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ABSTRACT: Four receptor models and a chemical transport
model were used to quantify PM2.5 source impacts at the St.
Louis Supersite (STL-SS) between June 2001 and May 2003.
The receptor models used two semi-independent data sets,
with the first including ions and trace elements and the second
including 1-in-6 day particle-bound organics. Since each source
apportionment (SA) technique has limitations, this work
compares results from the five different SA approaches to
better understand the biases and limitations of each. The
source impacts calculated by these models were then
integrated into a constrained, ensemble-trained SA approach.
The ensemble method offers several improvements over the five individual SA techniques at the STL-SS. Primarily, the ensemble
method calculates source impacts on days when individual models either do not converge to a solution or do not have adequate
input data to develop source impact estimates. When compared with a chemical mass balance approach using measurement-
based source profiles, the ensemble method improves fit statistics, reducing chi-squared values and improving PM2.5 mass
reconstruction. Compared to other receptor models, the ensemble method also calculates zero or negative impacts from major
emissions sources (e.g., secondary organic carbon (SOC) and diesel vehicles) for fewer days. One limitation of this analysis was
that a composite metals profile was used in the ensemble analysis. Although STL-SS is impacted by multiple metals processing
point sources, several of the initial SA methods could not resolve individual metals processing impacts. The results of this analysis
also reveal some of the subjectivities associated with applying specific SA models at the STL-SS. For instance, Positive Matrix
Factorization results are very sensitive to both the fitting species and number of factors selected by the user. Conversely,
Chemical Mass Balance results are sensitive to the source profiles used to represent local metals processing emissions.
Additionally, the different SA approaches predict different impacts for the same source on a given day, with correlation
coefficients ranging from 0.034 to 0.65 for gasoline vehicles, −0.54−0.48 for diesel vehicles, −0.29−0.81 for dust, −0.34−0.89 for
biomass burning, 0.38−0.49 for metals processing, and −0.25−0.51 for SOC. These issues emphasize the value of using several
different SA techniques at a given receptor site, either by comparing source impacts predicted by different models or by using an
ensemble-based technique.

■ INTRODUCTION

Epidemiologic studies have linked fine particulate matter
(PM2.5) with adverse health outcomes, including cardiovascular
disease and asthma. Ambient PM2.5 is a mixture of pollutants
emitted from multiple sources whose respective contributions
to PM2.5 levels cannot be directly measured. Therefore,
scientists and policy-makers are interested in understanding
how individual emissions sources impact PM2.5 concentrations
and human health. Researchers have developed various source
apportionment (SA) models to quantify the impacts of
emissions sources on pollutant concentrations (e.g., Positive
Matrix Factorization (PMF),1 Chemical Mass Balance (CMB),2

and the Community Multiscale Air Quality Model (CMAQ)3).
Some approaches have also been used to provide PM2.5 source
inputs for epidemiological analyses.4−8 Several issues limit the
use of current SA approaches in epidemiological analyses,
particularly those evaluating acute health effects and relying on

day-to-day changes in exposures. Some models appear to
introduce excessive day-to-day variability in source impact
estimates whereas other models do the opposite. For example,
receptor models, such as PMF and CMB, suggest little-to-no
(or even negative) impacts from major emissions sources (e.g.,
gasoline vehicles) on certain days and high impacts on other
days.9 Conversely, SA methods based on chemical transport
models (CTMs), such as CMAQ, utilize meteorological and
emissions inventory data that do not appear to adequately
capture day-to-day fluctuations in emissions source contribu-
tions.5,10 Moreover, different SA techniques tend to predict
different PM2.5 impacts for the same source on the same day.9
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Since source impacts cannot be directly measured, it is difficult
to evaluate which model provides the most accurate results.
Further, each commonly used SA technique (e.g., CMB,

PMF, CMAQ) has known advantages and disadvantages.9 For
example, CMB requires the user to identify and characterize the
chemical composition of each emissions source affecting the
receptor location in the form of user-input, measurement-based
source profiles (MBSPs). This can be particularly difficult if the
receptor is impacted by local sources that have not been subject
to source testing. While PMF does not require user-input
MBSPs, the user must select an appropriate number of factors
and link these factors to real-world emissions sources. In
addition to other potential limitations and biases when using
such approaches,11,12 this process adds subjectivity to PMF-
based SA analyses. Lastly, SA approaches based on CTMs are
time-consuming to run.
One method of dealing with the limitations of individual SA

techniques is to use multiple models at a single receptor site.
Model results may then be compared to better understand the
biases and uncertainties associated with each technique. While
consistency between methods does not necessarily indicate
accurate results, evaluation of the circumstances in which the
model results converge or diverge is informative. Alternatively,
Lee et al.9 developed an ensemble-trained SA approach that
combines the results of several different SA methods to
calculate ensemble-based source profiles (EBSPs) that may be
used in CMB to estimate optimized source contributions.
In theory, the ensemble-trained SA technique should

minimize the errors associated with any single SA method.9

Lee et al.9 demonstrated that the ensemble method reduced the
frequency of zero-impacts days for major emissions sources
(e.g., gasoline vehicles) at the Jefferson Street site in Atlanta,
GA. Performance metrics, such as the chi-squared value (χ2)
and ratio of predicted-to-observed PM2.5 mass, also indicated
that the ensemble method outperformed CMB at that site.9

Since the ensemble method calculates EBSPs from source
impacts estimated by a number of different models, this method
should also reduce the uncertainty associated with identifying
representative source profiles for a given receptor location and
can be applied to large data sets even if the overlap among SA
methods is limited to a shorter time period.
The current work evaluates the emissions sources contribu-

ting to PM2.5 at the St. Louis Supersite (STL-SS), located in
East St. Louis, Illinois. While the STL-SS data has been used in
previous SA analyses,13−16 prior work has focused on individual
SA methods without intermethod comparison. The STL-SS
presents a challenging and informative case for comparing
methods and applying an ensemble technique because it is
impacted by urban emissions, such as automobile exhaust, road
dust, and local point sources (e.g., metals industries).
Additionally, emissions measurements were not available for
the point sources and prior work found that PMF results were
very sensitive to inputs.17 We consider five different SA
techniques to (1) identify and characterize emissions sources
affecting the STL-SS; (2) quantify contributions from these
emissions sources to PM2.5 concentrations at the STL-SS; (3)
assess uncertainties associated with predicted source contribu-
tions; and (4) combine individual SA results into an ensemble-
trained SA approach.

■ METHODS
Monitoring Data. The USEPA-funded STL-SS is located in

a low-density, urban residential/light commercial area in East

St. Louis, approximately 3 km east of the St. Louis central
business district. This site was impacted by numerous industrial
sources, including an integrated steelworks facility, and copper,
lead, and zinc smelters.13,18 Daily, filter-based PM2.5 samples
were collected at the STL-SS between June 2001 and May
2003. These samples were collected from midnight-to-midnight
Central Standard Time, and analyzed for PM2.5 mass, ions
(sulfate, nitrate, ammonium), organic and elemental carbon
(OC/EC) using the NIOSH protocol for thermal optical
transmittance (TOT) and the IMPROVE protocol for thermal
optical reflectance (TOR), and 40 trace elements by X-ray
fluorescence (XRF).13,14,19 One-in-six day samples were also
collected and analyzed for particle-bound organic tracers using
solvent extraction gas chromatography/mass spectroscopy.
Target analytes for the 1-in-6 day samples included n-alkanes,
cycloalkanes, alkanoic acids, resin acids, aromatic diacids,
alkanedioic acids, steranes, hopanes, polycyclic aromatic
hydrocarbons, phthalates, levoglucosan, and cholesterol.20

Modeling Approach. This work used five different
receptor and chemical transport models for SA at the STL-
SS: CMB using speciated (e.g., metals, ions, OC/EC) PM2.5
data (CMB), PMF using speciated PM2.5 data (PMF), CMB
using organic molecular markers (CMB-MM),14 PMF using
organic molecular markers (PMF-MM),15 and a CMAQ tracer
method (CMAQ-TR).21 Source impacts from these methods
were then used to develop EBSPs and calculate optimized
source impacts in CMB.9

CMB. CMB assumes that the measured concentration of a
chemical species on a given day may be expressed as the linear
combination of source profiles and source impacts:

∑= · +
=

C f S ei
i

I

ij j i
1 (1)

where Ci is the observed concentration of species i, f ij is the
mass fraction of species i in source j (source profile), Sj is the
contribution of source j to measured PM2.5 concentrations
(source impact), and ei is the error term. User inputs to CMB
consist of ambient concentration data (Ci), MBSPs ( f ij), and
associated uncertainties, whereas outputs consist of daily source
contributions to measured PM2.5 concentrations (Sj).

22

The initial CMB analysis at the STL-SS utilized measure-
ments of 16 species: IMPROVE total OC/EC, major ions
(sulfate, nitrate, and ammonium), and 11 XRF species
(aluminum, arsenic, calcium, copper, iron, potassium, man-
ganese, lead, selenium, silicon, and zinc). Observational data
was processed for input into CMB using the procedures
outlined in Reff et al.23,24 Days with missing OC/EC, XRF, and
sulfate measurements were excluded from the analysis. Missing
nitrate and ammonium measurements were replaced with the
geometric mean of the measured values, and the associated
uncertainties were set equal to four times the geometric
mean.23,24 Ultimately, we included 686 days (of 730 days
during the June 2001−May 2003 period) of measurement data
in this analysis.
In addition to ambient concentration data, CMB requires

source profiles to describe the chemical composition of the
emissions impacting the receptor location. This analysis used
MBSPs for gasoline vehicles, diesel vehicles, biomass burning,
dust, ammonium sulfate, ammonium bisulfate, and ammonium
nitrate from Marmur et al.25 Since the STL-SS monitor is also
impacted by metals emitted by local industries (e.g., zinc,
copper, iron, manganese, lead),13,24 it was necessary to develop
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representative metals processing profiles for use in CMB.
However, source testing data for these specific industrial
sources were not available, so metals processing profiles were
developed from the composite copper, steel, and lead
processing profiles in EPA’s Speciate database (Profiles
91008, 900042.5, and 293302.5).26 An appropriate profile for
the zinc smelter south of the STL-SS was not identified in
Speciate and was therefore not included in the CMB analysis;
however, the lead profile contained approximately 35% zinc by
mass. Speciate provided measurement uncertainties for the
composite lead smelting profile. Uncertainties for the steel and
copper profiles were set equal to 50% of the mass fraction of
each species. Recognizing that the measurement-based copper,
steel, and lead processing profiles (MBSPs with individual
metals profiles or MBSPs-MI) may not fully characterize the
metals processing emissions impacting the STL-SS, three
additional sets of metals processing profiles were developed
for a sensitivity analysis. A composite, measurement-based
metals processing profile (MBSPs with composite metals
profiles or MBSPs-MC) was developed as a weighted average
of source profiles and source impacts from the initial CMB
results (CMB-MBSPs-MI or CMB). Individual and composite
metals processing profiles were also developed from the PMF
profiles for industrial lead, copper, zinc, and steel (PMF-MI and
PMF-MC).
CMB results using MBSPs-MI were incorporated into the

ensemble method; CMB results using MBSPs-MC, PMF-MI,
and PMF-MC were compared to the ensemble results. Daily
source impacts and associated uncertainties were calculated in
EPA CMB8.2 using an effective variance approach and source
elimination to prevent negative source impacts.22

PMF. Like CMB, factor analytic methods, such as EPA’s
PMF, also assume that the ambient concentration of a chemical
species, i, can be expressed as the linear combination of the
mass of species i in source j and the contribution of source j to
PM2.5 concentrations. PMF uses a mathematical approach to
decompose sample data into factors and contributions;
therefore the user is not responsible for specifying the chemical
composition of the emissions sources impacting the monitor.
The user must, however, choose an appropriate number of
factors and relate these factors to real-world emissions sources.
Although the selection of an appropriate number of factors is
guided by the use of fitting statistics (e.g., the Q value) this
process can still be subjective.
The only difference between the concentration and

uncertainty data used in CMB and PMF was the use of
temperature-resolved IMPROVE OC/EC fractions, rather than
total OC/EC measurements. The analysis also excluded days
with missing ion measurements, resulting in 655 (of 730) days
of measurement data for input into PMF. Calculations were
performed using EPA PMF v3.0.2.2.27 Species with signal-to-
noise ratios (S/N) less than two were considered weak species:

∑=
| |
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where S is the signal and N is the noise for each measurement k.
The uncertainties associated with these species were multiplied
by a factor of 3 to lower their influence on the final 11-factor
PMF solution. A bootstrapping analysis was performed to
estimate the stability and uncertainty of the PMF solution.
Factor contributions were determined from the average of 100

bootstrapping runs, and uncertainties were set equal to the
standard deviation of 100 bootstrapping runs.

Molecular Marker Methods. 1-In-6 day, particle-bound
organic data and the NIOSH OC/EC measurements were used
in both CMB and PMF to estimate source contributions to OC
rather than PM2.5 at the STL-SS between June 2001 and May
2003. For CMB-MM, we used source contributions to OC,
source impact uncertainties, and model fit statistics for 148 (of
730) days at the STL-SS reported in Bae et al.14 Since Bae et al.
considered all unapportioned OC to be from secondary
sources, the model did not calculate source impact uncertainties
for SOC.
Jaeckels et al.15 previously used PMF-MM to estimate source

contributions to OC concentrations at the STL-SS between
June 2001 and May 2003. Since Jaeckels et al. did not provide
daily source contributions to OC concentrations, we reran
PMF-MM using their input files, which consisted of ambient
concentration data and associated measurement uncertainties
for 107 particle-bound organic compounds, NIOSH OC/EC,
silicon, and aluminum for 93 (of 730) days.15,28 We added 11
days of measurement data to the original data set, including 4
days in July 2001. We estimated measurement uncertainties for
the 11 additional days by regressing the initial 93 days of
ambient concentration data by their associated measurement
uncertainties. Species with S/N less than two were treated as
“weak” species and 9-hexadecenoiacid was excluded from the
analysis.15 The resulting eight-factor PMF solution was similar
to the eight-factor PMF solution reported by Jaeckels et al.

CMAQ-TR. CMAQ-TR uses the CTM, CMAQ, and the
direct decoupled method in three dimensions to investigate the
sensitivity of PM2.5 concentrations to emissions from 28 source
categories. Baek et al. previously ran CMAQ-TR for a domain
covering the contiguous United States, for 29 days in July
2001and 29 days in January 2002.21 CMAQ-TR does not
estimate source impact uncertainties, which is a limitation of
this method.

Ensemble Method. Ensemble-average source impacts at
the STL-SS were calculated from the PMF, PMF-MM, CMB,
CMB-MM, and CMAQ-TR results for July 2001 and January
2002. This study considered nine categories of PM2.5 emissions:
gasoline vehicle exhaust and resuspended road dust (GV),
diesel vehicle exhaust (DV), dust (DUST), biomass burning
(BURN), metals processing (METALS), secondary organic
carbon (SOC), secondary sulfate, secondary nitrate, and
ammonium. These nine source categories comprise about
70% of the inventoried primary PM2.5 sources and the
dominant sources that contribute to secondary pollutant
formation.21 The individual emissions sources identified by
CMB, PMF, CMB-MM, PMF-MM, and CMAQ-TR were
binned into the five primary source categories (i.e., GV, DV,
BURN, DUST, and METALS) and SOC (see Supporting
Information (SI) Table S1). Secondary sulfate, nitrate, and
ammonium source categories were estimated using only the 11-
factor PMF results. The secondary sulfate and nitrate factors
accounted for the majority of the modeled sulfate (86%),
nitrate (81%), and ammonium (81%) mass in PMF. However,
these secondary species were also present at low levels in the
primary source factors (i.e., gasoline vehicles). Thus, secondary
sulfate, nitrate, and ammonium contributions were calculated
by summing the modeled sulfate, nitrate, and ammonium mass
across the 11 PMF factors. Sulfate was left in the PMF steel
processing factor, since it comprised a significant percentage
(40% by mass) of the steel processing MBSP used in CMB.
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Although PMF did not resolve an SOC factor, the OC in the
secondary sulfate and nitrate factors was considered to be from
secondary formation. As such, the OC from these two PMF
factors was combined with the SOC estimated by CMAQ-TR,
CMB-MM, and PMF-MM to calculate ensemble-average SOC
impacts.
PMF-MM and CMB-MM calculate source contributions to

OC rather than PM2.5 mass. Source contributions from these
methods were scaled by source-specific OC/PM2.5 ratios
provided in the literature14,29−31 (see SI Table S2). Since
PMF-MM did not resolve separate gasoline and diesel vehicle
factors, the combined mobile source factor was split into a

gasoline and diesel component using the ratio of gasoline to
diesel vehicle impacts estimated in CMAQ-TR.
Ensemble-average source impacts were calculated by

averaging the daily source impacts predicted by each model
for two one-month periods in July 2001 and January 2002.
Since each SA approach uses a different method for estimating
source impact uncertainties, all methods were given an equal
weighting during the averaging. However, to prevent ensemble-
average source contributions from being biased by the
availability (or unavailability) of model results on a particular
day, source contributions were mean-centered prior to
averaging.

Table 1. Comparison of Average PM2.5 Source Impacts Estimated by CMB, PMF, CMB-MM, PMF-MM, and CMAQ-TR for
June 2001−May 2003

PMFa CMBb CMAQ-TRc PMF-MMa CMB-MMb

%PM2.5 or OC mass ratio, %d 100 ± 12 91 ± 15 77 ± 26e 229 ± 116 84 ± 48g

118 ± 34f

mean measured PM2.5 or OC mass, μg/m3 d 18.0 17.9 22.1e 3.8 3.9
17.8f

N 655 433h 29e 123 148
average PM2.5 source impacts, μg/m3

GV 2.2 ± 1.4 4.0 ± 0.56 2.5 0.62 ± 0.39 5.1 ± 0.65
DV 1.4 ± 1.1 0.78 ± 0.56 0.89 0.75 ± 0.48 0.31 ± 0.05
DUST 0.96 ± 0.64 0.34 ± 0.17 1.3 1.3 ± 0.61 0.28 ± 0.03
BURN 1. ± 0.62 1.2 ± 1.1 3.0 0.64 ± 0.42 1.3 ± 0.28
SOC 0.29 ± 0.01 0.21 ± 0.63 1.3 0.59 ± 0.33 1.7c

METALS 1.9 ± 0.97 1.7 ± 0.54 1.0
aSource impact uncertainties were calculated from the standard deviation of 100 bootstrapping runs. bSource impact uncertainties were calculated by
CMB. cSource impact uncertainties were not calculated by the model. dModeled-to-measured PM2.5 mass ratios and mean measured PM2.5 mass
provided for PMF, CMB, and CMAQ-TR. Modeled-to-measured OC mass ratios and mean measured OC (NIOSH/TOT) mass provided for PMF-
MM and CMB-MM. eJuly 2001. fJanuary 2002. gDoes not consider SOC. Since Bae et al. considered all unapportioned OC to be from secondary
sources, modeled-to-measured mass ratio is 100% with SOC. hCMB failed to converge to a solution on 253 of the 686 days with valid measurement
data.

Figure 1. Comparison of ensemble average source impacts in μg/m3 to selected SA results from PMF, CMB, PMF-MM, CMB-MM, and CMAQ-TR
for July 2001 and January 2002: (a) GV, (b) DUST, (c) SOC, (d) METAL.
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The ensemble-average source impacts were used to under-
stand how source impacts from each of the five initial SA
approaches deviated from the mean during July 2001 and
January 2002:32

∑σ ̂ = ̅ −
=N

S S
1

( )jl
k

N

jkl jkl
2

1

2

(3)

Here, σ̂jl is the deviation of source j from the mean or
updated source impact uncertainty for each SA method l (i.e.,
CMB, PMF, CMB-MM, PMF-MM, or CMAQ-TR), S̅jkl is the
ensemble-average impact for source j on day k, Sjkl is the
contribution from source j from method l on day k, and N is
the number of days included in the calculation. N ranged from
9 for PMF-MM to 55 for CMAQ-TR and PMF. σ̂jl’s were then
compared to initial uncertainty estimates from PMF and CMB
and used for intermethod comparison.
Ensemble-average source impacts for July 2001 and January

2002 were then used to calculate summer and winter EBSPs
( f ij’s) using a reverse CMB approach that minimized χ2:
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where Cik is the observed concentration of species i on day k, f ij
is the mass fraction of species i in source j, Sjk is the
contribution of source j to PM2.5 concentrations on day k, and
σCik

2 is the uncertainty associated with the measured
concentration. Calculations were performed in Excel, using a
nonlinear solver package developed by Frontline Systems.33

During each optimization, the source profiles were initially set
to the MBSPs, and constrained to the MBSP ± 3 × σMBSP as
long as these values were between 0 and 1. Additionally, the
total mass fractions of the species in the source profiles were

restricted to values less than or equal to one. This calculation
specified a primary organic matter to OC (OM/OC) ratio of
1.2 for GV, DV, DUST, and METALS, and an OM/OC ratio of
1.4 for BURN. OC/EC ratios for GV and DV were constrained
to values between 0.80 and 4.0 and 0.17 and 1.25,
respectively.34 The OC/EC ratio for the BURN profile was
constrained to values greater than or equal to 3. Lastly, the total
carbon fractions (OC + EC) in the GV, DV, and BURN
profiles were constrained to values greater than or equal to 0.5.
Daily source profiles were averaged for July 2001 and January

2002 to calculate the summer and winter EBSPs. The source
profile uncertainties were set equal to the standard deviation of
the daily profiles. The summer profiles were used to estimate
source impacts in CMB between April and October, while the
winter profiles were applied to daily measurements collected
between November and March.

■ RESULTS AND DISCUSSION

A comparison of the CMB, PMF, CMAQ-TR, CMB-MM, and
PMF-MM results demonstrate that these techniques can
calculate very different source impacts for the same receptor
location (Table 1, Figure 1). Pairwise Pearson correlation
coefficients between the five methods ranged 0.034−0.65 for
GV, −0.54−0.48 for DV, −0.29−0.81 for DUST, −0.34−0.89
for biomass burning, −0.25−0.51 for SOC, and 0.38−0.49 for
METALS (see SI Tables S3A−G). Correlation coefficients
between CMB and PMF ranged from 0.11 for SOC to 0.81 for
DUST, whereas correlation coefficients between CMB-MM
and PMF-MM ranged from 0.10 for SOC to 0.89 for BURN.
PMF, CMB, PMF-MM, CMB-MM, and CMAQ-TR results

were then combined to calculate ensemble-average source
impacts for July 2001 and January 2002 (Figure 1). Since the
ensemble method used information from five different
methods, source impacts could be resolved on days when

Figure 2. Comparison of winter and summer EBSPs to MBSPs: (a) GV, (b) DUST, (c) BIOMASS, (d) METAL.
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individual methods did not provide results. This was an
improvement over CMB, which failed to converge to a solution
on over 35% of the 686 days with valid measurements (due to
colinearity between source profiles), and the molecular markers
methods, which only had adequate sample data to resolve
source impacts on approximately one-sixth of the days during
the time period of interest (Table 1). The ensemble method
also eliminated negative and zero impact estimates for major
emissions sources, such as vehicles and SOC. This was an issue
for both the CMB- and PMF-based methods. CMB, for
example, calculated no impact from DV on 141 days and no
impact from SOC on 336 days between June 2001 and May
2003, including during the summer.
CMAQ-TR and ensemble results generally exhibited less

day-to-day variability in source impacts than the other receptor-
based approaches. For example, CMB-MM calculated spikes in
GV impacts on 7/3/2001 (14.6 μg/m3) and 7/9/2001 (20.4
μg/m3). While the ensemble method also calculated elevated
GV impacts for these days (5.9 and 7.9 μg/m3 on 7/3/2001
and 7/9/2001, respectively), they were lower than those
estimated by CMB-MM. A similar dampening effect was
observed for the ensemble-average DV, DUST, and BURN
impacts in July (results not shown). Conversely, the ensemble
results for the composite metals processing source exhibited the
day-to-day variability expected from a point source or
combination of point sources. CMAQ-TR, however, did not
capture the elevated metals processing impacts estimated by
other methods in July and January (e.g., July 10 and January 9).
Prior to developing summer and winter EBSPs, the

ensemble-average source impacts were used to understand
how source impacts for the five initial SA methods deviated
from the mean in July 2001 and January 2002 (eq 3). This
technique provides uncertainty estimates for SA methods that
did not previously calculate source impact uncertainties (i.e.,
CMAQ-TR and SOC in CMB-MM). Additionally, since
different methods use different techniques to calculate
uncertainties (e.g., bootstrapping, effective variance), σ̂jl allowed
for a better comparison between methods. Updated relative
uncertainties, defined as the deviation from the mean divided
by the average source impact (σ̂/S ̅), range 0.49−6.9 for CMB,
0.57−2.6 for PMF, 0.66−4.4 for CMB-MM, 0.46−20 for PMF-
MM, and 0.49−1.2 for CMAQ-TR (SI Tables S4A−F). σ̂jl’s
were generally higher than the source impact uncertainties

calculated in CMB and PMF. However, σ̂jl was lower than the
initial source impact uncertainty for PMF for DV and METAL
(SI Tables S4A−F).
Ensemble-average source impacts for July 2001 and January

2002 were then used to calculate summer and winter EBSPs,
using a constrained inverse CMB model (eq 4). In general, the
EBSPs and MBSPs-MI showed greater interprofile variability in
the weight percentages of the XRF species than the ionic
species, EC, and OC (Figure 2). The EC/OC ratios and total
carbon fractions for the ensemble- and measurement-based GV
and DV profiles were identical to two significant figures. EC/
OC ratios were 0.43 for the GV profiles and 3.7 for the DV
profiles. It should be noted that DV profile EC/OC ratios
reflect vehicles moving at intermediate to highway speeds, but
may vary substantially depending upon operational mode.35

The ensemble-based DUST and BURN profiles contained
smaller mass fractions of most XRF species than the MBSPs,
particularly Si, Al, and K (Figure 2). The 16 fitting species used
in this analysis also tended to explain a smaller mass fraction of
the EBSPs than the MBSPs. For example, the MBSPs
accounted for 92% of the mass of the DUST source, whereas
the summer and winter EBSPs accounted for 89% and 84% of
the DUST source.
The greatest differences between the EBSPs and MBSPs

were observed for the metals processing source. This was
expected, since the metals processing source was a composite of
multiple industrial point sources, and the composition of this
source was expected to be more variable than the other sources.
For example, the METALS EBSPs contained substantially less
As, Si, and Zn than the METALS MBSP. As with the other
sources, the 16 fitting species accounted for a smaller mass
fraction of the METALS EBSPs than the METALS MBSP. The
summer and winter EBSPs explained 33% and 31% of the
METALS profile mass, while the METALS MBSP explained
71%. The finding that the EBSPs consistently explained less of
the emissions source mass than the MBSPs is due, in part, to
the lower bound on the total mass fraction of the EBSPs being
unconstrained.
The summer and winter EBSPs were used to calculate

optimized source impacts at the STL-SS between June 2001
and May 2003 using CMB (CMB-EBSPs). Correlation
coefficients between source impacts estimated using CMB-
EBSPs and the five initial SA methods ranged 0.16−0.66 for

Table 2. Comparison of CMB-EBSPs, CMB-MBSPs-MC, and PMF Results for May 2001−June 2003a

CMB-EBSPs CMB-MBSPs-MCb PMF

χ2 11400 ± 38900 41000 ± 390000 126 ± 245
% massc 93.8 ± 16.2 87.8 ± 13.6 99.7 ± 11.6
Nd 673 341 655

average PM2.5 contributions, μg/m
3 e correlation coefficients

CMB-EBSPs CMB-MBSPs-MC PMF CMB-EBSPs v. CMB-MBSPs-MC CMB-EBSPs v. PMF

GV 3.8 ± 0.84 3.6 ± 0.60 2.2 ± 1.4 0.61 0.66
DV 1.2 ± 0.38 0.56 ± 0.58 1.4 ± 1.1 0.82 0.15
DUST 0.42 ± 0.09 0.67 ± 0.13 0.96 ± 0.64 0.76 0.76
BURN 0.98 ± 0.39 2.2 ± 1.2 1.3 ± 0.62 0.53 0.87
SOC 1.3 ± 0.60 0.14 ± 0.53 0.29 ± 0.01 0.59 0.093
METAL 2.1 ± 0.60 0.17 ± 0.11 1.9 ± 0.97 0.42 0.69

aUncertainties shown are either calculated by the model or derived using traditional approaches. bComposite measurement-based metals processing
profiles were compared with the EBSPs, since the EBSPs also consider a composite metals-processing source. cRatio of modeled-to-measured PM2.5
mass. d686 days with valid measurement data were input into the CMB-based models. Both models failed to converge on certain days, limiting the
number of days on which CMB-EBSPs and CMB-MBSPs-MC estimated source impacts. eTable does not show secondary sulfate, nitrate, or
ammonium contributions, which typically comprised nearly half of modeled PM2.5 mass.
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GV, 0.02−0.85 for DV, −0.19−0.86 for DUST, 0.07−0.87 for
BURN, −0.22−0.72 for SOC, and 0.21−0.69 for METALS (see
SI Tables S3A−G). The metals processing impacts estimated
by PMF and CMB were better correlated with impacts
estimated using the ensemble method than with impacts
estimated using CMAQ-TR. This result was expected since the
emissions inventory and meteorological data used in CMAQ-
TR are thought to underestimate day-to-day variability in local
point source emissions and pollutant transport to the receptor.5

CMB-EBSPs offered several advantages over CMB-MBSPs.
Primarily, CMB-EBSPs calculated source impacts on more days
than CMB-MBSPs. CMB-EBSPs also reduced zero impact days
for major emissions sources, such as DV and SOC. Further,
goodness of fit statistics, such as χ2 and the ratio of modeled-to-
measured PM2.5 mass, were improved using CMB-EBSPs.
CMB-EBSPs also resulted in a higher estimate of average
metals processing impacts and the fewest zero impact days for
this source (Table 2). This indicates that PM2.5 from industrial
point sources impacted the STL-SS on most days during the
time period of interest, which is likely due to the proximity of
those sources; however, this result could also indicate that
CMB-EBSPs apportion too much PM2.5 mass to the composite
industrial metals source. The ensemble technique offers an
alternative method for developing representative metals
processing profiles. This is advantageous since the speciate
MBSPs may not adequately characterize the industrial point
sources affecting the STL-SS due to operational differences
between facilities (e.g., furnace types, purity of the raw material,
emissions controls) and other factors. For example, the steel
MBSP was approximately 40% sulfate; however, a comparison
of sulfate concentrations measured near the steel facility fence
line (Granite City Monitor) and at a distal monitor (Blair
Street) does not indicate primary sulfate impacts from the
facility.36 Lastly, while the MBSPs did not consider the nearby
zinc smelter, the metal EBSPs contain information from the
industrial zinc factor identified during the PMF analysis.
Compared to CMB-EBSPs, PMF had a better modeled-to-

measured PM2.5 mass ratio and lower χ2. This is expected since
PMF adjusts source profiles to improve fit over the entire time
period. However, there are still several advantages to the
constrained ensemble method, which considers information
from multiple SA models, including PMF. First, PMF requires
several semisubjective decisions, such as selecting an appro-
priate number of factors and relating these factors to real-world
emissions sources. For example, a previous PMF analysis at the
STL-SS found that ten factors produced a robust solution,
which corresponded well with known PM2.5 sources in East St.
Louis.13 The current study found that an additional factor (11
factors) was required to distinguish gasoline from diesel vehicle
impacts. Additionally, this work found that the PMF results
were sensitive to the selection of XRF fitting species, especially
in the resolution of separate gasoline and diesel vehicle factors.
Similarly, Christensen and Schauer found that the gasoline
factor was the least stable PMF factor for this data set.12 In
contrast, the ensemble method utilizes gasoline and diesel
vehicle profiles developed from the results of several different
SA methods, circumventing some of the issues associated with
distinguishing mobile source factors. Lastly, the ensemble
method does not rely on fractionated OC/EC data, which may
not be available for all receptor locations of interest (e.g., earlier
Chemical Speciation Network data).
While the ensemble method offers several advantages over

other SA approaches at the STL-SS, this method is also subject

to several limitations. First, CMB-EBSPs used a composite
metals processing source to incorporate the CMAQ-TR results,
which consider only industry-wide impacts. Since the smelters
are located south of the site and the steelworks is located north
of the site, impacts from these sources may not always covary
and the composite METALS profile may not adequately
characterize industrial metals emissions for all wind directions
and pollutant transport conditions.
Additionally, results from a number of different SA methods

are needed to calculate the EBSPs. This makes the ensemble
method more time-consuming to implement than other
receptor-based SA techniques, especially if previous SA results
are unavailable. This work considered five SA models based
primarily on data availability; however, Lee et al. and
Balachandran et al. found that removing individual methods
from the ensemble calculation (i.e., CMAQ and CMB-MM)
changed predicted source contributions by less than 3%.9

Additionally, while the EBSPs outperform the MBSPs at the
STL-SS based on goodness of fit statistics and reductions in
zero impact days, actual source impacts at the STL-SS cannot
be directly measured. Thus, it is impossible to conclusively
determine which method is most accurate. However, since the
ensemble method incorporates results from a number of
different SA strategies, each with its own biases and limitations,
this method should limit the inaccuracies associated with any
single method. Further, Balachandran et al. found that
ensemble average source impact uncertainties were lower
than individual method uncertainties using an iterative
approach to calculate source impact uncertainties and
ensemble-average source impacts for the Jefferson St. site in
Atlanta.32

In addition to testing the newly developed ensemble-based
SA technique, this work also highlights some of the difficulties
associated with using traditional SA approaches at a monitor
impacted by multiple point sources. Since the composition of
the metals processing sources affecting the STL-SS are not well-
characterized and the composite METALS EBSP may not fully
capture compositional variations in metals processing emis-
sions, a sensitivity analysis was conducted using five different
sets of metals processing profiles: MBSPs-MI, MBSPs-MC,
PMF-MI, PMF-MC, and EBSPs. CMB-derived source impacts
using these different profiles were correlated, with correlation
coefficients ranging 0.39−0.93 for GV, 0.80−0.96 for DV,
0.53−0.94 for DUST, 0.38−0.85 for BURN, 0.58−0.91 for
SOC, and 0.37−0.84 for metals processing (see SI Tables
S5A−G). However, average PM2.5 contributions for all sources
varied somewhat depending upon the metals processing
profiles. For example, average BURN impacts ranged from
0.98 for CMB-EBSPs to 3.4 for CMB-PMF-MC, and average
GV impacts ranged from 2.5 for CMB-PMF-MI to 4.0 for
CMB-MBSPs-MI (see SI Table S6). This analysis suggests that
estimated source impacts were somewhat sensitive to the metal
processing profile or set of profiles, even though metals
processing impacts accounted for less than 15% of
reconstructed PM2.5 mass.
This sensitivity analysis indicates that decisions made in the

application of the various methods, such as the characterization
of local point sources, can impact SA results. This elucidates the
benefits of using several different SA models since there are
limitations, subjectivities, and uncertainties associated with all
available approaches. In particular, if the sources impacting a
particular receptor location are not well-characterized, it may be
useful to consider both a factor analytic and a CMB approach.
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PMF allows the user to investigate source impacts at the
receptor site without quantitatively characterizing the compo-
sition of important emissions sources. CMB avoids the need to
select an appropriate number of factors and link these factors to
real-world sources. Additionally, while CMAQ-TR results may
not be available for the entire time period of interest, these
results may be used to understand whether receptor model
results are consistent with meteorological and emissions
inventory data, and potentially identify emissions inventory
deficiencies. Conversely, receptor models may better character-
ize the day-to-day variability in source impacts at a specific site
missed by CTMs, such as CMAQ. Lastly, organic molecular
marker methods provide SA results using a semi-independent
data set that is not influenced by trace metals; however,
molecular marker data are not widely available and must be
scaled by source specific PM2.5/OC ratios, adding uncertainty
to the analysis. It is therefore advantageous to use several
different SA techniques at a given receptor site, either by
comparing source impacts predicted by different models using
different data sets or by utilizing an ensemble-trained SA
technique.
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