than wood-burning and soil-dust impacts. Note that
these results are based on a preliminary analysis of
two sites in Atlanta, and may represent a local
phenomenon.

4. Discussion

Associating health outcomes with sources, rather
than pollutants, may have several advantages relating
to both the epidemiologic modeling process and the
regulatory process. For such analyses, source impacts
that capture both the temporal and spatial variability
need to be generated. Receptor models, such as
CMB-LGO, capture more of the temporal variation
in source impacts at a specific receptor site, compared
to emissions-based models, though this variation
might be overestimated due to collinearity between
sources. Being driven by data at a single site, receptor
models may have some significant shortcomings with
respect to spatial representativeness and exposure
issues. SA results from emission-based models, such as
CMAQ, may be more spatially representative, as they
represent an average grid-cell value. However, limita-
tions in the ability to model fine-scale meteorological
fluctuations and daily fluctuations in emissions lead to
results being driven mainly by regional meteorological
trends (atmospheric stability), likely underestimating
the true daily variations in source impacts.

The impact of a lack of spatial representativeness
of estimated source impacts, anticipated in receptor
modeling output, would likely introduce a bias to
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the null in epidemiologic models (i.e., an attenua-
tion of the observed association). The degree of
spatial representativeness varies by source, and
results for those sources with poor spatial repre-
sentativeness (such as power plants) will have a
greater degree of bias to the null. By characterizing
the degree of spatial representativeness, investiga-
tors can take measures to handle this issue, such as
reducing the study area included in analyses for the
less representative sources, or possibly using data
from several monitoring sites, if available. The
impact of relatively limited capture of true day-to-
day variation in the source impacts, anticipated to
be more of an issue with emissions-based models
than receptor models (though these may over-
estimate the temporal variation), is also likely to
be a bias to the null in the epidemiologic models. In
the case of emissions-based models, the fact that the
day-to-day variation in the SA estimates is in large
part a result of the meteorological conditions, and
also influenced to a lesser extent by fixed day-of-
week and seasonal patterns in the estimated emis-
sions input, could lead to model instability, in-
tractable confounding by meteorological conditions
and temporal factors, such as day-of-week and
season, as well as limited usefulness in discerning the
relative impacts of the sources on health outcomes.
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