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ABSTRACT

A robust methodology was developed to compute
population-weighted daily measures of ambient air pollu-
tion for use in time-series studies of acute health effects.
Ambient data, including criteria pollutants and four fine
particulate matter (PM) components, from monitors located
in the 20-county metropolitan Atlanta area over the time
period of 1999-2004 were normalized, spatially resolved
using inverse distance-square weighting to Census tracts,
denormalized using descriptive spatial models, and
population-weighted. Error associated with applying this
procedure with fewer than the maximum number of obser-
vations was also calculated. In addition to providing more
representative measures of ambient air pollution for the
health study population than provided by a central monitor
alone and dampening effects of measurement error and
local source impacts, results were used to evaluate spatial
variability and to identify air pollutants for which ambient
concentrations are poorly characterized. The decrease
in correlation of daily monitor observations with daily
population-weighted average values with increasing dis-
tance of the monitor from the urban center was much
greater for primary pollutants than for secondary pollutants.
Of the criteria pollutant gases, sulfur dioxide observations
were least representative because of the failure of ambient
networks to capture the spatial variability of this pollutant
for which concentrations are dominated by point source
impacts. Daily fluctuations in PM of particles less than 10
pm in aerodynamic diameter (PM,,) mass were less well
characterized than PM of particles less than 2.5 pm in
aerodynamic diameter (PM, 5) mass because of a smaller
number of PM;, monitors with daily observations. Of the
PM, s components, the carbon fractions were less well

IMPLICATIONS

A methodology for computing population-weighted metrics of
ambient air pollution, including gas pollutants and PM mass
and composition, from standard monitoring networks was
developed and applied to the 20-county Atlanta metropolitan
area. Measurement bias associated with differences in sam-
pling protocol and impacts of local sources were dampened,
with spatially resolved results highly correlated with observa-
tions. Population-weighted values were calculated to maxi-
mize completeness and minimize error due to missing data.
Measurements of primary pollutants were shown to be repre-
sentative of a much smaller area than secondary pollutants.
Results are being used to investigate relationships between
ambient air pollution and acute health effects.
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spatially characterized than sulfate and nitrate both be-
cause of primary emissions of elemental and organic carbon
and because of differences in measurement techniques used
to assess these carbon fractions.

INTRODUCTION

In numerous epidemiologic investigations, ambient air
pollution has been associated with acute respiratory and
cardiovascular health outcomes.’-7 Many of these studies
utilize existing health and air quality monitoring data-
bases because of their large sample size and relative low
cost. However, these two databases are not directly link-
able because air quality monitors are point measure-
ments, often temporally integrated, whereas health out-
comes respond to temporally varying concentrations over
a large spatial area. Different methods for spatial interpo-
lation and modeling have been used to overcome this, but
there is much discrepancy on the appropriate method to
use to provide the most representative results.

Spatial interpolation techniques are used to increase
spatial coverage of ambient air pollution measurements,
which are often defined by spatially sparse air monitoring
networks. The simplest method for representing air pollu-
tion levels is to use air pollution data from a central moni-
tor.8? The central monitor approach has been extended to
nearest monitor methods by defining sub-regions around
the monitors and evaluating them individually for the en-
tire study area.!© Spatial averaging methods have also been
used.!1-13 Marshall et al.'4 developed a metric by weighting
data by the inverse distance-square to each Census tract and
then population-weighted these values. Kriging and uni-
versal kriging methods have been used in epidemiologic
studies, providing both a concentration estimate and an
uncertainty estimate.’>-17 These methods require dense
monitoring networks to be representative of areas with dif-
ferent land uses, and application in health studies may lead
to overrepresentation of rural sites in population exposure
estimates.

Modeling and proximity to source methods have be-
come more common in estimating ambient air pollution
exposure. Distance-to-roadway modeling has become in-
creasingly popular in traffic-related health studies on partic-
ulate matter and nitrous oxides'8-20; Hoek et al.2! have
extended distance-to-roadway modeling by incorporating
measurements into the estimate of exposure to roadway
emissions.?! However, these methods are not applicable to
secondary pollutants and nontraffic-related primary pollut-
ants. Land-use regression models have also been developed
to improve spatial interpolation of air pollution.2223 The
development of these models, however, requires a dense
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monitoring network for calibration, and, similar to distance-
to-source methods, land-use regression models are difficult
to apply to secondary pollutants and typically do not use
direct measurements in their estimates. Jerrett et al.24 have
suggested that integrated meteorological emission models
would provide better spatial coverage in estimates. Tong
et al.25 have evaluated the use of the CMAQ (Community
Multiscale Air Quality) model for spatial coverage of
ozone and found that CMAQ dampened temporal vari-
ability and exaggerated spatial variability between urban
and rural areas.

A retrospective study of the relationship between
acute health effects and ambient air pollution is being
conducted in the 20-county Atlanta metropolitan re-
gion.%” This study takes advantage of fine particle com-
position data measured at several locations in the study
area since 1999. The study includes over 1 million emer-
gency department visits each year for respiratory and car-
diovascular illnesses. For this population, only zip code of
residence is known. Here, we present results of the devel-
opment of a procedure for computing daily population-
weighted metrics of ambient air pollution for use in this
health study. Our objectives were to: (1) compute daily
population-weighted ambient air pollution concentra-
tions using data from available monitors, minimizing bias
associated with the use of different measurement meth-
ods; (2) compute spatially resolved daily estimates of
ambient air pollution and provide daily estimates of spa-
tial variance; (3) maximize completeness by computing
population-weighted values when station data are miss-
ing and providing a measure of error associated with
computation with data missing; and (4) assess the repre-
sentativeness of the air pollution metrics. Here, our focus
is on characterizing the larger scale distribution of ambi-
ent pollution in the Atlanta metropolitan area using data
from the ambient monitoring system of the U.S. Environ-
mental Protection Agency (EPA) that is designed to assess
compliance with health-based ambient air quality stan-
dards. The small-scale variation of ambient air pollution,
such as that associated with distance to roadway, is not of
interest in this study, which supports a time-series study
of emergency department visits in which only zip codes of
residence are known about the study population.

MATERIALS AND METHODS

Ambient air quality data for the 1999-2004 6-yr time
period were analyzed from the Southeastern Aerosol Re-
search and Characterization (SEARCH) network,26 EPA’s
Air Quality System (AQS), and the Assessment of Spatial
Aerosol Composition in Atlanta (ASACA) network.2” Data
from two SEARCH monitors were used: Jefferson Street,
Atlanta (urban) and Yorkville (rural), located approxi-
mately 60 km west of Atlanta. The AQS sites used in-
cluded one Species and Trends Network (STN)28 moni-
tor—South Dekalb, located 15 km east of downtown
Atlanta near the intersection of two major highways. Pol-
lutants analyzed are as follows: nitrogen dioxide (NO,),
nitrogen oxides (NO,), carbon monoxide (CO), ozone
(O5), sulfur dioxide (SO,), particulate matter of particles
less than 10 pm in aerodynamic diameter (PM;,), partic-
ulate matter of particles less than 2.5 pm in aerodynamic
diameter (PM,s), and PM, s components elemental
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Figure 1. Map of 20-county metropolitan Atlanta area with popu-
lation density from 2000 Census data. Letters reference monitor
locations; the table identifies station name, network, and air pollut-
ants monitored: 1 = SO,; 2 = NO,/NO,; 3 = CO; 4 = Og; 5 = PM,,
mass; 6 = PM, 5 mass; 7 = PM, 5 composition (EC, OC, NO; ",
S0,2).

carbon (EC), organic carbon (OC), nitrate (NO; ), and
sulfate (SO,%7). Monitors were selected that are located in
the 20-county metropolitan Atlanta area (Figure 1).
Hourly gas data were used to compute daily 1-hr maxima
(NO,, NO,, CO, SO,) and daily 8-hr maxima (O;); 24-hr
average PM measures were used (PM,,, PM, 5, EC, OC,
NO; ™, SO,?7). Year 2000 Census data were used for 660
Census tracts located within the 20-county metropolitan
Atlanta area.

Data from 5 SO, monitors, 6 NO, and NO, monitors,
5 CO monitors, 5 O; monitors, 9 PM;, monitors, 11 PM,, ¢
monitors, and 6 PM, s composition monitors were used
in this study (Figure 1). In some cases, differences in the
measurement methods used by the different networks
resulted in measurement bias. Slightly higher SO, values
were obtained from the SEARCH monitors than the AQS
monitors because of less SO, loss by condensation in the
SEARCH sampling line. The SEARCH monitors have
slightly lower NO, measurements than the AQS monitors;
for the SEARCH monitors, independent measurements of
NO, and NO are summed, whereas the AQS measurement
of total NO, includes some NO,, (total reactive nitrogen
oxides) species. The SEARCH PM, , data used in this study
were obtained by summing a filter-based Federal Refer-
ence Method (FRM) PM, ¢ measurement and a PM_, .
(PM,, — PM, 5) measurement obtained using a dichoto-
mous sampler. The daily AQS PM,, data at Georgia Tech,
on the other hand, were obtained using a semicontinuous
method. AQS PM,, measurements taken every sixth day
were obtained by FRM measurement. The SEARCH and
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Table 1. Air pollutant data at Jefferson Street and Yorkville, 1999-2004.
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Jefferson St., Atlanta, GA (urban)

Yorkville, GA (rural)

Pollutant Median 25-75% Quartile Range Median 25-75% Quartile Range Pearson R? (urban-rural)
1-hr Maximum NO, (ppb) 42 31-52 8.2 5.0-14.3 0.025
1-hr Maximum NO, (ppb) 86 49-166 8.9 5.3-15.5 0.050
1-hr Maximum CO (ppb) 816 486-1490 233 191-295 0.032
8-hr Maximum 04 (ppb) 40 25-57 47 35-62 0.786
1-hr Maximum SO, (ppb) 12 6-24 6 4-11 0.009
Average PM,, (ng/m®) 25 19-34 19 13-28 0.600
Average PM, 5 (ug/m°) 16 11-21 12 8-17 0.725
Average PM, 5 EC? (wg/md) 1.3 0.8-1.9 0.6 0.4-0.9 0.189
Average PM, 5 0C? (ng/m®) 3.8 2.7-5.3 27 1.9-4.0 0.350
Average PM, s NO,~ (uwg/md) 0.7 0.4-1.3 0.6 0.4-11 0.634
Average PM, 5 S0,2~ (ng/m®) 39 2.4-6.1 37 2.2-6.4 0.844

Notes: *TOR method.

AQS PM,, 5 data used were FRM measurements; the ASACA
PM, . measurements at Fort McPherson, South Dekalb,
and Tucker were tapered element oscillating microbal-
ance (TEOM) measurements. For PM, 3 EC/OC compo-
nents, the SEARCH network measurement method was
thermal optical reflectance (TOR), whereas the ASACA
and AQS measurements were by thermal optical transmit-
tance (TOT). The TOR method yields higher EC and lower
OC than the TOT method.??

Derivation of Population-Weighted Metrics
Air quality data, particularly primary pollutant data, tend
to have a lognormal distribution.3? To evaluate this,
power transformations and Hinkley d, statistics were cal-
culated for each pollutant at each monitor for A = 0.5, 0,
0.5, and 1.3 Overall, an optimal power transformation of
N = 0 was found, indicating that the pollutant distribu-
tions are best described by a lognormal function.

In addition to being log-transformed, data were
normalized:

In(Ci ) —
Bm:m (1)

[

Here, B;, is the normalized value of the pollutant at
monitor i for day k, p; is the mean of In(C, ;) values for a
year at monitor i, and o; is the standard deviation of
In(C; ,) values for year at monitor i. Thus, the distribution of
B; has an annual mean of 0 and an annual standard devia-
tion of 1. These normalized values were inverse distance-
square weighted to the 660 Census tracts as follows.

> Bi/Di?

V= S ip, )

Here, V;, is the interpolated normalized value for each
day k at each Census tract j, and D;; is the distance from
monitor i to Census tract j. Normalized values, as opposed
to actual concentrations, were used to produce a
smoother interpolated surface and increase the robustness

of the metric when monitor data are missing. That is,
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without normalization, interpolation would result in av-
erage concentrations “floating” to regions where no mon-
itors are located. In the case of a limited monitoring
network of pollutants with concentrations that are much
higher near the urban center than in surrounding rural
areas (e.g., vehicular emission pollutants), direct interpo-
lation would lead to unrealistic spatial distributions. The
interpolation method used here is based entirely on the
ambient monitor data and does not require the use of
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Figure 2. (a) Population density and (b) VMT density as a function
of distance from urban center (as defined by the intersection of the
north-south and east-west interstate highways). Hollow points rep-
resent 2000 Census tract data in (a); solid points and regression
results represent average population and VMT densities within con-
centric rings a distance of 4 km apart.
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Figure 3. Spatial models of 2004 means and annual standard deviations of (a, c, €) NO, and (b, d, f) PM, 5. Panels a and b show the locations
of monitors (circles, black is central monitor, Jefferson Street), county boundaries (gray lines), zip codes (shaded), and interstate highways (dark lines).
In 2004, there were 6 NO, monitors and 12 PM,, 5 monitors, including co-located instruments at two sites. Panels ¢ and d show measured (points) and
panels e and f show modeled (lines) annual means and standard deviations. Similar models were obtained in each of 6 yr (1999—-2004) for each of

11 pollutants.

artificial boundary conditions. Moreover, without nor-
malization the impact of missing data on these interpo-
lations might be such that the results are only useful if
data are available from all monitors. Such a reduction in
completeness of the dataset might substantially decrease
the power of a time-series health study.

The normalized value at each Census tract was then
converted back to a concentration using descriptive mod-
els of the means and standard deviations as a function of
distance from the urban center.

Cjy = eVt 3)
Here, u, is the modeled mean of In(C; ;) values for the year at
Census tract j and o; is the modeled standard deviation of
In(C; ) values for the year at Census tract j. Logistic and
linear functions were used to model the annual means and
standard deviations, respectively, providing a smooth spa-
tial surface in which local source impacts and biases due to
differences in measurement methods are minimized. This
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procedure allows for daily anisotropic pollutant fields, but
the annual average pollutant fields (means and standard
deviations) are assumed to be isotropic (i.e., dependent on
radial distance only). This assumption has been assessed in
previous work.32 The impact of prevailing wind direction on
annual pollutant fields in the southeast is less pronounced
than in other regions of the United States because of a
relatively stagnant air mass, particularly in summer. After
ambient air pollutant levels measured at an urban monitor
and a rural monitor are described in the next section, spatial
model fits of annual means and standard deviations are
presented.

The final step was to population-weight the concen-
trations in each Census tract, resulting in an overall con-
centration to represent the study area for each day.

> CiuP;
]

2 h

Cy= (4)
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Figure 4.
of distance from urban center.

Here, P; is the population of Census tract j, and C, is the
population-weighted concentration on day k. In a large
population health study of the type being conducted in
the 20-county Atlanta metropolitan region, population-
weighted metrics are likely to be more representative of
exposure of the study population to ambient air pollution
than data from a central monitor.

Urban and Rural Monitor Pollution Levels
Median and the 25-75% quartile range concentrations are
given in Table 1 for daily measures of ambient pollutants
from 1999 to 2004 at the Jefferson Street, Atlanta (urban)
and at the Yorkville, Georgia (rural) SEARCH sites. Also
shown is the urban-rural Pearson R? value. Primary pol-
lutant concentrations are much higher at the urban site
than the rural site. NO, concentrations are approximately
10 times higher, CO concentrations are 3-5 times higher,
and SO, and PM, 5 EC concentrations are about twice as
high, on average, at the urban site than at the rural site.
Urban-rural SO, concentrations are less correlated than
the other primary pollutant gases, consistent with the
semivariogram analysis of Wade et al.32 Concentrations of
secondary pollutants, on the other hand, are more uni-
form across the study area and are more correlated than
concentrations of primary pollutants. Urban-to-rural aver-
age ratios for O, and PM, 5 SO,%>~ and NO;~ components
are 0.85, 1.05, and 1.14, respectively; urban-to-rural R? val-
ues for these secondary pollutants range from 0.635 to
0.844. PM,, mass, PM, 5 mass, and PM, 5 OC, which have
both primary and secondary components, have urban-to-
rural ratios ranging from 1.3 to 1.4 and have R? values
ranging from 0.350 to 0.725.

Spatial Distribution of Monitor Annual Means
For the retrospective health study in Atlanta, without
detailed information about the location of subjects within
the study area and with a limited number of monitors
available for characterizing daily fluctuations in ambient
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(a and ¢) Modeled means relative to urban center, and (b and d) standard deviations of In of pollutant concentrations as a function

pollutant levels, daily ambient pollutant metrics repre-
sentative of the population were desired, as well as esti-
mates of the uncertainty in the daily fluctuations on the
basis of spatial variability. The approach already de-
scribed, which provides daily population-weighted con-
centrations as well as daily spatial distributions, requires
that spatial means and standard deviations be modeled.
Analysis of data on population and vehicle miles traveled
(VMT) provides an indication of how pollutant concen-
trations may vary spatially. Data from the 2000 Census,
shown in Figure 2a, indicate an exponential decrease in
population density with respect to distance from the ur-
ban center for the 20-county Atlanta metropolitan area,
defined here as the intersection of the north-south and
east-west interstate highways (see Figure 3). The distribu-
tion of VMT might provide a better indicator of the spatial
distribution of pollutants dominated by mobile source
emissions, such as CO, NO,/NO,, and PM, 5 EC. A plot of
VMT density, generated using the Atlanta Regional Com-
mission’s 13-county traffic demand model (calibrated for
year 2000), which provides VMT estimates for over 38,000
roadway links,33 shows a decrease in the log of VMT
density with increase in distance from the urban center
fitted with a logistic function (Figure 2b). VMT is high
within the perimeter highway, which has a radius of
approximately 20 km and then decreases with increasing
distance from the city center.

Descriptive models of annual mean and standard de-
viation were fit for each year and for each pollutant. Two
examples are shown in Figure 3: 1-hr maximum NO,
(Figure 3, a, ¢, and e) and 24-hr average PM,, 5 mass (Figure
3, b, d, and f{), both in 2004. Although the number of
ambient monitors is limited (6 for NO, and 12 for PM,, ),
the graphs suggest that the annual distributions of mean
and standard deviation can be modeled with radial sym-
metry, consistent with previous work demonstrating the
isotropic nature of correlations of pollutant measure-
ments between pairs of monitors in the metropolitan
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Figure 5. Box plots of the population-weighted pollutant values over
the 1999-2004 study period: (a) NO,, NO,, CO, O, and SO,; (b) PM,,
PM,s, EC, OC, NO,~, and SO,2 Dark lines indicate geometric
means, shaded boxes indicate interquartile ranges, and extended lines
with tails indicate standard deviations below and above the mean. R
values with Jefferson Street monitor data are shown below axis.

Atlanta region.32 Similar models were obtained in each of
6 yr (1999-2004) for each of 11 pollutants.

Results for all pollutants averaged over all years are
shown in Figure 4. As expected, mean CO and NO,/NO,
concentrations were best fit by logistic functions, whereas
other pollutant concentrations were best fit by exponen-
tial functions. PM, 5 EC was best fit by an exponential
function, although the limited number of monitors and
the difference in the measurement methods (TOR versus
TOT) makes this assessment more subjective. Mean values
of primary pollutants decreased much more than mean
values of secondary pollutants with distance from the
urban center, except for the primary pollutant SO,.
Sources of SO, are dominated by a few point sources of
coal combustion emissions that are not located in the
urban center.

The plots of standard deviation (Figure 4, b and d)
demonstrate how annual variation differs over space. For
the pollutants studied, annual variation is driven in large
part by seasonal variation rather than day-to-day varia-
tion (e.g., day-of-week variation). Annual variation of SO,
was greatest over the entire study area because of sporadic
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plume fumigation events. Variation in CO decreased most
dramatically with distance from the urban center. CO
from the oxidation of organics such as isoprene is a large
contributor in rural areas, whereas CO from mobile source
emissions is a large contributor in the urban center. The
latter has a strong seasonal variation because of high
emissions in winter from vehicle cold starts. NO, has a
greater seasonal variation in rural areas than in the urban
center, whereas NO has greater seasonal variation in the
urban center. The four PM, 5 components studied have
greater variation than total PM, 5 because these compo-
nents have different seasonal profiles. EC, OC, and NO;~
are highest in winter, whereas SO,%~ is highest in summer.

RESULTS
Population-Weighted Pollutant Concentrations
Calculated population-weighted concentrations and their
variation (Figure 5) are found to be highly correlated (r >
0.83) with data from the central monitor (Jefferson
Street). However, population-weighted concentrations of
primary pollutants are much lower than the central mon-
itor data because of decreasing levels of these pollutants
with increasing distance from the urban center.

In addition to calculating daily population-weighted
pollutant concentrations, we have calculated daily
population-weighted spatial variation as follows.

(Cix — CI°Py

EUEe ©
j

Here, S, is the daily population-weighted spatial variance
of a pollutant and C, is the average concentration on day
k of all C; . In a large population time-series health study
in which population-weighted pollutant concentrations
are used for exposure, population-weighted spatial vari-
ance is a measure of uncertainty in the exposure variable.
Uncertainty in the exposure variable can lead to a bias to
the null and a widening of the confidence interval in the
estimation of health risk ratios.3* Normalization of the

L

0.001 +

Spatial Variance/Temporal Variance

0.0001 t } t t t t t t t t
NO2 NOx CO 03 SO2 PM10 PM25 EC OC NO3 SO4

Figure 6. Box plots of the spatial variance normalized by the
temporal variance over the 1999-2004 study period. Dark lines
indicate geometric means, shaded boxes indicate interquartile
ranges, and extended lines with tails indicate standard deviations
below and above the mean.
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spatial variation to the temporal (day-to-day) variation of
population-weighted values indicates that the spatial vari-
ations of vehicle emission pollutants, that is NO,, NO,,
CO, and PM, 5 EC, are high relative to their temporal
variations (Figure 6). Because temporal variation provides
the power with which to observe an association in a
time-series health study, high values of the ratio of spatial
variation to temporal variation would translate to low
power in risk assessment. In a time-series study of the
relationship of air pollution and acute health effects,
these results suggest that using spatially resolved mea-
sures for these pollutants might provide better indicators
of exposure.

Volume 58 May 2008

Ivy, Mulholland, and Russell

Evaluation of Model Performance
The normalized bias (NBias) between monitor data (y;)
and calculated concentration values (x;) at the Census
tract nearest the monitor is calculated using:

1
=N (©6)

The monitor data and calculated values are highly corre-
lated, as expected, with R? values of 0.94 or greater for all
pollutant measures. Lack of perfect correlation is due to the
standard deviations not being perfectly modeled and the
monitors not being located exactly at the zip code centroids.
Bias is introduced by the smoothing of the mean and stan-
dard deviation profiles over space; results are shown in Fig-
ure 7. In many cases, this bias is desirable because it corrects
for bias in measurement method or for local source impacts.
A few examples are noted. The positive bias associated with
the SEARCH NO, calculation is due to different sampling
protocol. The SEARCH monitors at Jefferson Street (A) and
Yorkville (T) have negative biases for NO, because they
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Figure 8. Correlation of monitor observations and model predic-
tions without using data from that monitor as a function of distance
from the urban center: (a) pollutant gases, (b) PM, 5 total and major
component masses. Curves indicate spatial trends for single pollut-
ants or groups of pollutants. For co-located monitoring sites, both
sets of observations were removed for model prediction at those
sites. In the case of SO,, observations at Stilesboro and Yorkville,
located 63 and 64 km from the urban center, respectively, were
removed for prediction at this distance because the proximity of
these two rural monitors (separated by 22 km) is atypical of rural
monitors for other pollutants.
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Table 2. Average of monthly correlations (Pearson R? values) between monitor data and population-weighted values, 1999-2004.

Distance 0-10 km 10-20 km 20-30 km 30-40 km 55-70 km
NO, JS GT SD Tu Co Yo
1-hr Maximum 0.768 0.845 0.740 0.830 0.395 0.008
NO, JS GT SD Tu Co Yo
1-hr Maximum 0.887 0.902 0.767 0.791 0.556 0.022
co JS RR SD DT Yo
1-hr Maximum 0.787 0.656 0.759 0.765 0.073
04 JS CA SD Co Yo
8-hr Maximum 0.968 0.983 0.962 0.879 0.728
S0, JS GT CA St Yo
1-hr Maximum 0.800 0.743 0.754 0.091 0.020
PM,, JS GT-T FS8 FC ERS DHC Do Gr Yo
24-hr Average 0.904 0.912 0.628 0.653 0.720 0.659 0.514 0.568 0.630
PM, 5 JS FS8 ERS FM SD EP FP DHC Tu Ke Yo
24-hr Average 0.904 0.577 0.844 0.836 0.812 0.687 0.791 0.849 0.547 0.816 0.742
EC JS FM SD1 SD2 Tu Yo
24-hr Average 0.795 0.409 0.530 0.760 0.362 0.263
0C JS FM SD1 SD2 Tu Yo
24-hr Average 0.824 0.514 0.595 0.863 0.504 0.603
NO;~ JS FM SD1 SD2 Tu Yo
24-hr Average 0.824 0.569 0.429 0.813 0.481 0.499
80,2~ JS FM SD1 SD2 Tu Yo
24-hr Average 0.880 0.681 0.546 0.917 0.556 0.793

Notes: See Figure 1 legend for monitor location definitions.

measure less NO, than the AQS monitors that likely mea-
sure other NO, in addition to NO and NO,. The SEARCH
monitors have positive biases for SO, because they have less
loss in sampling. The SEARCH monitors have a negative OC
bias and positive EC bias because of the different tempera-
ture set points used by the TOR and TOT methods. Local
source impacts are also observed. The South Dekalb monitor
(I) is located near a major roadway, resulting in positive
biases for NO, and EC. Fire Station No. 8 (C) is located near
a rail yard and a roadway with heavy diesel traffic; it has
positive PM,, and PM, s biases.

To evaluate model performance in predicting the spa-
tial distribution of daily pollutant levels, the correlation
of monitor observations and model predictions calculated
without using data from that monitor are shown as a
function of distance to the urban center in Figure 8. As
distance from the urban center increases, the number of
monitors decreases and the variability between monitors
increases, resulting in decreasing predictive capability. For
pollutants that are predominantly secondary in nature
(i.e., formed in the atmosphere), such as O; and PM, 4
total and SO,*~ and NO,;~ component masses, high cor-
relations (r > 0.8) are obtained even for sites within 65 km
of the urban center. On the other hand, pollutants
strongly associated with mobile sources, such as NO,/
NO,, CO, and PM, 5 EC, are not well predicted at rural
sites, with R values between 0.3 and 0.4 for the Yorkville
site located approximately 64 km from the urban center.
The ability to predict the SO, concentrations is particu-
larly poor. Major sources of SO, in the Atlanta area are
coal combustion point sources, in particular a coal-fired
power plant located 11.5 km northwest of the urban cen-
ter. When a plume from this plant impacts the Atlanta
area, its width is narrow resulting in a spatially heteroge-
neous pollutant field that is not well characterized by the
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ambient monitors. The correlation of observations and
predictions for PM, s OC, which has significant primary
and secondary components, is intermediate.

DISCUSSION

Assessment of Monitor Representativeness
To evaluate how representative of the study population
the daily fluctuations of ambient air pollution at each mon-
itor are, monthly correlations between the population-
weighted metric and each monitor were calculated. Results,
calculated as the average of the monthly Pearson R? values,
indicate that data from stations closest to the urban center
are most representative of (i.e., most correlated with) the
population-weighted ambient level (Table 2). For primary
pollutants, such as NO,, CO, SO,, and PM, s EC, the
correlations of the population-weighted values and the
monitors greater than 50 km from the urban center are
much lower than those for secondary pollutants, such as
0O, and PM, 5 SO,*>~ and NO;, .

The low correlation of SO, measurements between
the Jefferson Street (JS) monitor and monitors located
nearby (Georgia Tech [GT] is 1.5 km from JS; Confederate
Avenue [CA] is 8.3 km from ]S) is because of the spatial
heterogeneity of coal combustion plume impacts. The
population-weighted CO values are less correlated with
data from the Roswell Road (RR) monitor than data from
either South Dekalb (SD) or Dekalb Tech (DT) despite RR
being located nearer the urban center, likely because of
nearby roadway emission impacts at RR. Finally, lower PM
mass correlations are observed for the Fire Station #8 (FS8)
PM, 5 and PM,, monitors, possibly because of nearby rail
yard and roadway emission impacts at FS8.

These results provide a relative measure of the repre-
sentativeness of ambient air quality monitors. Work is

Volume 58 May 2008



ongoing to convert these correlation values to error esti-
mates and quantitatively assess the impact of this error on
health risk assessment in terms of a bias to the null and
widening of the confidence interval of risk ratio estimates.

Assessment of Completeness and Error
Associated with Missing Data

To maximize completeness of the dataset, it was desirable
to compute the population-weighted average on days
when data from some monitors were not available. This
introduces error, but not bias, relative to the calculation
using all monitor data available. To quantify this error, we
used the method of data withholding to calculate the
normalized root mean square error (NRMSE) associated
with using data from different numbers of monitors:

k; (x — x)?

NRMSE = — (7)

1
y

Here, y, are the daily population-weighted values calcu-
lated using data from all monitors, and x, are these values
calculated with data withheld. In Figure 9, results are
shown for each pollutant as a function of the percentage
of completeness of days when data are missing from 1999
to 2004. The total number of monitors and the percentage
of total days with missing data are also given for each
pollutant. For example, data were available from each of
five SO, monitors located in the study area (three cen-
trally located) on 1897 of 2192 days (85%) during the 6-yr
study period (Figure 7a). Population-weighted averages
were calculated using available data with a NRMSE of 0.11
on 97 days of the 335 days with missing data (29%), with
a NRMSE of 0.12 on 44 days (42% cumulative), with a
NRMSE of 0.20 on 102 days (73% cumulative), and so on.
On 7 days, or 2% of the 335 days with missing data, data
from only one of the three centrally located SO, monitors
were available and population-weighted averages were
calculated with a NRMSE of 0.41.

For pollutant gases, the largest error is associated with
calculating population-weighted SO, concentrations on
days when not all of the five SO, monitors report data,
consistent with the finding of Wade et al.32 that the
spatial distribution of ambient SO, in Atlanta is more
poorly characterized than the other criteria pollutants.
On the other hand, the lowest error is associated with
calculating population-weighted O, concentrations on
days when not all of the five O; monitors report data,
except for some winter days when data from only the
Yorkville monitor were available. For PM, 5 components,
the largest NRMSE is associated with EC and OC.

For use in time-series health studies, there is a
tradeoff between maximizing exposure data completeness
and minimizing exposure variable error. In health models
that use a 3-day moving average of a daily pollutant
measure, which is the a priori model used in the Atlanta
studies,®” 1 missing day of a pollutant measure results in
a loss of 3 days from the epidemiologic analysis, decreas-
ing the statistical power to detect associations. On the
other hand, the addition of error to the exposure mea-
surement can result in loss of statistical power as well.
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Figure 9. NRMSE associated with calculating population weighted
average on days with data missing from one or more monitors: (a)
SO,, CO, NO,, NO,, and Og; (b) PM,, and PM, 5; (c) EC, OC, NO; ™,
and SO,2". The total number of monitors (N) and the percentage of
days for the 1999-2004 time period with data missing are shown in
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Current work is quantitatively assessing these impacts on
the risk ratio estimates.

CONCLUSIONS

A method for calculating population-weighted concentra-
tions of ambient air pollution using data available from
standard monitoring networks was developed and applied
to the 20-county Atlanta metropolitan area. The method-
ology results in a high correlation between monitor data
and modeled estimates for the Census tract where the
monitor is located (R*> > 0.94), but allows for bias to
dampen effects of measurement differences and local
source impacts. This procedure allows for maximum com-
pletion of datasets for use in time-series health studies,
with errors calculated for estimates performed with in-
complete monitor data. In addition, the procedure allows
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for an assessment of the representativeness of ambient air
pollutant monitors in a study area. Results are being used
in ongoing investigations of the relationship between
ambient air pollution and acute health effects in Atlanta.

ACKNOWLEDGMENTS

This work was supported by subcontracts from Emory Uni-
versity under grants from EPA (R82921301, R83096001,
R82897602, and RD83107601) and the National Institute of
Environmental Health Sciences (RO1ES11294). The authors
also thank researchers at the Southern Company and at
Atmospheric Research and Analysis, Inc., for assistance in
using the ASACA data and the SEARCH data, respectively.

REFERENCES

1. Air Quality Criteria for Particulate Matter; EPA/600/P-99/002bB; U.S.
Environmental Protection Agency; Office of Research and Develop-
ment; National Center for Environmental Assessment: Research Tri-
angle Park, NC 2001.

2. Dockery, D.W.; Pope, C.A. Acute Respiratory Effects of Particulate Air
Pollution; Ann. Rev Public Health 1994, 15, 107-132.

3. Committee of the Environmental and Occupational Health Assembly
of the American Thoracic Society. Health Effects of Outdoor Air Pol-
lution, Part 2; Am. J. Respir. Crit. Care Med. 1996, 153, 477-498.

4. Samet, ].M.; Zeger, S.L.; Dominici, F.; Curriero, F.; Coursac, I.; Dockery,
D.W.,; Schwartz, J.; Zanobetti, A. The National Morbidity, Mortality, and
Ambient Air Pollution Study Part II: Morbidity, Mortality, and Ambient Air
Pollution in the United States; Research Report 94; Health Effects Insti-
tute: Cambridge, MA, 2000.

5. Brook, R.D.; Franklin, B.; Cascio, W.; Hong, Y.; Howard, G.; Lipsett,
M.; Luepker, R.; Mittleman, M.; Samet, J.; Smith, S.C., Jr. Air Pollution
and Cardiovascular Disease: a Statement for Health Care Professionals
from the Expert Panel on Population and Prevention Science of the
American Heart Association; Circulation 2004, 109, 2655-2671.

6. Metzger, K.; Tolbert, P.; Klein, M.; Peel, J.; Flanders, W.D.; Todd, K.;
Mulholland, J.; Ryan, P.B.; Frumkin, H. Ambient Air Pollution and
Cardiovascular Emergency Department Visits; Epidemiol. 2004, 15,
46-56.

7. Peel, J.; Tolbert, P.; Klein, M.; Metzger, K.; Flanders, W.D.; Todd, K.;
Mulholland, J.; Ryan, P.B.; Frumkin, H. Ambient Air Pollution and
Respiratory Emergency Department Visits; Epidemiol. 2005, 16, 164-
174.

8. Hernandez-Garduno, E.; Perez-Neria, J.; Paccagnella, A.M.; Munguia-
Castro, M.; Catalan-Vazquez, M.; Rojas-Ramos, M. Air Pollution and
Respiratory Health in Mexico City; J. Occup. Environ. Med. 1997, 39,
299-307.

9. von Klot, S.; Wolke, G.; Tuch, T.; Heinrich, J.; Dockery, D.W.;
Schwartz, J.; Kreyling, W.G.; Wichmann, H.E.; Peters, A. Increased
Asthma Medication Use in Association with Ambient Fine and Ultra-
fine Particles; Eur. Respir. . 2002, 20, 691-702.

10. Linn, W.S.; Szlachcic, Y.; Gong, H., Jr.; Kinney, P.L.; Berhane, K.T. Air
Pollution and Daily Hospital Admissions in Metropolitan Los Angeles;
Environ. Health Perspect. 2000, 108, 427-434.

11. Katsouyanni, K.; Zmirou, D.; Spix, C.; Sunyer, J.; Schouten, ].P.; Ponka,
A.; Anderson, H.R.; Le Moullec, Y.; Wojtyniak, B.; Vigotti, M.A.; Ba-
charova, L. Short-Term Effects of Air Pollution on Health: a European
Approach Using Epidemiological Time-Series Data; Eur. Respir. ]. 19985,
8, 1030-1039.

12. Burnett, R.T.; Cakmak, S.; Raizenne, M.E.; Stieb, D.; Vincent, R,;
Krewski, D.; Brook, J.R.; Philips, O.; Ozkaynak, H. The Associations
between Ambient Carbon Monoxide Levels and Daily Mortality in
Toronto, Canada; J. Air & Waste Manage. Assoc. 1998, 48, 689-700.

13. von Klot, S.; Peters, A.; Aalto, P.; Bellander, T.; Berglind, N.; D’Ippoliti,
D.; Elosua, R.; Hormann, A.; Kulmala, M.; Lank, T.; Lowel, H.; Pek-
kanen, J.; Picciotto, S.; Sunyer, J.; Forastiere, F. Ambient Air Pollution
is Associated with Increased Risk of Hospital Cardiac Readmissions of
Myocardial Infarction Survivors in Five European Cities; Circulation
2005, 112, 3073-3079.

14. Marshall, J.D.; Riley, W.J.; McKone, T.E.; Nazaroff, W.W. Intake Frac-
tion of Primary Pollutants: Motor Vehicle Emissions in the South
Coast Air Basin; Atmos. Environ. 2003, 37, 3455-3468.

15. Mulholland, J.A.; Butler, A.J.; Wilkinson, J.G.; Russell, A.G.; Tolbert,
P.E. Temporal and Spatial Distributions of Ozone in Atlanta: Regula-
tory and Epidemiological Implications; J. Air & Waste Manage. Assoc.
1998, 48, 418-426.

16. Tolbert, P.E.; Mulholland, J.A.; Macintosh, D.L.; Xu, F.; Daniels, D.;
Devine, O.].; Carlin, B.P.; Klein, M.; Dorley, J.; Butler, A.J.; Norden-
berg, D.F.; Frumkin, H.; Ryan, P.B.; White, M.C. Air Quality and

720 Journal of the Air & Waste Management Association

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

Pediatric Emergency Room Visits for Asthma in Atlanta, Georgia;
Am. J. Epidemiol. 2000, 151, 798-810.

Buzzelli, M.; Jerrett, M.; Burnett, R.; Finklestein, N. Spatiotemporal
Perspectives on Air Pollution and Environmental Justice in Hamilton,
Canada, 1985-1996; Ann. Assoc. Am. Geograph. 2003, 93, 557-573.
English, P.; Neutra, R.; Scalf, R.; Sullivan, M.; Waller, L.; Zhu, L.
Examining Associations between Childhood Asthma and Traffic Flow
Using a Geographic Information System; Environ. Health Perspect.
1999, 107, 761-767.

Wilkinson, P.; Elliott, P.; Grundy, C.; Shaddick, G.; Thakrar, B.; Walls,
P.; Falconer, S. Case-Control Study of Hospital Admission with
Asthma in Children Aged 5-14 Years: Relation with Road Traffic in
North West London; Thorax 1999, 54, 1070-1074.

Buckeridge, D.L.; Glazier, R.; Harvey, B.J.; Escobar, M.; Amrhein, C,;
Frank, J. Effect of Motor Vehicle Emissions on Respiratory Health in an
Urban Area; Environ. Health Perspect. 2002, 110, 293-300.

Hoek, G.; Brunekreef, B.; Goldbohm, S.; Fischer, P.; van den Brandt,
P.A. Associations between Mortality and Indicators of Traffic-Related
Air Pollution in the Netherlands: a Cohort Study; Lancet 2002, 360,
1203-1209.

Briggs, D.J.; Collins, S.; Elliott, P.; Fischer, P.; Kingham, S.; Lebret, E.;
Pryl, K.; Van Reeuwijk, H.; Smallbone, K.; Van der Veen, A. Mapping
Urban Air Pollution Using GIS: a Regression-Based Approach; Int. J.
Geograph. Info. Sci. 1997, 11, 699-718.

Gilbert, N.L.; Goldberg, M.S.; Beckerman, B.; Brook, J.R.; Jerrett, M.
Assessing Spatial Variability of Ambient Nitrogen Dioxide in Mon-
treal, Canada, with a Land-Use Regression Model; J. Air & Waste
Manage. Assoc. 2005, 55, 1059-1063.

Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.;
Sahsuvaroglu, T.; Morrison, J.; Giovis, C. A Review and Evaluation of
Intraurban Air Pollution Exposure Models; J. Expos. Anal. Environ.
Epidemiol. 2005, 15, 185-204.

Tong, D.Q.; Mauzerall, D.L. Spatial Variability of Summertime Tropo-
spheric Ozone over the Continental United States: Implications of an
Evaluation of the CMAQ Model; Atmos. Environ. 2006, 40, 3041-3056.
Hansen, D.A.; Edgerton, E.; Hartsell, B.; Jansen, J.; Burge, H.; Koutrakis,
P.; Rogers, C.; Suh, H.; Chow, J.; Zielinska, B.; McMurry, P.; Mulhol-
land, J.; Russell, A.; Rasmussen, R. Air Quality Measurements for the
Aerosol Research and Inhalation Epidemiology Study; J. Air & Waste
Manage. Assoc. 2006, 56, 1445-1458.

Butler, A.J.; Andrew, M.S.; Russell, A.G. Daily Sampling of PM, s in
Atlanta: Results of the First Year of the Assessment of Spatial Aerosol
Composition in Atlanta Study; J. Geophys. Res. Atmos. 2003, 108,
8415.

Implementation Plan: PM, s Monitoring Program; U.S. Environmental
Protection Agency; available at http://www.epa.gov/ttn/amtic/files/
ambient/pm25/pmplan3.pdf (accessed 2007).

Chow, J.C.; Watson, J.G.; Crow, D.; Lowenthal, D.H.; Merrifield, T.
Comparison of IMPROVE and NIOSH Carbon Measurements; Aerosol
Sci. Technol. 2001, 34, 23-34.

Ott, W.R. A Physical Explanation of the Lognormality of Pollutant
Concentrations; J. Air & Waste Manage. Assoc. 1990, 40, 1378-1383.
Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Elsevier Sci-
ence and Technology: San Diego, 2005; Vol. 91, pp 21-63.

Wade, K.S.; Mulholland, J.A.; Marmur, A.; Russell, A.G.; Hartsell, B.;
Edgerton, E.; Klein, M.; Waller, L.; Peel, ].L.; Tolbert, P.E. Instrument
Error and Spatial Variability of Ambient Air Pollution in Atlanta,
Georgia; J. Air & Waste Manage. Assoc. 2006, 56, 876-888.

Atlanta’s Traffic Model; Atlanta Regional Commission; available at
http://atlantaregional.com/html/357_ENU_HTML.htm (accessed 2007).
Zeger, S.L.; Thomas, D.; Dominici, F.; Samet, ].M.; Schwartz, J.; Dock-
ery, D.; Cohen, A. Exposure Measurement Error in Time-Series Studies
of Air Pollution: Concepts and Consequences; Environ. Health Perspect.
2000, 108, 419-426.

About the Authors

Diane vy is a master’s student, Jim Mulholland is a profes-
sor, and Ted Russell is the Georgia Power Distinguished
Professor of Environmental Engineering in the School of
Civil and Environmental Engineering at the Georgia Institute
of Technology. Please address correspondence to: Jim
Mulholland, School of Civil and Environmental Engineering,
Georgia Institute of Technology, 311 Ferst Drive, Atlanta,
GA 30332-0512; phone: +1-404-894-1695; fax: +1-404-
894-8266; e-mail: jim.mulholland@ce.gatech.edu.

Volume 58 May 2008



Copyright of Journal of the Air & Waste Management Association (1995) is the property of Air &
Waste Management Association and its content may not be copied or emailed to multiple sites or

posted to a listserv without the copyright holder's express written permission. However, users may
print, download, or email articles for individual use.



