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ABSTRACT: Estimating ground-level PM2.5 from satellite-derived aerosol optical
depth (AOD) using a spatial statistical model is a promising new method to evaluate
the spatial and temporal characteristics of PM2.5 exposure in a large geographic region.
However, studies outside North America have been limited due to the lack of ground
PM2.5 measurements to calibrate the model. Taking advantage of the newly
established national monitoring network, we developed a national-scale geographically
weighted regression (GWR) model to estimate daily PM2.5 concentrations in China
with fused satellite AOD as the primary predictor. The results showed that the
meteorological and land use information can greatly improve model performance. The
overall cross-validation (CV) R2 is 0.64 and root mean squared prediction error
(RMSE) is 32.98 μg/m3. The mean prediction error (MPE) of the predicted annual
PM2.5 is 8.28 μg/m3. Our predicted annual PM2.5 concentrations indicated that over
96% of the Chinese population lives in areas that exceed the Chinese National
Ambient Air Quality Standard (CNAAQS) Level 2 standard. Our results also confirmed satellite-derived AOD in conjunction
with meteorological fields and land use information can be successfully applied to extend the ground PM2.5 monitoring network
in China.

■ INTRODUCTION

Epidemiologic studies have shown that exposure to fine
particulate matter (PM2.5, particles with aerodynamic diameter
less than 2.5 μm) is associated with increased cardiovascular
and respiratory morbidity and mortality.1,2 With the rapid
economic development, PM2.5 pollution is becoming a severe
environmental problem in China and has been attracting great
attention.3,4 Limited studies show that PM2.5 pollution has had
a severe health impact in China. For example, one study shows
that heavy smog is associated with an increased risk of hospital
visits and hospital admissions in Beijing, especially for
cardiovascular and respiratory disease.5 Another study shows
that all-cause and cardiovascular mortalities are significantly
associated with PM2.5 exposure in Xi’an City.6 Epidemiologic
research on the health impacts of PM2.5 exposure continues to
be a research hotspot in China.
Epidemiologic studies of PM2.5 require long-term, accurate

PM2.5 exposure data, which historically have been provided by
ground monitoring networks. Before 2013, however, there were
only a few cities in China (e.g., Nanjing and Guangzhou City)
where had research monitoring sites.7,8 The lack of spatially and
temporally continuous ground PM2.5 measurements before
2013 makes it difficult to assess the historical spatial and
temporal variability of PM2.5 and has substantially restrained
epidemiological studies of PM2.5 in China.

The application of satellite remote sensing in air quality
studies has evolved greatly in recent years.9 Because satellite
remote sensing provides comprehensive spatial and temporal
coverage, estimating PM2.5 using satellite remote sensing can
supplement the ground PM2.5 monitoring network. The
National Aeronautics and Space Administration (NASA)
launched two Earth Observing System (EOS) satellites, the
Terra and Aqua, in 1999 and 2002, respectively.10 The
Moderate Resolution Imaging Spectroradiometer (MODIS)
and Multiangle Imaging SpectroRadiometer (MISR) aboard the
Terra satellite and a second MODIS aboard the Aqua satellite
measure aerosol optical depth (AOD), which is retrieved at
visible and near-infrared wavelengths. The corresponding
particle sizes of AOD range from 0.1 to 2 μm, which is similar
to the size range of PM2.5.
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Early studies examined the relationship between PM2.5 and
satellite-derived AOD using simple linear regression model12 or
applying local scaling factors from a global atmospheric
chemistry model,13 and found that AOD derived from satellite
remote sensing can be an effective tool for PM2.5 pollution
monitoring. One study estimated global PM2.5 concentrations
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from satellite-derived AOD14 using the PM2.5/AOD ratios
derived from a global chemical transport model (CTM). This
method does not require ground PM2.5 data to develop the
model. However, it is difficult to validate these results since
sufficient ground measurements do not exist for most of the
world, including China.
In recent years, many studies have established the relation-

ship between PM2.5 and satellite AOD using advanced statistical
models (e.g., generalized linear regression, generalized additive,
geographically weighted regression, and land use regression
models).15−18 These studies included meteorological parame-
ters (e.g., boundary level height, temperature, relative humidity,
and wind speed) and land use information (e.g., elevation,
population, and vegetation cover) as covariates to improve
model performance. Their results showed that meteorological
fields and land use information can significantly improve the
model performance.
Empirical statistical methods require sufficient ground PM2.5

measurements to fit and validate. The development of this
research area has been very limited in China, mainly due to the
lack of extensive ground PM2.5 measurements. To date, there
were only a handful of studies conducted in some Chinese
cities, including Beijing, Xi’an, and Zhengzhou.19−22 Because
these studies were conducted only in specific sites or cities,
their models could not be easily generalized to estimate PM2.5
elsewhere. Furthermore, few of these studies considered the
impact of land use information. To our knowledge, no national-
scale studies on such empirical modeling of PM2.5 and satellite-
derived AOD in conjunction with meteorological and land use
information in China have been reported. China began the
development of a nationwide PM2.5 monitoring network in
2012. The capital cities of all provinces and the major cities in

Hebei, Shandong, Shanxi, Jiangsu, Zhejiang, and Guangdong
provinces finished the PM2.5 monitoring sites construction and
began to release PM2.5 concentrations information in December
2012, which provides data for AOD and PM2.5 modeling.
To date, advanced spatial statistical PM2.5 exposure models

have not been reported in China. As the first attempt, we
present a national-scale geographically weighted regression
(GWR) model for PM2.5 estimation in China using satellite-
derived AOD data, meteorological and land use information,
and the newly released ground PM2.5 monitoring data. The rest
of the paper is organized such that various input data sets and
the model structure are described in the “Materials and
Methods” section. In the “Results and Discussion” section, we
provide the model fitting and cross-validation (CV) results,
discuss the model-predicted spatial and temporal variability of
PM2.5 in China, and we also compare our results with two
previous studies.

■ MATERIALS AND METHODS

Ground PM2.5 Measurements. Daily average PM2.5
measurements from December 22, 2012 to November 30,
2013 were collected primarily from the official Web site of the
China Environmental Monitoring Center (CEMC) (http://
113.108.142.147:20035/emcpublish/). Some provinces (such
as Shandong, Shanxi, Zhejiang, and Guangdong province) and
municipalities (such as Beijing and Tianjin City) have
established additional monitoring sites that are not included
in the CEMC’s Web site. Data from those additional sites were
also collected. According to the Chinese National Ambient Air
Quality Standard (CNAAQS, GB3095-2012, available on the
Chinese Ministry of Environmental Protection (MEP) Web site
http://kjs.mep.gov.cn/), the ground PM2.5 data of China’s

Figure 1. Spatial distribution of PM2.5 monitoring sites involved in this study. There are 835 monitoring sites in 113 cities. It should be noted that
the monitoring sites are clustering in the urban areas of major cities whereas rural areas have little coverage. Many monitoring sites are overlaid in
this map.
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mainland are measured by the tapered element oscillating
microbalance method (TEOM) or the beta-attenuation
method. In addition, ground PM2.5 monitoring data of
Macao, Hong Kong, and Taiwan were also collected from the
Web sites of the Macao Meteorological and Geophysical
Bureau (MCMGB) (http://www.smg.gov.mo), the Hong
Kong Environmental Protection Department (HKEPD)
(http://www.epd-asg.gov.hk), and the Taiwan Environmental
Protection Administration (TWEPA) (http://taqm.epa.gov.
tw), respectively. PM2.5 data for Taiwan, Hong Kong, and
Macao are also measured by TEOM or beta-attenuation. A total
of 835 monitoring sites in 113 cities are included in the present
work (Figure 1).
Satellite AOD Retrievals and Calibration. MODIS Level

2 Aerosol Products. The MODIS instruments scan a swath of
2330 km and have a global coverage of 1−2 days. Terra
MODIS and Aqua MODIS cross the equator at approximately
10:30 a.m. and 1:30 p.m. local time, respectively. MODIS
retrieves AOD at 10 km spatial resolution at nadir. Level 2
MODIS aerosol product data (Collection 5.1) from 2000 to
November 30, 2013 (Terra) and 2002 to November 30, 2013
(Aqua) were downloaded from the Level 1 and Atmospheric
Archive and Distribution System (LAADS Web; http://
ladsweb.nascom.nasa.gov/). MODIS AOD data before 2013
were used for AOD calibration (“Satellite AOD Calibration”
section). Data after December 22, 2012 were used for
modeling. The AOD data (MODIS parameter name: Image_-
Optical_Depth_Land_And_Ocean) at 550 nm with Quality
Assurance Confidence Flag = 2 and 3 were used.
MISR Level 2 Aerosol Products. MISR was launched aboard

the Terra satellite in 1999. The spatial resolution of MISR
AOD data is 17.6 km. MISR has a global coverage between 2
and 9 days depending on location and crosses the equator at
approximately 10:30 a.m. local time. The MISR Level 2 aerosol
data from 2000 to November 30, 2013 were downloaded from
the NASA Langley Research Center Atmospheric Science Data
Center (http://l0dup05.larc.nasa.gov/MISR/cgi-bin/MISR/
main.cgi). Like the MODIS data, we used MISR AOD data
before 2013 for AOD calibration and data after December 22,
2012 for modeling. The best-fit AOD data (MISR parameter
name: RegBestFitSpectralOptDepth) at 558 nm, with the
smallest chi-square fitting parameter from all aerosol mixtures,
were extracted from the MISR data files.
Satellite AOD Calibration. To improve data coverage, Aqua

MODIS, Terra MODIS, and MISR AOD data were fused
together for modeling. MODIS and MISR have different value
ranges and accuracies; MODIS allows small negative values, but
MISR does not. Therefore, Terra MODIS, Aqua MODIS, and
MISR AOD data need to be calibrated separately before they
can be fused together. The AOD data from the Aerosol Robotic
Network (AERONET) were used to calibrate the MODIS and
MISR AOD data.23 AERONET data have been widely used for
validating the satellite-derived AOD due to their high
accuracy.24,25 AERONET Level 2 data (quality-assured) from
15 sites in China from 2000 to 2012 were downloaded from the
AERONET Web site (http://aeronet.gsfc.nasa.gov/). Each site
has operated for at least three seasons in the period of 2000
through 2012. To compare to the MODIS and MISR AOD
values, AERONET AOD at 550 nm was interpolated from
AERONET AOD at 440 and 675 nm using the Angstrom
Exponent provided by AERONET.26 A previous validation
study showed that 50 km is the maximum appropriate radius
window for satellite-/ground-based comparisons over land.27 In

this study, Terra MODIS, Aqua MODIS, and MISR AOD
values within 25 km of the AERONET sites were averaged and
compared with AERONET AOD values measured within the
hour of the satellite overpass time, respectively. A simple linear
regression between the AERONET and each satellite AOD
data set was established each season (Supporting Information
(SI), Text S1). Then, Terra MODIS, Aqua MODIS, and MISR
data were calibrated using the established relationships,
respectively.

Meteorological Data. Meteorological data were obtained
from the Goddard Earth Observing System-Forward Processing
(GEOS-FP).28 GEOS-FP is the latest GEOS-5 meteorological
data produced with version 5.11.0 of the GEOS Data
Assimilation System (DAS).29 GEOS-FP has a native horizontal
resolution of 0.25° latitude × 0.3125° longitude and hourly or
3-hourly temporal resolution in a nested grid covering China.
Corresponding to the satellite overpass time, the mean values
of planetary boundary layer height above surface (PBLH, m),
temperature at 2 m above displacement height (T2M, K), wind
speed (WS, m/s) at 10 m above displacement height, mean
relative humidity in PBLH (RH_PBLH, %), and surface
pressure (PS, hPa) between 10 and 11 a.m. local time were
extracted.

Land Cover and Population Data. The impacts of land
cover and population on the relationship between the PM2.5
and satellite AOD were also examined in the present study. The
MODIS Level 3 monthly mean normalized difference
vegetation index (NDVI)30 products with a spatial resolution
of 0.25° × 0.25° were downloaded from NASA Earth
Observations (NEO) (http://neo.sci.gsfc.nasa.gov/).30 The
population data were obtained from the latest version
LandScan, which provides 30-arc-second global population
density.31 (http://www.ornl.gov/sci/landscan/). The popula-
tion and monthly mean NDVI were used as covariates in the
PM2.5 model.

Data Integration. For data integration, a 50 km-resolution
grid (4553 grid cells in total) covering entire China was created
with each grid cell roughly corresponding to the buffer size (25
km) when comparing satellite AOD with AERONET
observations. Additional considerations when selecting this
grid size are computational efficiency and improved spatial
coverage from averaging over multiple satellite pixels. PM2.5;
calibrated Terra MODIS, Aqua MODIS, and MISR AOD; and
meteorological, NDVI, and population data were averaged over
the 50 km grid cells, respectively. The gridded satellite AOD
values were fused into one AOD parameter in each grid cell as
follows. Based on the satellite overpass times, the gridded Terra
MODIS AOD can be merged with MISR AOD, but not with
Aqua MODIS AOD. To address this issue, for each day, simple
linear regression analysis was conducted between Terra
MODIS and Aqua MODIS AOD data in those 50 km grid
cells where both MODIS products are present (SI, Text S2).
Then, the regression coefficients were applied to each grid cell
to predict the missing Terra MODIS AOD using the Aqua
MODIS AOD that is present.32 For those grid cells where both
MODIS AOD values are missing, we used MISR AOD data
instead. Combining MODIS and MISR AOD has been shown
to be a useful way to improve the AOD coverage.14 Unlike van
Donkelaar et al.,14 we used both Terra and Aqua MODIS AOD.
Our results show that the data coverage of AOD was
substantially improved after the fusion of MODIS and MISR
AOD, especially in Western and Northwestern China (SI, Text
S2). Finally, PM2.5, fused AOD, meteorological parameters,
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NDVI, and population data for all days and all grid cells were
matched by grid cell ID and Day of Year (DOY) for model
development.
Model Development and Validation. Since our study

area is large, the relationship between PM2.5 and AOD will
likely vary in space. To address the spatial heterogeneity of the
PM2.5-AOD relationship, we developed a GWR model.33

Unlike other statistical models that estimate global parameters,
GWR can generate a continuous surface of parameter values by
taking measurements of the parameters at each local
observation to denote the spatial variations of the surface.
GWR has been successfully applied in modeling the PM2.5-
AOD association in the Southeastern U.S.17 In this study, a
separate GWR model was fitted for each day, with the general
structure as follows:

β β β β

β β β

β β ε

= + + +

+ + _ +

+ + +

PM AOD PBLH T2M

WS RH PBLH PS

POP NDVI

st st st st st st st

st st st st st st

st s st sm st

2.5 0, 1,st 2, 3,

4, 5, 6,

7, 8, (1)

where PM2.5 st (μg/m3) is the daily ground-level PM2.5
concentration at grid cell s on day t; β0,st denotes the
location-specific intercept on day t; β1,st−β8,st are the location-
specific slopes on day t; AODst (unitless) is the AOD fused
from Terra MODIS, Aqua MODIS, and MISR AOD products
at grid cell s on day t; PBLHst, T2Mst, WSst, RH_PBLHst, PSst
are meteorological parameters at grid cell s on day t (definitions
in “Meteorological Data” section); POPs is the total population
at grid cell s; NDVIsm (unitless) is the MODIS NDVI value at
grid cell s in month m; and εst is the error term at grid cell s on
day t. The selection of the meteorological and land use variables
in the final model is based on findings of previous studies,
statistical significance of the variables and the GWR model
performance measured by model R2. Detailed comparisons of
the full model with various reduced models are provided in the
SI (Text S3).

A fixed bandwidth of 800 km was used for fitting the GWR.
We also examined the adaptive bandwidth option, and our
results show that the adaptive bandwidth can cause model
overfitting problems (SI, Text S4). For some days, the number
of the matched data points is limited, which might impact the
model significantly. To address this issue, we interpolated AOD
values with an Ordinary Kriging34 approach to increase the
sample size of the daily model fitting data set. There are 58 164
matched grid-cell days when using interpolated AOD values,
compared to 24 521 matched grid-cell days without interpo-
lated AOD values. GWR model fitting used the interpolated
data set because it helps to stabilize model performance in areas
with few PM2.5 sites and the days with low AOD coverage (e.g.,
Western China and the winter season) (SI, Text S5). AOD
interpolation was not used in model prediction. To evaluate
how much the meteorological and land use parameters used in
our final model could improve the model performance, we also
fitted a GWR model using AOD as the only independent
variable (the AOD-only model). We also fitted a model only
using meteorological and land used data without AOD (the
non-AOD model) to see how AOD can benefit the model
performance.
Cross validation (CV) technique was applied to test for

potential model overfitting, that is, the model could have better
predictive performance in the data set used in model fitting
than the data from the rest of the study area. We used a 10-fold
CV method35 in the present study. Furthermore, mean
prediction error (MPE) and root mean squared prediction
error (RMSE) were adopted to evaluate the model prediction
accuracy for model fitting and CV results. We calculated
Pearson’s correlation coefficients among all the independent
variables. The results show that the absolute values of
correlation coefficients between any two of the independent
variables are relatively low (r < 0.5), indicating relatively weak
collinearity problems in the current model.

Figure 2. Histograms and descriptive statistics of the variables in the whole model fitting data set. (N = 58 164).
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■ RESULTS AND DISCUSSION

Descriptive Statistics. Figure 2 shows the histograms and
descriptive statistics of the model variables in the whole model
fitting data set. Overall, the mean PM2.5 concentration for the
entire domain is 64.31 μg/m3 and the mean fused AOD is 0.50.
The values of the dependent and independent variables

exhibit strong seasonality (SI, Table S3). The mean AOD value
is highest in spring (0.59) and lowest in winter and summer
(both 0.45).The highest mean PM2.5 concentration is in winter
(101.65 μg/m3) and the lowest is in summer (44.28 μg/m3).
The different seasonal patterns of PM2.5 and AOD are mainly
due to their complex relationship, which can be strongly
influenced by meteorological, geographical, and seasonal
conditions.36 For example, the AOD-PM2.5 relationship can
be significantly improved after calibrating AOD with relative
humidity (RH) and PBLH.37 Since RH and PBLH are
temporally different, the AOD-PM2.5 relationship also varies.
The spatial distribution of seasonal and annual mean fused

AOD values and ground measured PM2.5 concentrations is
show in Figure S6 (SI). High AOD and PM2.5 values generally
occur in the North China Plain (including Beijing, Tianjin
Metropolitan Area, and Hebei, Shandong, Henan, Anhui, and
Jiangsu Provinces), the Tarim Basin, and the Sichuan Basin.
Model Fitting and Validation. Figure 3 shows the scatter

plots for the model fitting and cross validation of the AOD-
only, non-AOD, and full models. For the model fittings, the R2

values are 0.54 and 0.71 for the AOD-only and full models,
respectively. The RMSE is 37.40 μg/m3 for the AOD-only
model and 29.58 μg/m3 for the full model. Compared to the
model fitting, the CV R2 only decreases by 0.02 and CV RMSE
only increases by 0.94 μg/m3 for the AOD-only model.
However, the CV R2 decreases by 0.07 and CV RMSE increases
by 3.40 μg/m3 for the full model, which are greater than the
model fitting and suggest that our full model is slightly
overfitted. However, the CV R2 of the full model (0.64) is much
greater than that of the AOD-only model (0.52), and the CV

RMSE of the full model (32.98 μg/m3) is significantly lower
than that of the AOD-only model (38.34 μg/m3). Our findings
suggest that despite a slight overfitting in the full model, the
overall prediction accuracy is significantly improved when
considering the meteorological data and land use information
in the GWR model. For the non-AOD model, the model fitting
R2 and RMSE are 0.66 and 32.42 μg/m3, respectively; and CV
R2 and RMSE are 0.58 and 35.67 μg/m3, respectively.
Comparison of the full model and non-AOD model shows
that AOD can improve the model performance without causing
more overfitting.
Our results show that the CV RMSE of the full model is

32.98 μg/m3, which is much higher than results of studies in
U.S. (∼5 μg/m3).36,38 However, it should be noted that the
PM2.5 concentrations in these studies are relatively low (mainly
<40 μg/m3 and rarely >60 μg/m3). In this study, PM2.5

concentrations range from 1 μg/m3 to 795 μg/m3. The CV
relative prediction error (RPE, defined as RMSE divided by the
mean ground PM2.5) of the full model is 51.3%, which is
approximately 15% greater than the previous study in the U.S.36

One possible reason is that our models tend to underestimate
when ground PM2.5 concentrations are greater than ∼60 μg/m3

(Figure 3). Similar results were also found in the Eastern U.S.,15

where PM2.5 was substantially underestimated at higher
concentrations (>40 μg/m3), and a sublinear relationship
between PM2.5 and AOD at high particle loadings was posited.9

Another possible reason is that these high PM2.5 levels might be
very local, therefore cannot be well represented in a large grid
cell. Given our coarse spatial resolution, this is very likely the
case. When we excluded the data records with ground PM2.5

values higher than 100 μg/m3, and the RPE dropped to 37.3%.
Our results also showed that the CV slope of the full model
(0.67) is greater than that of the AOD-only model (0.50); that
is, the extent of the underestimation is lower in the full model
compared to the AOD-only model.

Figure 3. Results of model fitting and cross validation. MPE: mean prediction error (μg/m3). RMSE: root mean squared prediction error (μg/m3).
The dash line is the 1:1 line as a reference. (a)−(c) are model fitting results of the AOD-only, non-AOD, and full model, respectively. (d)−(f) are
CV results of the AOD-only, non-AOD, and full model, respectively.
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The local R2 is an indicator that reflects the model
performance and the spatial heterogeneity of the GWR. For
the full model, the mean local R2 values of the daily GWR
models range from 0.29 to 0.90, with an overall mean of 0.56,
indicating the overall performance is relatively high. For the
AOD-only model, the daily mean local R2 values range from
0.06 to 0.72, with an overall mean of 0.34. This is a substantial
decrease. These findings indicate that meteorological data and
land use information can significantly improve model perform-
ance and agree with previous studies.16,17 Examining the spatial
variability of mean local R2 of the full model indicates that the
local R2 values in South China with lower PM2.5 concentrations
(<75 μg/m3) are higher (i.e., >0.56) than those in North China
with higher PM2.5 concentrations (>75 μg/m

3) (SI, Figure S7).
This finding suggests that a more flexible nonlinear model
structure might better represent the sublinearity between PM2.5
and AOD in a wide dynamic range.
Prediction Maps of PM2.5 Concentrations. The

predicted seasonal mean and annual mean PM2.5 concen-
trations are shown in Figure 4. To examine the spatially and
seasonal prediction accuracy of the GWR model, the ground
PM2.5 measurements which are covered with gridded AOD
values are also shown in Figure 4.
As shown in Figure 4, the temporal and spatial patterns of

AOD-derived PM2.5 are very similar to ground measurements.
The MPE of the annual mean PM2.5 concentration is 8.28 μg/
m3. Winter is the most polluted season, with the highest MPE
of 25.33 μg/m3; summer is the cleanest season, with the lowest
MPE of 7.25 μg/m3; and the MPE values of spring and autumn
are 9.04 μg/m3 and 11.18 μg/m3, respectively. Winter heating
in North China, Northeast China, and Northwest China is
considered a major source of PM2.5.

39−41 When comparing the
AOD-derived PM2.5 to the ground PM2.5 concentrations from

all available days (SI, Figure S6), the MPE of annual, winter,
spring, summer, and autumn mean PM2.5 are 13.64 μg/m3,
32.28 μg/m3, 12.99 μg/m3, 8.05 μg/m3, and 13.29 μg/m3,
respectively.
Spatially, the North China Plain, where the annual mean

PM2.5 estimates generally range from 85 to 95 μg/m3, is one of
the most industrialized and populated regions in China. Rapid
economic development and urbanization have led to severe
PM2.5 pollution.

42,43 The Tarim Basin is another area of high
PM2.5 and is located in the southern part of the Xinjiang
Autonomous Region. The annual mean PM2.5 in the Tarim
Basin are on average above 85 μg/m3 and above 95 μg/m3 at its
center. The Taklamakan Desert, the largest desert in China,
occupies over 60% of the Basin. In addition, a band of high
pollution levels spans the Tarim Basin, Gansu, Ningxia,
Shaanxi, Shanxi Provinces, and western Inner Mongolia. The
Gobi Desert covers part of this region. The Taklamakan and
Gobi Deserts have been considered the two major sources of
dust storms in North China.44,45 Dust storms usually occur in
winter and spring, and contribute significantly to regional PM2.5
levels in Northern China.46−48 The Sichuan Basin, which is
located in the eastern part of Sichuan Province and includes
Chongqing Metropolitan Area, is another area of high
pollution, with the annual PM2.5 of 75−95 μg/m3. Surrounded
by high mountain ranges, this region suffers from persistent
temperature inversion and stagnant air circulation,49 which
often lead to severe air pollution episodes. The cleanest areas
are in Taiwan, Hainan, and Tibet, where the annual mean
values are generally lower than 35 μg/m3. North Inner
Mongolia, West Heilongjiang, and Yunnan Province have
annual mean values of 25−45 μg/m3.
A potential source of prediction error of the GWR model is

the uneven spatial distribution of ground PM2.5 monitoring

Figure 4. Comparisons of seasonal and annual mean AOD-derived PM2.5 and ground-measured PM2.5 concentrations from those days when
corresponding gridded AOD values are available.
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sites. Similar to the regulatory monitoring networks elsewhere,
the Chinese network primarily covers large urban centers with
very limited coverage in rural areas, especially in western part of
the country, including Tibet, Qinghai, and Xinjiang. Although
the GWR model developed in this work has similar model
performance compared with models developed in the U.S.,17

the absolute prediction error is much higher. Consequently, the
estimated daily PM2.5 levels in the cleaner areas of China, such
as western Tibet, may contain substantial errors, especially in
winter. This problem is expected to be alleviated in the near
future, as the national PM2.5 monitoring network will cover all
county-level cities by 2015, according to the MEP of China 3.
This research will be helpful for selecting PM2.5 monitoring site
locations in the future, which should consider placing more
sites in rural areas, especially in Western China.
According to CNAAQS, the Level 1 annual PM2.5 standard of

15 μg/m3 is assigned for protecting the air quality of natural
reserves and scenic areas. The Level 2 annual PM2.5 standard of
35 μg/m3 is designated for residential, cultural, industrial, and
commercial areas. The Level 1 and Level 2 concentrations are
equivalent to the World Health Organization (WHO) Air
Quality Interim Target-3 (IT-3) and Target-1 (IT-1)50 levels,
respectively. Our predicted annual PM2.5 concentrations
indicated that 100% and 81.8% of China exceed the CNAAQS
Level 1 (or WHO IT-3) and Level 2 (or WHO IT-1) annual
standards, respectively. When considering the population
distribution, over 96% of the Chinese population lives in
areas that exceed the CNAAQS Level 2 standard.
Comparison with Previous Studies. We compared our

results with two publically available data sets of satellite-derived
PM2.5 concentrations. Based on the color scale in Figure 4, we
replotted the mean estimated PM2.5 concentration of 2001−
2006 in China from the study of van Donkelaar et al.14 at 0.1
degree spatial resolution and the mean estimated PM2.5
concentration of 2010 from the Center for International
Earth Science Information Network (CIESIN) at Columbia
University51 at 0.5 degree resolution (SI, Figure S8). Note that
the CIESIN data set was generated by simply applying the
AOD/PM2.5 surface level conversion factors for 2001−2006
calculated by van Donkelaar et al.14 to monthly AOD data from
MODIS and MISR.51

While the GWR-estimated PM2.5 concentrations in 2013
show similar spatial patterns to previous results, there are
several important differences. The GWR-estimated PM2.5
concentrations in 2013 are substantially higher than the
CIESIN estimates for 2010. For example, our estimated mean
concentrations in much of the North China Plain are around
85−95 μg/m3 compared to 55−65 μg/m3 in the CIESIN data
set. In addition, the high PM2.5 region in the Tarim basin is not
apparent in the CIESIN map. Our results are more like those of
van Donkelaar et al.,14 but have higher PM2.5 levels in rural
regions and slightly lower levels in the Sichuan Basin. For
example, van Donkelaar, et al.14 estimated that PM2.5
concentrations in Northeastern China are generally less than
25 μg/m3, except along the Bo Hai Coast. Our GWR model,
however, shows large regions with PM2.5 concentrations around
35−55 μg/m3 in Northeastern China. Our model also predicts
higher PM2.5 concentrations in the dust source region,
including the Tarim Basin and the Gobi Desert.
A statistically significant increasing trend of regional mean

AOD has been reported for Southern and Eastern China
between 1998 and 2010, primarily due to rapid economic
development.52 This could partially explain the discrepancies

among the three data sets. Another important difference
between the GWR model and the other two methods is that the
GWR model is calibrated against the ground observations in its
development process. The development of such a model would
have not been possible without the newly released ground
PM2.5 observations in China. However, the flexible model
structure ensures higher prediction accuracy when compared
with the other two methods. Comparing to all available ground
observations (SI, Figure S6-J), the MPE of annual PM2.5 are
13.64 μg/m3, 17.78 μg/m3, and 32.08 μg/m3 for our GWR
model, van Donkelaar’s data set, and CIESIN data set,
respectively.
In summary, despite the increasingly serious particle

pollution in China, detailed characterization of the spatial
pattern of PM2.5 has been lacking. Satellite-derived PM2.5
concentrations have been made possible recently but such
estimates have not been evaluated against ground truth. The
GWR model described in this work is the first attempt to
develop advanced spatial models for PM2.5 exposure assessment
in China. This model exhibits satisfactory performance with a
CV R2, RMSE, and RPE are 0.64, 32.98 μg/m3, and 51.3%,
respectively. When extremely high PM2.5 levels (>100 μg/m3)
were excluded, model performance was further improved to be
comparable with previous studies conducted in the U.S. The
inclusion of meteorological and land use information can
significantly improve the model performance. It is certainly
feasible to develop models with spatial resolutions compatible
with the raw satellite AOD pixel size, which is a direction of our
future research.
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