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Abstract. A hybrid fine particulate matter (PM) source  domains and long (such as multi-annual) time periods to pro-
apportionment approach based on a receptor model (RMyide source impact estimates for management- and health-
species balance and species specific source impacts fronelated studies.

a chemical transport model (CTM) equipped with a sensi-
tivity analysis tool is developed to provide physically and
chemically consistent relationships between source emis-

sions and receptor impacts. This hybrid approach enhancek Introduction

RM results by providing initial estimates of source impacts

from a much larger number of sources than are typicallyFine particulate matter (PM) with an aerodynamic diam-
used in RMs, and provides source—receptor relationships fopter less than 2.5um is associated with adverse effects on
secondary species. Further, the method addresses issuesman health (e.g., Dockery et al., 1993). From the perspec-
source collinearities and accounts for emissions uncertaintive of linking health effects with air quality, and for assess-
ties. We apply this hybrid approach to conduct R\Mource ing air quality management options, it is desirable to have
apportionment at Chemical Speciation Network (CSN) sitesthe spatially and temporally resolved impacts of major emis-
across the US. Ambient PM concentrations at these re- sion sources. However, quantifying the impacts of individual
ceptor sites were apportioned to 33 separate sources. Hybriources on the ambient concentration of fine particulate mat-
method results led to large changes of impacts from CTMter, better known as source apportionment (SA), is challeng-
estimates for sources such as dust, woodstoves, and oth8ld- A fundamental issue with any SA method is that there
biomass-burning sources, but limited changes to others. Thi§ N0 way to directly measure source impacts, and therefore
refinements reduced the differences between CTM-simulated is difficult to assess the accuracy of source apportionment
and observed concentrations of individual Pdvspecies by results. Tracer gases such as cyclic perfluoroalkanes and SF
over 98 % when using a weighted least-squares error minican be utilized to help quantify source impacts (Martin et
mization. The rankings of source impacts changed from thedl-» 2011). However, such an approach is typically limited
initial estimates, further demonstrating that CTM-only re- {0 assess a specific source’s impact in special studies. In-
sults should be evaluated with observations. Assessment withtead, source apportionment results are typically evaluated
RM results at six US locations showed that the hybrid results?y comparing simulated concentrations of individual compo-
differ somewhat from commonly resolved sources. The hy-nents and total mass of Big with observations (e.g., Watson
brid method also resolved sources that typical RM method<t al., 2008; Viana et al., 2008b).

do not capture without extra measurement information for Receptor model (RM) approaches have long been used for

unique tracers. The method can be readily applied to largd®Mz25 source apportionment (Chow et al., 1992; Cooper and
Watson, 1980; Liu et al., 2006; Martello et al., 2008; Reff
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et al.,, 2007; Schauer et al., 1996; Swietlicki et al., 1996;2006; Russell, 2008; Schichtel et al., 2006; Wagstrom et al.,
Thurston et al., 2011; Viana et al., 2008b; Watson, 1984;2008; Wang et al., 2009; Ying et al., 2008) because they de-
Watson et al., 2008; Xie et al., 2013). These methods, such ascribe processes affecting source—receptor relationships from
chemical mass balance (CMB) (Watson et al., 1984) or posa first-principles basis. For example, compared with RMs,
itive matrix factorization (PMF) (Pattero and Tapper, 1994), CTMs directly account for secondary formation of P
rely on using observed species concentrations of Pkt a  and nonlinearities in pollutant transformations and have the
receptor(s) and solve a set of species balance equations #bility to quantify a more complete range of sources. Also,
estimate source impacts. RM methods typically do not useCTMs use knowledge of the specific location of emission
emissions estimates or explicitly account for the chemicalsources in the region and their emission rates, and can pro-
and physical processes that govern pollutant transport andide spatially resolved source impacts across the modeling
transformation after being emitted from a specific source.domain. An important strength of using CTMs for source ap-
To address these limitations, additional approaches are usqubrtionment is that model evaluation relies on independent
(Blanchard et al., 2012; Chen et al., 2011; Lin and Milford, data. However, estimates of source strengths and character-
1994; Roy et al., 2011; Watson et al., 2002; Wittig and Allen, istics (e.g., diurnal and day-to-day variations) are viewed as
2008). In addition, receptor modeling typically accounts for highly uncertain, meteorological inputs of CTMs contain er-
a relatively small number of sources (on the order of ten outrors, and there continue to be uncertainties in how various
of hundreds in the inventory), comprising about 80 % of the processes are described. In addition, CTM methods utilize
estimated emissions (Baek, 2009), leading to potential bi-different approaches within a CTM framework to further es-
ases in the results. In RM methods, the common approacktimate source impacts. These approaches include but are not
for assessing the accuracy of source apportionment results Ignited to particulate matter source apportionment technol-
to compare the calculated B composition concentrations ogy (PSAT) (Wagstrom et al., 2008), tagged species source
and total mass to observations, and if they compare wellapportionment (TSSA) (Wang et al., 2009), the integrated
it is assumed that the results are reasonable. However, thisource apportionment method (ISAM) (Kowk et al., 2013),
type of evaluation does not use a set of observations that arend various source and receptor sensitivity approaches (e.g.,
completely independent of the ones used to obtain the sourckoo et al., 2009; Henze et al., 2009). However, there are
impacts, although non-fitting species comparisons and othevarious theoretical limitations of each approach in determin-
tests can be used to assist in the evaluation (USEPA, 2004)ng source impacts in the complex atmospheric system (Koo
Further, similar estimated species concentrations, and hencat al., 2009; Burr and Zhang, 2011b). Due to these uncer-
similar performance, can result from very different combina- tainties/limitations and the required level of effort, SM ap-
tions of source impacts. Results can also be quite sensitive tproaches are not as widely used as RM methods for conduct-
model inputs (e.g., source profiles for CMB), or the humbering PM, 5 source apportionment.
of sources (or factors in PMF) used. Differences in source One way to take the advantages of SM approaches is to
apportionment results for similar cases found between comfurther improve SM source apportionment results by utiliz-
peting RM methods also suggest errors (Held et al., 2005jng species concentration observations in a manner similar
Laupsa et al., 2009; Lee et al., 2008; Lowenthal et al., 2010to RM approaches. Here, a hybrid SM—RM approach is de-
Marmur et al., 2006; Rizzo and Scheff, 2007; Shi et al., 2009;veloped and applied to obtain improved source impact es-
Viana et al., 2008a; Watson et al., 2008). Several studies haveémates by integrating measurements with the CTM results,
tried to reconcile the results by refining source profiles andincluding uncertainty estimates of measurements and emis-
adding extra constraints (Lee and Russell, 2007; Marmur esions. As developed, the method integrates the CMB method
al., 2007; Sheesley et al., 2007; Swietlicki et al., 1996; Wat-with CTM results at monitoring locations and measurement
son et al., 2008). Extra species such as organic moleculdimes by adding additional information and constraints in
markers and other unique tracers for certain sources hava species balance approach similar to CMB. The improved
been utilized in RM modeling (Bullock et al., 2008; Lee et source impact estimates at these sparse locations can poten-
al., 2009; Schauer et al., 1996; Zheng et al., 2002) to improvdially be utilized to obtain source impact fields using spatial
the accuracy and identify additional sources, however meaand temporal interpolation that take advantage of the initial
surements of those markers are not available from routineCTM estimates across the domain and over the time period
monitoring networks. of interest. In this study the hybrid approach is applied to a
Source-oriented modeling (SM) approaches, such a6 km resolution CTM simulation over North America. Our
chemical transport models (CTMs), follow the emission, focus is to demonstrate the hybrid method by closely exam-
transport, transformation, and loss of chemical species in théning SM—RM source apportionment results across all sites
atmosphere to simulate ambient concentrations and sourcand with more detail at select locations.
impacts. CTMs can compensate for limitations in RM meth-
ods (Burr and Zhang, 2011a, b; Doraiswamy et al., 2007;
Held et al., 2005; Henze et al., 2009; Kleeman et al., 2007;
Kwok et al., 2013; Lowenthal et al., 2010; Marmur et al.,
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inventory to 2004 was conducted using growth factors ob-
tained from the Economic Growth Analysis System (EGAS)

version 4.0 and control efficiency data obtained from EPA
for existing federal and local control strategies. In addition,
US emissions from large NOand SQ point sources for
2004 were obtained from the continuous emissions moni-
toring (CEM) databaseén(tp://ampd.epa.gov/ampdiThe in-
ventory has emissions of seven criteria pollutants including
PMzs. The Sparse Matrix Operator Kernel for Emissions
(SMOKE) model (CEP, 2003) is used to process the emis-
sions inventory and prepare gridded, CMAQ-ready emissions
inputs. In SMOKE processing, PM emissions were split
into major components (sulfate, nitrate, EC, OC, and other)
— = using source-specific speciation profiles from the SPECI-
ATE program (Simon et al., 2010). The component histor-
ically called “unidentified” in the emissions modeling pro-
cess is called “other” here because this portion ofsBM
is derived from measurements that provide the composi-
tion of the emissions and includes element species, which
can be used to track source specific impacts on primary
PMz5. Spatial surrogates provided by the US ER#t{:
IlIwww.epa.gov/ttn/chief/emch/spatiglierived from census
and geographic information such as population, households,
Simulated three-dimensional concentration fields of traceroad networks, railroads, land use, etc. were used in SMOKE
chemical species are obtained using the Community Multi-for spatially distributing different emission subcategories ac-
scale Air Quality model (CMAQ) (Byun and Schere, 2006) cording to their source classification codes (SCCs). Monthly,
version 4.5 (for using a newer version see Note S1 inweekly, and diurnal temporal profiles were used to allocate
the Supplement) with strict mass conservation (Hu et al.,emissions by hour. While most temporal profiles were used
2006), the SAPRC-99 chemical mechanism (Carter, 2000)nationwide, dozens of state-specific temporal profiles were
and the aerosol module described in Binkowski and Rosellalso applied. For example, different diurnal profiles have
(2003). The modeling domain (Fig. 1) covers the continentalbeen developed for prescribed burning emissions from dif-
United States (CONUS) as well as portions of Canada anderent states. Therefore, emissions uncertainties and biases
Mexico with 36 kmx 36 km horizontal grids and 13 verti- are not expected to be spatially or temporally uniform, espe-
cal layers of variable thickness extending from the surfacecially on a daily basis.
to 70hPa. CTMs applied with higher horizontal resolution We apply the above modeling system to simulate;BM
would perform better in comparison of volume concentrationand gaseous concentrations for the month of January 2004,
to point measurement, especially for particulate matter, butvith 1-3 January as ramp-up days. The simulations of major
computational cost increases rapidly. CTM modeling usingPM> 5 and gaseous species were compared against measure-
12 kmx 12 km grids covering the CONUS was restrictive at ments from multiple monitoring networks (Table S3 in the
the time of this research but has started to become more praGupplement) with performance statistics well within the nor-
tical recently. mal range of current state-of-the-art CTMs (Boylan and Rus-
We used meteorological fields generated by the Fifth-sell, 2006; Simon, et al., 2012; Tesche et al., 2006). We chose
Generation PSU/NCAR Mesoscale Model (MM5) (Grell et to simulate a winter episode for a number of reasons: (1)
al., 1994), run with 35 vertical levels using four-dimensional wintertime provides a complete range of source sectors for
data assimilation (FDDA), and the Pleim—Xiu land-surface a better evaluation of CTM source impact results. A summer
model (Pleim and Xiu, 1995; Xiu and Pleim, 2001). Sim- episode would miss many important source sectors such as
ulated meteorological fields were evaluated against surfacprescribed burns and open fires. (2) Pvpollution episodes
hourly observations from the US and Canada (Table S1 in thdnappen more frequently during the winter season, and there
Supplement); performance was well within the typical rangewere many elevated PA measurements during the selected
for regional air quality modeling (Emery et al., 2001; Hanna one-month-long period. (3) Secondary nitrate /2N much
and Yang, 2001). more abundant during winter and becomes a major portion
Emissions inputs used were developed from a 2004 in-of PMy 5, especially on the west coast. Although oxidation
ventory that was projected from the 2002 National Emis-rates are lower during winter, sulfate and secondary organic
sions Inventory (NEI2002, obtained frommtp://www.epa.  aerosol (SOA) is still formed, especially in areas that are rel-
gov/ttn/chief/emch/index.html#20DZ2Projection of the 2002  atively warm during this period.
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Figure 1. Modeling domain and monitoring sites used.

2 Methods

2.1 CTM simulation and measurement data
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To further evaluate source impacts, we also use measureNote that the above source apportionment approach is a sen-
ments of 35 elements in P\ that are collected at the sitivity method. Sensitivity methods for estimating source
Chemical Speciation Network (CSN) sites (Fig. 1) along impacts have been compared with other approaches such as
with measurements of major P components and total PSAT (Koo et al., 2009; Burr and Zhang, 2011b). Though
mass (Table S4 in the Supplement). Detection limit and meanone of the methods were found to be perfect, the sensitivity
surement uncertainty were used to screen for measurementsethod (with first-order sensitivities) was found to be pro-
that are invalid or below the detection limit (DL). Values ficient in determining the impacts of sources that have non-
below the DL were set to one-half of the detection limit linear effects among different species, such as motor vehicle
and the uncertainty was set to two-thirds of the DL (Mar- emissions that include substantial amounts of multiple pollu-
mur et al., 2006). Organic and elemental carbon measuretants.
ments were artifact-corrected and converted from thermal Here, for simplicity, we chose to ignore the higher-order
optical transmittance (TOT) to thermal optical reflectanceterms (see Note S3 in the Supplement) and only used the
(TOR) equivalents using the method (Malm et al., 2011)first-order terms for source impact estimation:
recommended by US EPAhttp://www.epa.gov/ttn/naaqs/
standards/pm/data/20120614Frank; e Note S2 in the K . K )
Supplemer?t). CMAQ (and other CTFEI\jljs as well) does notSAT ™~ Y Pjx ac_l = ZSi(,lj),k = Si(,lj) = Pja—qg (3)

- . L =1 Pk =1 ap;j
explicitly simulate many elemental species in PMCom-
pared to version 4.5, CMAQ v5.0 has several additional metal D ) ) _ o
species (Appel et al., 2013), but its complete list of explicitly WheresS;”/ is the semi-normalized first-order sensitivity of
modeled elements — Al, Ca, Fe, Mg, Mn, K, Na, Si, and Ti speciesi’s concentration to emission rate (or initial and
— still does not cover all the measured elements. One wafoundary conditions) of compounidfrom sourcej, while
to derive simulated concentrations for elements that are nof; ; is the similar first-order sensitivity to the emissions of
explicitly modeled is to utilize the modeled other Phcon-  all compounds from sourcg, which is defined as the re-
centration by splitting it with source contribution and source Sponse of speciess concentratiorr; to perturbations in a

specific profile information (to be detailed in Sect. 2.2). sensitivity parametep; (a model parameter or input such
_ as an emission rate, initial condition, or boundary condition)
2.2 CTM source apportionment by scaling the local sensitivities)¢; /dp;) by P; (the un-

perturbed or “base case” value of the sensitivity parameter).

Source impacts (and_initial and bounqlary condition impactsirhe notations for time and space dependencies are dropped
can be estimated using a Taylor series approach (Cohan %r simplicity. sD s computed by CMAQ using the decou-
i, ]

al., 2005): pled direct method (DDM) (Dunker, 1981, 1984) applied to
K 3e: pzk 32¢: L three-dimensional air quality models (Cohan et al., 2005;
SATM =" P+ 25—+ Y Dunker et al., 2002; Hakami et al., 2004; Yang et al.,1997)
k=1 pji 2 OP5 k I=1;1#k and extended to include the ability to follow BMl (called
PiiPj 92¢; DDM-3D/PM hereafter) (Boylan et al., 2002, 2006; Koo et
soh ] + HOT, (1)  al, 2009; Napelenok et al., 2006).
2 0pjidpj.

Since first-order DDM-3D/PM sensitivities best approxi-
whereSAE]TM is the CTM simulated impact (source appor- mate a small perturbation, we group the total emissions into
tionment result) of sourcg(j =1, ... J°™, with JC™ 33 integrated source categories (a simple description of the

being the total number of sources that are included in theSource categories are in Table 1 and further detailed group-
CTM simulation, treating initial and boundary conditions as ing information using SCC can be found in Table S2 in the
“sources”) on PMs species(i =1,... N, with N beingthe ~ Supplement). Most of the categories have a small portion
total number of such species) at the recepigy;is eitherthe ~ Of emissions compared to the total. We computed DDM-
emission rate of compound(k =1, ... , K) (k can be dif-  3D/PM first-order sensitivity coefficients for each source ex-

ferent thani, accounting for species transformations) from cept SEASALT, as well as boundary and initial conditions
Sourcej, i_e_, Ej,kr or the initial or boundary concentration for which the SenSItIVIty parametel’s are defined as the sum-

of compoundk; / andL are the same dsandk ; ¢; is species ~ mation of all species. The sensitivity coefficients of boundary
i's concentrationy; x(p;.;) is the sensitivity parameter for and initial conditions were found to be minimal and therefore
P, «(P;,); and HOT stands for high-order terms. The total ignored in our source impact calculations. For SEASALT we

impact of Sourcej on the PM s concentration using CTM dil’eCtly used the simulated concentrations of-Nend CI
method §RS™) is found by summing its impact on each from sea salt emissions in the model as sensitivities of Na

species concentration: or CI~ to SEASALT emissions. Sensitivities of other species
N (including other elements, ions, and total mass obBMo

§RC™™ _ ZSA(_ZTM_ ) SEASALT emissions were derived by applying the compo-

I = " sition profile (Table S5 in the Supplement) for each species

Atmos. Chem. Phys., 14, 541%431, 2014 www.atmos-chem-phys.net/14/5415/2014/


http://www.epa.gov/ttn/naaqs/standards/pm/data/20120614Frank.pdf
http://www.epa.gov/ttn/naaqs/standards/pm/data/20120614Frank.pdf

Y. Hu et al.: Fine particulate matter source apportionment 5419

relative to the N& sensitivities. For the other 32 sources, el- uncertainties) that minimizes the weighted squared error in
ement (metals and minerals) sensitivity coefficients that ar¢he simulated concentrations (Watson, 1984).
not explicitly simulated by CMAQ are derived by applying  Likewise, similar species balance equations can be built
composition profiles (Table S5 in the Supplement) for thoseat the same receptors using the initial source apportionments
elements relative to the modeled, source specific, otherPM from CMAQ DDM-3D/PM results as follows:
sensitivities, respectively. Similarly, we also derived these el- e M
ements’ simulated concentrations from the concentration of 1
other PMys. The source composition profiles of all the 33 o= Z SAI(':JTM e M= Z ZSZ'(,J'),k e
categories are assembled from the 86 profiles examined in =t !
Reff et al. (2009) by emissions-weighted averaging of corre- (1) CTM
sponding member profiles (determined by SCC groupings). = Z Si,j -t ("

The result of Eq. (3) can be compared with the CMB j=1
method, which is based on apportioning each species prothe extension to using CTM results is shown in the second
portional to the relative amount of that species in thezBM  through fourth equalities, wheeé&™ is the prediction error

J=1 k=
JCT™™

emissions from a source: of CTM for theith PM, 5 species. This equation is applied at
E: specific receptor locations and times. Note that here we only
SATYE = %SRJCMB = fi.jSRYM®, (4)  used the first-order DDM-3D/PM results for approximating
! SAS™: however, for more accurate estimatesSf<™,

one can include higher-order sensitivity (e.g., Zhahg et al.,
) i ) ) 2012) results as well if they are available and the source is
by CMB, i.e., the emission fraction of specigd; ;) of the  |5rge. Also, the formulation in Eq. (7) (and following equa-
total PM>s (E;) emitted from sourcgi (j =1, ... J*MB,  tions) allows SAC™ to be source impact estimates from
with JCMB being the total number of emission sources thatany other methods, including PSAT, TSSA, ISAM, and other
the CMB approach considers; sourtlere can be different sensitivity-base methods.

than the sources CTM includes) as&®“M®B is the CMB- Utilizing Eq. (7) we can evaluate the initial source appor-

. J .
calculated impact of sourcgon total PMys concentration.  tjopnment results for a measurement at a receptor by calculat-
One can extend the definition gf ; for CTMs using Eq. (5)  ing the square prediction error as

that includes the source impacts on condensed secondary pol-

where f; ; = % represents the original source profile used
J

lutants in the analysis. Hence, an effectif is found as JC™ 2
’ s 3~ gACT™
N i Y
K 2 J=
1 = , 8
SACTM S(l) Z Si(,j),k X Z]_ azt)bs ( )
— = fody
proo 0 D k=L 5) ! ;
Lj 7 grCTM T N 1 T N K o
J Z Sl(]) Z Z Sl(])k
i=1 " i=1k=1 whereo .obs is the uncertainty in the measured concentration
Equation (5) reveals that when there are no emissions off SPecies obtained from the CSN measurement uncertainty.
PM, 5 component from sourcej, f*; can still be nonzero, Equation (8) also sheds light on an opportunity to further
as the source could still contribute to secondary productiorfNinimize the CTM's prediction error in a least-squares so-
of PMgzs. lution that mimics the CMB method. This leads to a new
' method of conducting source apportionment in an SM—RM
2.3 CTM-CMB hybrid source apportionment ap- hybrid approach. One way to achieve this is to calculate a
proach new set ofSRS™ using the extended*; that minimizes
the weighted squared error in the simulated concentrations
At monitoring locations, on days with sufficient B&lcom- as follows:

position measurements available, the following species bal-
ance equations can be built for a CMB solution:

1

N ( iz
c 2_2: -
JMB X —

i=1

5= " f; i SREMB 4 M8, (6)
j=1

cT™ 2
CQbS_ fl*SRCTM>
1 sJ J

©)
2
O'Clpbs

wherec?*is the measured concentration for tite PMas  While this approach is similar to CMB, it accounts for sec-
species, andfMB is the concentration prediction error to be ondary contributions and other atmospheric processing using
minimized. CMB solves the species balance equations to calthe extendedfi’fj. If Eg. (9) alone were used to develop re-
culate a set OSR/CMB using fixed source profileg; ; (with vised source impacts, it would not fully take into account
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Table 1.Emissions source categories used in the hybrid method application.

Top-tier sectors  Combustion On road Non-road Biomass burning Industrial and others
33 source COALCMB, ORDIESEL, AIRCRAFT, NRDIESEL, AGRIBURN BIOGENIC, DUST,
categories DIESELCMB, ORGASOLINE NRFUELOIL, WILDFIRE, LIVESTOCK,
FUELOILCMB, NRGASOLINE, NRLPG, NRNA- OPENFIRE, METALPRODUCT,
LPGCMB, GAS, PRESCRBURN, MEATCOOKING,
NAGASCMB, NROTHERS, RAILROAD LWASTEBURN, MINERALPRODUCT,
OTHERCMB, WOODFUEL, SEASALT,
MEXCMB_M WOODSTOVE SOLVENT, OTHERS

Note: COALCMB - coal combustion; DIESELCMB - diesel combustion; FUELOILCMB — fuel oil combustion; LPGCMB - liquid petroleum gas combustion; NAGASCMB — natural
gas combustion; OTHERCMB — other fuel combustion; MEXCMB_M — Mexican combustion mix fuel; ORDIESEL — on-road diesel vehicles; ORGASOLINE — on-road gasoline
vehicles; AIRCRAFT — aircraft operation in airports; NRDIESEL — non-road diesel; NRFUELOIL — non-road fuel oil; NRGASOLINE — non-road gasoline; NRLPG — non-road liquid
petroleum gas; NRNAGAS — non-road natural gas; NROTHERS — non-road other fuel; RAILROAD - railroad; AGRIBURN — agricultural burn; WILDFIRE — wildfire; OPENFIRE —
open fire; PRESCRBURN - prescribed fire; LWASTEBURN — lawn waste burning; WOODFUEL — wood fuel boiler combustion; WOODSTOVE — woodstove and fireplace; BIOGENIC
— biogenic; DUST — fugitive dust; LIVESTOCK - livestock mostly ammonia; METALPRODUCT — metal products; MEATCOOKING — meat cooking, frying, charcoal broil;
MINERALPRODUCT — mineral products; SEASALT — sea salts; SOLVENT - solvents; OTHERS — others not in previous categories. See Table S2 in the Supplement for source
classification codes grouped in each category.

the information provided by the CTM about the estimated pact estimates are added to find an optimiRed
size and location of various emission sources and their prob-
able impact on pollutant concentrations at a receptor, i.e., the JCT™

2
.0b ini ini
obs_ cnit 3~ (Rj—l)SA;'j}t>

C
i=1

2
(o8 o
C](_)bs + SRE:TM

initial source impact estimatesR ¢ ™ = ZSACT'V' As for-

mulated in Eq. (9), this information is onIy used in the cal-
culation off*] but the magnitudes of the source impacts
are lost. Further, collinearity and uniqueness issues, such as

different sources sharing similar source profiles, would still Je™ (InR )2
impact the solution of the system of equations. ; (12)
Instead of the above approach, the CMB concept is ex- j=1 '”R

tended to directly use the initial estimatesSb(f]T’V' as well

as the initial simulated concentratioef8" from the CTM to WTereUSR,-CT,M_'S the a prlorn. L:]ncerta!nty N r?Trl]\/I_-der;\:jeddto-
refine the estimated source impacts. Definfygas a scale @ Sources’ impact on théth species, which Is added to

factor applied to the initial estimate of impact of sougo@r give weight for initial source impact estimates for diffgr—
initial or boundary CondltlonS)SAreflned the refined CTM- €Nt species and represents model errors. One can estimate

oggcTm @S proportional to observed concentratigiycrv =

S *c?bs, with §; as normalized model errors. The second
SAreflned R; SAlnlt (10) term of the equation accounts for uncertainties in the CTM-

derived individual source impacts due to emissions error.

OInR; is the a priori uncertainty of the natural log of source
Here SA"'is the initial source impactS(A}"} is the same ;5 scale factor. The logarithmic form is used as it has the
as prewousSACTM and is used from now on to distinguish same value on a relative basis (i.e., a 2-fold overestimate is
from SArEf'ned) As such, refinements to source impacts canWweighted the same as a 0.5-fold underestimate). This natu-
be found in a similar fashion to traditional CMB approaches rally constrainsk; to be positiveI" is introduced to balance

by solving forR; to minimize x 2, where the two terms in Eq (12).
The objective function expressed as Eq. (12) can be min-

imized by using various optimization algorithms available

simulated impact of sourcgon speC|e$ is obtained as

2
(Cobs_cinit _J%T:M R, _1)SAi.”i-t> for nonlinear opt_imization_ proble_ms With constrain_ts. We
N\ ! = hJ have tested multiple algorithms, including the algorithm of
:Z > . (11) sequential least-squares quadratic programming (SLSQP)
i=1 O eobs (Kraft, 1988, 1994) and L-BFGS, a limited-memory quasi-

Newton optimization function (Liu and Nocedal, 1989; No-
However, without further constraint8; can be physically cedal, 1980). With both the SLSQP and the L-BFGS method
unrealistic and would not account for the knowledge pro-one can set lower and upper limits &) for each individ-
vided by the CTM about the source impacts or the uncertainual source. We chose L-BFGS for our demonstration case
ties in emission estimates. Here, additional constraints and atudy. AsR; is optimized, the refined estimates of individ-
term that penalizes moving away from the initial source im- ual source impacts by species at a specific location are then
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given by Eq. (10). The level of remaining error in the refined lanta site using the same measurement data set and collected
concentration predictions can be found using Eq. (11). source apportionment results from the literature of the other

o five sites.
2.4 Application and case study

The hybrid method was applied for January 2004 to calcu-3 Results
late PMp 5 source impact scale factors at 164 CSN monitors

for which we had valid speciated Pl data. By using the
valid measurements at each of these CSN sites, the initia
source impacts were evaluated through Eg. (12) to obtain im-

pact scale factors and refined source impact estimates. Thﬁhe hybrid method was applied to obtaky and to fur-
L-BFGS algorithm was used with box constraints that lim- yo - vefine the initial source impact estimat&s. less than

ited R; to be between 0.1 and 10.0 (different sets of lim- means that the refined impact is reduced from the origi-

its have been tested, up tz the ra||1ge of betwe(?n é)(r)]2 ?n al (suggesting that the emissions are biased high or that the
50.0). Two steps were used to apply L-BFGS to find the fi- CTM is leading to a high bias in the source—receptor rela-

nal op}tllmlzefle . First, an initial chqce fol” was set a§ tionship), while larger than 1 means that the impact is in-
['= 7o = 33 = 1.24 to equally weigh the two terms in  rea5ed from the initial simulation. THe; values obtained
the objective function and obtain the initial optintal The ¢ the 33 sources ranged from 0.1 to 10 and have means be-
choice of " was examined using L-curve analysis (Fig. S1 yyeen 0.15 and 1, with sources of higher uncertainties having
in the Supplement). Then, the initial optim&j; were used  |5rger standard deviations (Table 2). In general, sources that
to create a nev as the value of the first term of the ob- are commonly considered as having high uncertainties were
jective function divided by/“™. The newI" was chosen o ng to haveR; values deviating the most from 1, while
to keep the prediction error relatively small but constraining inose sources considered less uncertain were found to have
the size of adjustments (Fig. S2 in the Supplement), and wag, ; yajues near 1. This is expected, in part because of the sec-
applied to obtain the final optimized;. Hereoing; are de-  ond term in the weighting function. The scale factors are also
termined by considering the daily emission estimates uncersqnd to be quite consistent (i.e., in the same directions), in
tainties for each source (Table S2 in the Supplement) derivedeneral, for the same source between locations and between
from the literature (Hanna et al.,_1998, _2001, 2005). In geN-gays at the same location (Table S9 in the Supplement).
eral, regulated sectors such as industrial, on-road and norjy gt significantly,R ;'s cumulative distribution functions are
road sources have lower uncertainties, non-regulated sectokg nd to be distinct between sources (Fig. S3 in the Supple-
such as residential related sources, dust and biomass burniqgent)_ This is true even between biomass-burning sources,
have higher uncertainties, and sources with direct measuresjthough most of them have a similar composition in emis-
ments (e.g., from CEMs) have the lowest. Because the refinesjgng (Fig. S3a in the Supplement). Dust, lawn waste burn-
ments are applied daily, the uncertainties used account fOfng (LWASTEBURN), and woodstove impacts (and other
the day-to-day variability in source strengths. For examplevbiomass-burning sources as well, although to a lesser ex-
pre;cribed burni.n_g events can be quite variable in time. Fo'ient) are found to be biased high (values typically~ 0.15).
traffic, day-specific emissions patterns are used, and so theps s consistent with findings of prior studies (Baek, 2009;
source strength’s variability is smaller. Sources for which di- chow et al., 2007; Tian et al., 2009) that emission rates for
rectemi_ssions monitor_ing is available are as_signed the loweshese sources were overestimated. Also, prescribed burning
uncertainty. To determingycrv, §; (Table S6 inthe Supple-  impacts are found to be biased low ( values being close
ment) are chosen as the typical normalized prediction errorgo 10) a small portion of the time due to its high day-to-day
of PM2 5 species as found in regional applications of state-of-variations. Typically, prescribed burning emissions are dis-
the-art CTM models (Appel et al., 2008; Boylan and Russell,tributed uniformly over time in the inventories, while in re-
2006; Simon, et al., 2012; Tesche et al., 2006). Results werglity burns occur on days with favorable burning conditions.
found to be not very sensitive to the range of valuesiok,  For most other sources (Fig. S3b, ¢, and d in the Supplement),
andUSRgTM tested. impact scale factors are typically closer to 1, where most of
We chose six CSN sites, each representing a major UShe R; values are between 0.8 and 1.1, with the exception
metropolitan area, for close examination of the method andf metal processing, cooking processes, fuel oil and natural
further analysis. These six sites are located in the Atlantagas combustion, on-road gasoline vehicle, and other sources.
Chicago, Detroit, Los Angeles, New York, and Pittsburgh ar- These six sources have more divefsevalues among loca-
eas, representing urban/suburban locations across the coutiens and/or between days.
try. Additional information for these six sites can be found An indication of the magnitude of the refinements can be
in Tables S7 (basic site information) and Table S8 (emis-found by comparing the initial and refined individual species
sions estimates surrounding each site) in the Supplement. Faoncentrations to the observations and can be quantified us-
comparison, we also conducted CMB modeling at the At-ing the weighted least-squares error (i),as expressed in

.1 Impact scale factors and refined concentration
predictions
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Table 2. Calculated source impact scale factors;) across 164 " Pzs ° £
CSN sites, January 2004: mean and standard deviation. (a) o [ | e |reoprressat (b) +Inital | RP=0.45FE=46% - l 4
70 X e R2=0_23 Fedaon . Refined Ri=0.53 FE-35i'/u /

Source Mean  SD Eor T A T
AGRIBURN  0.702 0.334 I i
AIRCRAFT 0.998 0.015 e o :
BIOGENIC 0.997 0.052 TRE AR
COALCMB 0.953 0.056 ° 0 1‘0 zo' 3l0 40 ;o 60 70 80 ) 8 10
DIESELCM 1.000 0.001 Obmred g Obervd g )
DUST 0.150 0.269 (C) * « Initial R2=0.20‘FE=52% // (d) » +Initial | R?=0.178 FE=75Y /
FUELOILC 0.879 0.186 . Refined R?=0.23 FE=44% | o :: Refined R?<0.183 FE=73% L
LIVESTOCK  0.989 0.043 - / _u 1
LPGCMB 0.999 0.006 H : A
LWASTEBU 0.193 0.541 i :
MEATALPR 0.738 0.224 . .
MEATCOOK  0.817 0.305
MEXCMB_M  0.999 0.007 S g P SR BT |
MINERALP 0.879 0.106 Observed (g m) omsevatigm)
NAGASCMB 0522 0.227 )" et 0 T e
NRDIESEL 0.987 0.056 : Rt Ri=02{pESeT ® T el Rolnsq pechen
NRFUELOl 0994 0.018 T ] o T v
NRGASOL 0.988 0.054 EE : > H A
NRLPG 1.000 0.003 z, L
NRNAGAS 1.000 0.001 : g 2
NROTHERS 1.000 0.001 21
OPENFIRE 0.552 0.421 o R, : LT
ORDIESEL 0.968 0.059 - U cotggmy
ORGASOL 0.862 0.172 . ¢ s h ,
OTHERCMB  0.910 0.130 ® 7] o Jewaosradore 7| (1) ) e
OTHERS 0521 0.222 Rl - B P
PRESCRBU 0.961 1.122 T - . — -
RAILROAD 0.998 0.013 17 i 1
SEASALT 0.991 0.025 g | N
SOLVENT 0.895 0.163 " 1} E
WILDFIRE 0.836 0.256 8 §/
WOODFUEL  0.904 0.184 UL e ©

WOODSTOVE 0.208 0.582

Figure 2. Scatter plots of initial and refined concentration predic-
tions against observations for BM total mass and select compo-
nents and element&) PMy 5, (b) SOy, (C) NHy4, (d) NOg3, (e) EC,

. . . (f) ocC, Si, and(h) K. Correlation ®2) and fractional error
Eq. (11)). The simulated concentrations are found to be |m—() (gj\), 2x|c.sim(_é.°b5} €

proved substantially compared to the initial simulation after (FE= % 2 ~(cImcoby
refining source impact estimates for major individual compo- =L
nents and for most of the elements (Fig. 2 and Table 3). Note

that several elements with very low ambient concentrationsyt the yncertainty of the hybrid results (smaller error indi-
(g.g., near thg measurement unce_rtamty) were found to have,ies more accurate results).

slightly deteriorated agreement with observations (Table 3).

However, results show that the refingd os.eq (EQ. (11) 3.2 Initial and refined CTM source impacts

with obtainedR;), an overall measure for remaining error,

was reduced from the originadéinit by over 98% on av- Significant day-to-day variations are found in the initial
erage (Fig. 3). Because the CTM uses the original sourcesource impact estimates (e.g., Table S10 in the Supplement,
speciation, the overall error will not go to zero unless theas normalized by total source impact), being more pro-
source fingerprints were correct. Further, the remaining ernounced for some sources, such as power plants (i.e., coal
ror, Xérefined includes the CTM'’s other input error such as combustion) and industrial sources. For example, in Atlanta,
meteorological bias and/or model limitations, e.g., the uncerpower plants (coal combustion) can contribute over 30 % on
tainties involved in simulating nitrate or SOA formation. The one day but only about 5% on other days (primarily as sec-
magnitude of the remaining error itself can be one indicatorondary sulfates). In Chicago, metal processing contributes

x 100% are also shown.
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Table 3. Initial and refined modeled concentrations vs. observed across 164 CSN sites, January 2004: average and standard deviation.

Species Observed \ Initial \ Refined

Avg (ugn3)  SD (ugnt3) | Avg (ugm3)  SD (ugnt3) | Avg (ugm—3)  SD (ugnt3)

PM25 11.31 7.19 17.89 11.88 8.80 474
0C25 2.12 1.98 3.85 3.72 1.29 1.00
EC25 0.81 0.75 1.07 1.13 0.62 0.59
NO325 2.61 3.05 2.07 2.11 1.87 1.89
NH425 1.27 1.11 1.50 0.98 1.21 0.75
S0425 2.03 1.28 2.84 1.82 2.30 1.48
Na 7.6x 1072 9.0x 1072 1.2x 1071 1.1x 1071 3.6x 1072 2.4% 1072
Mg 14x1072  1.7x10°2 29x1072  23x10°2 12x1072  8.6x10°3
Al 1.7x1072  1.9x 1072 19x1071  16x10°1 44%x1072  2.8x10°2
Sj 85x1072  7.4x 1072 56x10°1  4.8x1071 12x10°1  7.6x10°2
P 4.5%x 1073 1.6x 1073 6.9x10°3  53x 1073 23x1073  1.4x10°3
Cl 5.3x 1072 1.7x 1071 45x%x 1071 4.8x 1071 8.7x 1072 6.8x 1072
K 6.8x 1072  7.1x 1072 53x10°1  65x10°1 8.1x1072  7.7x10°2
Ca 44x1072  59x 1072 1.9x 1071 15x 1071 50x1072  3.1x 1072
Ti 4.1x 1073 3.7x 1073 2.1x 1072 1.8x 1072 71x103%  4.8x10°3
Y 24x103  2.8x1073 1.5x 1073 1.4x 1073 52x107%  35x 1074
Cr 23x103  57x1073 34x1073  46x10°3 13x10°3  1.0x1073
Mn 3.6x 1073 3.7x 1072 5.6x 1073 5.5x 1073 1.5x 1073 1.0x 10°3
Fe 6.4x 1002  9.7x 1072 1.6x 1071 1.4x 1071 42x1072  27x10°2
Co 7.9x 1074 42x1074 15x107%  1.3x107% 38x107°  26x10°°
Ni 2.0x 103 4.8x 1073 3.9x 1073 5.6x 1073 1.6x 1073 1.2x 1073
Cu 32x1073  4.9x10°3 36x103  48x10°3 1.8x103  1.3x10°3
Zn 1.6x 1072  2.9x10°2 12x1072  1.3x 1072 34x103  25x10°3
Ga 1.7x 1073 9.0x 1074 2.1x10°° 2.2x107° 1.3x 107> 9.1x 1076
As 1.7x 1073 1.9x 1073 26x10%  36x1074 8.6x10™°  7.4x10°°
Se 1.8x<103  2.2x 1073 1.9x1073  1.6x10°3 13x10°3  1.0x1073
Br 3.3x10°3 4.2x 1073 2.9x 1073 2.7x 1073 8.5x 10~4 5.6x 1074
Rb 9.3x1074 51x10°4 1.3x 1073 1.1x10°3 33x 1074 23x1074
Sr 1.7x 1073 1.2x 103 1.5% 10°3 1.1x 1073 6.7x 1074 5.0x 1074
zr 1.9x 1073 1.3x 1073 45x 1074  3.7x1074 12x1074  7.3x10°°
Mo 4.0x 1073 1.7x10°3 8.4x107%  1.2x10°3 46x1074  35x1074
Ag 53x103  3.4x10°3 52x104  81x1074 1.6x10%  1.3x10°4
cd 7.2x1073  6.3x10°3 4.2x 1073 1.7x 1072 1.0x103  2.2x10°3
In 7.3x1073  42x10°3 22x107% 22x1074 6.2x10™°  4.4x 1073
Sn 1.0x 102 5.0x 10°3 1.3x 1073 1.2x 1073 6.5x 1004  49x1074
Sb 1.4x 1072 1.1x 1072 6.9x 1074  86x 1074 32x10%  23x1074
Ba 1.5x 1072 1.8x 1072 9.0x1073  6.7x10°3 49%x 103  34x10°3
La 1.5x 1072 1.9x 1072 1.8x 10°3 1.8x 1073 8.0x 1074 5.7x 1074
Ce 1.9x 1072  2.4x10°2 21x10%  39x10°4 84x10°  7.8x10°°
Hg 2.0x103  9.3x 1074 1.3x10™°  1.0x10°° 6.5x10°%  4.4x10°6
Pb 4.8x 1073 6.1x 10~3 1.9x 1073 2.0x 1073 6.4x 1004  4.6x107%

20 % on some days but less than 10 % on other days. On-roagls woodstoves and dust, as well as other biomass-burning
gasoline impact can also vary significantly day to day, such asources, but changed much less or little for other sources
in Detroit, it varies fron~ 18 % to~ 3 %. Biomass-burning (compare left and right columns in Tables 4 and S10 in the
sources such as prescribed burns and agricultural burns coBupplement). Woodstoves and dust were top ranked at all six
tribute significantly on some days in Atlanta, but have virtu- sites from the initial estimates; however, refinement signifi-
ally zero impact on other days. cantly lowered those sources’ impacts (Table 5). The differ-
Refined source impacts changed significantly from the ini-ing adjustments between sources resulted in the rankings of
tial CTM estimates for sources with high uncertainties, suchtop contributors changing. This indicates that estimates from
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1000000 of sources from 33 to 13 by aggregating the source impacts
y= 0-021"0"82%6-542 (Fig. 4 and Table S12 in the Supplement). The 13 aggregated
] sources are chosen to cover the range of various sources in
different locations as identified in prior studies. Sources with
similar composition, e.g., various gasoline and diesel vehic-
ular sources, were merged accordingly. “AllOthers” included
sources typically not resolved in traditional SA studies, e.g.,
livestock, biogenic and solvents as well as minor combustion
and industrial sources. AllOthers (due to its large secondary
contribution) as well as gasoline and diesel vehicles are top
ranked in all six cities (Fig. 4 and Table S12 in the Supple-
ment). To make hybrid results directly comparable to that
10 of RM methods, we further separated the primary and sec-
100 1000 10000 100000 1000000 10000000 ondary contributions in the aggregated source impacts and
X Initial merged the secondary portions correspondingly into ammo-
Figure 3. Refinedxéreﬁnedv& initial Xgimt (in logarithmic scales) ~ Mium sulfa}tes, ammonium r_ntrate, and .secondary organic car-
for each measurement day during January 2004 at 164 CSN sites.0on (details are discussed in Note S4 in the Supplement). We
compared the regrouped hybrid source impacts for a more
direct comparison with RM methods conducted at the same
SM-Omy methods m|ght result in mis|eading source appor-location by this or prior studies (COUtant et al., 2003, Gilde-
tionment outcomes due to the errors in emissions estimategi€eister et al., 2007; Maranche, 2006; Pham et al., 2008;
on a specific day, as well as meteorological field and modeRizzo and Scheff, 2007) in Table 6. All the RM results were
parameter errors. For example, Marmur et al. (2006) founddased on CSN measurements, though time periods for other
that the CMAQ-calculated impact of soil dust at Jefferson RM results are typically longer than one year (details of RM
Street, Atlanta, GA (and other locations), was high whenmodel applications are found in Note S5 in the Supplement).
compared with two CMB estimates. This further supports Due to the different time periods used, we compare the ma-
that SM source apportionment results should be evaluatetfr features such as what sources are being resolved and the
using measurements. relative contributions between certain sources.

The hybrid method can separate sources with similar com- The hybrid approach resolved extra sources (with the to-
position, e.g., woodstove and prescribed burns, especialljal impacts of extra sources ranging between 20 and 30 % at
noting the different changes of these two sources betweethe six sites) that are typically missing from RM results (Ta-
their initial and refined impacts (Table S10 in the Supple-ble 6). This is consistent with 20 % of the emissions that
ment), as well as on-road and non-road diesel vehicles. Thi®aek (2009) found were not captured in most RM source ap-
is because it starts from integrating estimated emissions fronfortionment applications. For example, CMB-LGO, an ex-
the inventory with source specific spatial and temporal resotended CMB approach using the Lipschitz Global Optimizer
lutions, instead of starting from only the source composition(LGO) program (Marmur et al., 2005), did not capture the
like RMs do. In addition, with the hybrid method, secondary aircraft source impact at the Atlanta site (Balachandran etal.,
pollutants are directly apportioned to specific sources. For2012) as the profile is uncertain and similar to diesel com-
example, after the hybrid method refinement, livestock im-bustion. However, measurement (Herndon et al., 2008; Lee
pacts advance in rank among top contributors in Midwest-€t al., 2011) and modeling (Unal et al., 2005) studies have
ern cities: Chicago, Detroit, and Pittsburgh (Table 5), mostlyPoth suggested that the commercial aircraft engine emissions
through the secondary formation of ammonium and the assoffom the Atlanta airport had significant impacts on local air
ciated nitrate from NH emissions. Also, the two most com- quality including PM 5 concentrations. Natural gas combus-
mon major contributors across the cities become coal comtion and cooking process are two sources usually not resolved
bustion (except Los Angeles, Table 5), mainly due to sulfatePy RM methods using CSN data because their identification
formation from SQ emissions, and on-road gaso"ne vehi- needs extra measurement information. For instance, CMB
cles, partially due to nitrate and SOA formation from NO With particle-phase organic compounds as tracers using mea-
and VOC emissions. surements collected at the Jefferson street site has identified

that natural gas combustion had a 1.1 % impact onp PM
3.3 Comparison of refined source impacts with results ~ Atlanta (Zheng et al., 2002). Subramanian et al. (2007) used
from RM methods CMB with molecular markers and found that the impact of
cooking processes range from 1 to 5% onZ2Moncentra-
In order to compare with other source apportionment stud+ions in Pittsburgh. Compared to the hybrid results, primary
ies (see Table S11 in the Supplement for comparison withmpact estimates of coal combustion from RM methods are
a CTM study’s PSAT results), we first reduced the numbereither missing or too low. This is because the trace element
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10000

1000

X2 Refined

100
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Table 4.January 2004 average initial and refined absolute (p§)rand percentage (%) source impacts ornRMt the six sites.

Category Atlanta | Chicago | Detroit | Los Angeles | New York | Pittsburgh
Init. | Refnd. | Init. | Refnd. | Init. | Refnd. | Init. | Refnd. | Init. | Refnd. | Init. | Refnd.

AGRIBURN 0.1 0.5| 0.0 0.1 0.0 0.0| 0.0 0.0| 0.0 0.0| 0.0 0.0| 0.0 0.1| 0.0 0.1| 0.0 01| 0.0 0.1| 0.0 0.0| 0.0 0.0
AIRCRAFT 25 114 22 187| 0.0 0.0| 0.0 0.1 0.0 0.1] 0.0 0.3| 0.0 01| 0.0 0.3| 0.0 01| 0.0 0.2| 0.0 0.1] 0.0 0.3
BIOGENIC 0.9 43| 0.9 78| 01 03|01 09| 0.1 06| 0.1 1.4 15 3.7 1.5 96| 0.3 14| 03 27| 0.2 1.1| 0.2 1.9
COALCMB 25 11.8| 23 198| 08 3.7] 08 86| 09 44108 96| 0.2 05| 0.2 12| 30 129| 25 208| 19 127|16 19.6
DIESELCMB 0.0 0.0/ 0.0 0.0| 0.0 0.0| 0.0 0.0| 0.0 0.1] 0.0 0.1 0.0 0.0| 0.0 01| 0.0 0.0| 0.0 01| 0.0 0.0| 0.0 0.1
DUST 2.8 13.2| 03 24| 22 95| 0.2 24| 20 102]|02 23| 39 9.8| 05 33| 20 84| 02 18| 18 123| 0.2 2.2
FUELOILCMB 0.9 41| 0.7 64| 0.7 29| 05 50| 05 27|04 47| 2.8 6.9 1.3 87| 26 109| 18 149| 04 29|04 4.3
LIVESTOCK 0.8 35| 07 62| 15 66| 14 159| 1.1 55|11 125| 05 13| 05 33| 08 33| 08 63| 13 9.1] 13 16.0
LPGCMB 0.0 0.0/ 0.0 0.1 0.0 0.1] 0.0 03| 0.0 0.1] 0.0 03| 0.6 16| 0.6 39| 0.0 01| 00 0.2| 0.0 0.1] 0.0 0.2
LWASTEBURN 0.9 4.0/ 01 0.7| 0.6 27|01 10| 1.0 54|01 14| 28 69| 03 18| 04 16| 0.1 04| 12 8.2] 0.1 1.4
METALPRODUCT 0.2 0.7] 0.1 08| 35 15205 56| 05 25|03 36| 0.0 0.1| 0.0 03| 03 15| 03 25| 07 51| 04 4.6
MEATCOOKING 0.0 0.1} 0.0 01| 07 32|04 42| 0.6 33|03 33| 55 136| 15 9.7 1.7 74| 08 63| 04 26| 0.2 2.8
MEXCMB_M 0.0 0.0| 0.0 01| 0.0 0.0| 0.0 0.0| 0.0 0.0| 0.0 0.0| 0.0 01| 00 0.2| 0.0 0.0| 0.0 0.0/ 0.0 0.0] 0.0 0.0
MINERALPRODUCT 0.2 11, 0.2 17| 03 14| 0.2 26| 0.2 0.8] 0.1 1.7| 0.8 19| 05 33| 0.2 07| 01 11| 03 18| 0.2 23
NAGASCMB 0.8 3.7| 03 22| 31 136|038 87| 22 113|038 9.0| 35 8.7 09 58| 14 6.0 0.6 51| 0.7 48] 0.3 3.7
NRDIESEL 0.5 24| 05 42| 0.6 26| 0.6 6.3| 0.7 35| 0.6 69| 13 31| 12 79| 0.9 39| 09 73| 0.6 38| 05 6.2
NRFUELOIL 0.0 0.1| 0.0 01| 01 03] 01 07| 01 03] 01 0.7 0.0 01| 00 03| 0.0 01| 00 02| 0.1 06| 0.1 1.1
NRGASOLINE 0.2 11, 0.2 20| 04 16| 04 39| 05 24104 52| 09 23| 09 59| 05 21| 05 39| 02 15| 0.2 25
NRLPG 0.0 0.0/ 0.0 0.1 0.0 0.1] 0.0 0.2 0.0 0.1] 0.0 0.2 0.0 01| 0.0 0.2| 0.0 0.0| 0.0 0.0/ 0.0 0.1] 0.0 0.1
NRNAGAS 0.0 0.0/ 0.0 0.0| 0.0 0.0| 0.0 0.0| 0.0 0.0| 0.0 0.0| 0.0 0.0| 0.0 0.1| 0.0 0.0| 0.0 0.0| 0.0 0.0| 0.0 0.0
NROTHERS 0.0 0.0, 0.0 0.0| 0.0 0.0] 0.0 0.0| 0.0 0.0] 0.0 0.0| 0.0 00| 00 -0.1| 0.0 0.0| 00 0.0 0.0 0.0] 0.0 0.0
OPENFIRE 0.2 0.9 0.0 02| 0.0 0.0| 0.0 0.0| 0.0 0.0| 0.0 0.0| 0.0 0.0| 0.0 01| 15 6.4| 0.2 14| 0.0 0.3] 0.0 0.2
ORDIESEL 0.6 29| 0.6 48| 0.3 14|03 34| 07 3.7] 0.6 71| 0.6 15| 0.6 36| 0.6 24| 05 44| 03 19|03 3.2
ORGASOLINE 22 103 14 119| 17 73|11 122| 15 78|12 137| 22 5.6 1.5 9.5 1.3 5.7 1.0 8.0 1.3 91|12 140
OTHERCMB 0.1 0.6/ 0.1 0.7 1.2 53|07 74| 0.2 09| 0.2 18| 01 03| 0.1 06| 0.1 05| 0.1 09| 01 0.7| 0.1 1.1
OTHERS 0.5 25/ 02 19| 21 93] 03 34| 08 43| 04 45| 3.2 81| 13 81| 12 53| 04 37| 11 7.2 05 6.5
PRESCRBURN 0.5 24 01 09| 00 0.0| 0.0 0.0| 0.0 0.0| 0.0 0.0| 01 03] 0.2 1.0 0.2 09| 01 0.7| 0.0 0.1] 0.0 0.1
RAILROAD 0.1 03| 01 06| 0.1 0.7] 0.1 16| 0.1 041 01 08| 03 0.7| 03 19| 0.0 01| 00 0.2| 0.1 05| 0.1 0.8
SEASALT 0.0 0.0/ 0.0 00| 0.0 0.0| 0.0 00| 0.0 0.0| 0.0 0.0| 0.0 0.0| 0.0 0.0| 0.0 0.0| 0.0 0.0| 0.0 0.0| 0.0 0.0
SOLVENT 0.2 11| 0.2 18| 05 20|02 23| 02 10| 0.1 17| 0.6 14| 05 33| 04 16| 03 25| 0.1 09] 01 1.4
WILDFIRE 0.0 01| 0.0 01| 0.0 0.0| 0.0 01| 0.0 0.0| 0.0 01| 0.0 0.0| 0.0 03| 0.0 01| 00 01| 0.0 0.1] 0.0 0.1
WOODFUEL 0.1 03] 0.1 04| 0.0 0.1] 0.0 0.2 0.0 0.2] 0.0 05| 0.0 01| 0.0 01| 0.1 04| 01 0.6| 0.0 0.1] 0.0 0.2
WOODSTOVE 3.6 16.8 04 31| 23 10103 27| 54 281|05 64| 86 21.3| 09 55| 3.7 16.0| 04 36| 18 124| 03 3.0
Total impacts 21.6 100 11.8 100. ‘ 22.8 100.| 9.1 100. ‘ 19.3 100.| 8.5 100. ‘ 40.3 100.| 15.6 100. ‘ 235 100.| 12.1 100. ‘ 14.7 100.| 8.4 100.
Observed concentration 12.1 | 8.7 | 10.0 | 223 | 11.7 | 8.7

Table 5. Initial vs. refined largest five contributing sources (January 2004).

Site [ 1st 2nd 3rd 4th 5th

Atlanta Initial woodstove dust coal combustion aircraft on-road gasoline

Refined | coal combustion aircraft on-road gasoline biogenic fuel oil combustion
Chicago Initial metal products natural gas combustion  woodstove dust others

Refined | livestock on-road gasoline natural gas combustion  coal combustion other fuel combustion
Detroit Initial woodstove natural gas combustion  dust on-road gasoline livestock

Refined | on-road gasoline livestock coal combustion natural gas combustion  on-road diesel
Los Angeles Initial | woodstove meat cooking dust natural gas combustion  others

Refined | meat cooking biogenic on-road gasoline fuel oil combustion others
New York Initial woodstove coal combustion fuel oil combustion dust meat cooking

Refined | coal combustion  fuel oil combustion on-road gasoline non-road diesel meat cooking
Pittsburgh Initial coal combustion  woodstove dust on-road gasoline livestock

Refined | coal combustion livestock on-road gasoline others non-road diesel

markers for coal combustion, Se and Sr, were not detectednd vehicle (23% vs. 31 %) source impacts. The PMF re-
consistently in CSN samples due to low signal-to-noise ra-sults were closer to the hybrid findings. At three of the four
tios (Chen et al., 2010). sites where the RM methods separated vehicle impacts be-
Hybrid results estimated that total vehicle impacts (rang-tween diesel and gasoline, the hybrid results do not agree
ing from 14 to 22 %) were comparable to the RM results with the RM methods on the diesel-gasoline split (Table S13
found at the same urban/suburban locations, with an excepn the Supplement): the hybrid method found higher impacts
tion in Chicago (Table S13 in the Supplement). In Chicago,of diesel vs. gasoline (by a factor of 2.0-2.6), while the RMs
Rizzo and Scheff (2007) also conducted PMF modeling usfound the opposite (0.28—0.49). The ratios of diesel/ gasoline
ing the same composite data, and their PMF results differemissions surrounding the sites are in the range of 1.7-3.6
from CMB results, e.g., for biomass burning (5% vs. 11 %) (Table S13 in the Supplement). Subramanian et al. (2006)
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Table 6a.Refined source impacts results regrouped to 13 primary sources and compared to results from using RM methods: Atlanta, Chicago,
and Detroit.

Metro area (site ID) Atlanta (130890002) \ Chicago (170310076) \ Detroit (261630001)
Study method Hybrid CMB-LGO Hybrid CMB Hybrid PMF

(this study) (Rizzo and Scheff, 2007 (Gildemeister et al., 2007)
Period of measurements Jan 2004 | Jan 2004 | Jan 2004 | 2001-2003 | Jan 2004 | Dec 2000-Apr 2005
Source (primary and ugm® % | pgnr3 % ugm3 % | pgnr3 % ugm3 % | ugm3 %
secondary impacts separated)
LDGV* 0.45 3.9 1.39 13.7 0.38 4.2 48 31 0.60 7.1 2.53 15.0
HDDV* 1.20 10.2 0.59 5.9 0.83 9.2 : 1.19 14.0 0.67 4.2
DUST* 0.28 24 0.18 1.8 0.22 24 0.39 2 0.19 2.3 1.29 8.0
BURN* 0.60 5.1 1.06 10.4 0.35 3.9 1.71 11 0.68 8.1 0.51 3.2
COALCMB* 0.64 5.4 0.01 0.1 0.31 3.4 0.19 1 0.25 3.0
MEATCOOKING* 0.01 0.1 0.38 4.2 0.27 3.2
SEASALT* 2.0x10°3 1.7x10°2 1.8x104 1.9x10°% | 0.21* 1| 19x10% 23x10°3% | 057* 4.0
METALPRODUCT* 0.06 0.5 0.41 4.5 0.31 2 0.20 2.4 0.51 3.2
MINERALPRODUCT* 0.12 1.0 0.19 2.1 0.10 1.2
NATURALGAS* 0.19 1.6 0.52 58 0.58 6.8
FUELOIL* 0.09 0.7 0.15 1.6 0.10 12
AIRCRAFT* 211 17.9 0.01 0.1 0.02 0.2
AllOthers® 0.56 4.7 0.70 7.8 0.45 5.3
AMSULFT 4.06 345 3.45 34.1 2.07 22.8 4.79 31 2.46 29.1 4.99 311
AMNITR 0.84 7.2 2.25 223 2.47 27.3 3.18 20 1.26 14.8 4.49 28.0
OTHROC 0.56 4.8 1.19 11.7 0.07 0.8 0.10 1.2
Total impacts 11.78 100A(P 10.11 100.0‘ 9.06 1000‘ 15.58 99‘ 8.46 1000‘ 15.56 96.7
Modeled concentration (ugTﬁ) 14.69 10.11 10.27 15.58 10.15 15.56
Observed concentrations (ug™) 12.07 12.07 8.68 9.95

Table 6b. Refined source impacts results regrouped to 13 sources and compared to results from using RM methods: Los Angeles, New York,
and Pittsburgh.

Metro area Los Angeles (060658001) \ New York (360050083) \ Pittsburgh (420030008)

Study method Hybrid CMB Hybrid PMF Hybrid PMF
(Pham et al., 2008) (Coutant et al., 2003) (Maranche, 2006)

Period of measurements Jan 2004 | Apr 2004-Mar 2005 Jan 2004 | 3 Sep 2000-29 Jan 2002 Jan 2004 | Jul 2003-Aug 2005

Source (primary and pgmn? % | pgm 3 % ugn3 % | pgm3 % pg -3 % | pgm3 %

secondary impacts separated)

LDGV* 0.93 6.0 0.85 3.7 0.72 6.0 25 155 0.37 4.5 1.37 95

HDDV* 1.87 12.0 254 11.1 1.56 13.0 : ’ 0.82 9.9 0.68 4.7

DUST* 0.52 3.3 0.78 3.4 0.21 1.8 1.0 6.0 0.18 2.2 1.18 8.2

BURN* 1.27 8.2 0.38 1.6 0.75 6.2 0.39 4.8 2.4F%x% 16.7

COALCMB* 0.03 0.2 1.32 10.9 0.87 10.5

MEATCOOKING* 151 9.7 1.44 6.3 0.75 6.2 0.23 2.8

SEASALT* 32x10°% 2.0x1072 1.38 6.0| 20x10% 1.7x1072 03 19| 20x 104 25x10°3

METALPRODUCT* 0.02 0.1 0.09 0.8 . . 0.27 3.3

MINERALPRODUCT* 0.39 25 0.71 3.1 0.09 0.8 0.14 1.7

NATURALGAS* 0.68 4.4 0.49 4.1 0.23 2.7

FUELOIL* 0.80 51 0.27 12 0.62 5.2 1.2 7.6 0.07 0.8 | 0.45%*** 3.1

AIRCRAFT* 0.01 0.1 0.02 0.2 0.02 0.3

AllOthers* 1.93 12.4 0.71 5.9| 1.8%* 11.3 0.38 4.6

AMSULFT 2.47 15.9 451 19.7 4.24 35.2 53 32.9 3.10 37.4 5.49 38.2

AMNITR 2.32 14.9 10.08 44.0 0.32 2.6 4.1 254 1.10 13.3 2.81 19.5

OTHROC 0.79 5.1 0.16 1.3 0.12 1.4

Total impacts 15.56 100.0 22.93 100.0| 12.05 1000] 16.1 100.0| 8.31 100.0| 144 100.0

Modeled concentration (ugn?) 16.49 22.93 13.62 16.1 8.64 | 14.4

Observed concentrations (ugm 22.35 23.54 11.70 8.71

* Primary impacts only, secondary portion of the impacts are removed from these sources and merged into the secondary sources: AMSULFT — ammonium sulfate plus ammonium bisulfate; AMNITR —ammonium nitrate; and OTHROC — secondary organic
carbon.
** Road salts*** Industrial.**** Burning and cooking**** Incinerator.

found, utilizing molecular markers, that diesel impacts in  Hybrid results tend to find lower secondary contributions
Pittsburgh tend to dominate. The split between diesel andhan the RM methods, except in Chicago and Pittsburgh for
gasoline vehicular impacts at the Minnesota CSN sites fronthis period (Table S14 in the Supplement; see Table S15 in
CMB solutions have been found to be inaccurate (Chen ethe Supplement for individual sources’ contribution to sul-
al., 2011) when only regular measurements were used. Choate and secondary organic carbon (SOC)). While the hybrid
et al. (2007) suggested that CMB has difficulty making anand RMs agree well on ammonium sulfates at all six sites
accurate gasoline—diesel split without organic marker com-16—37 % vs. 20—38 %, Table 6), the hybrid method estimated
pounds. lower secondary organic carbon ( 4.8% vs. 11.7 %) in At-
lanta, and they differ the most on secondary nitrate impacts
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January 2004 Average Source Impacts for the Regrouped 13 Sources 4 Discussion
MO E B BB EEEEEBEBETE Allothers
gl BN BN B BN B = = = = = == p— The hybrid source apportionment method developed and ap-
o FuELoIL plied here has been demonstrated to be a novel way to im-
. | amaruraLoas prove SM-only CTM results by utilizing observations. It also
“MNERALPRODUCT has advantages over RM methods. First, some limitations of
oo | ~memaLrropucT RM methods are addressed (depending upon RM method):
st mseasaLT (1) the assumption that emissions are inert, with no chemi-
- EMEATCOOKING cal reactions; (2) a limited number of source categories are
- =coaLos considered; (3) potential collinearities between source com-
=BURN positions; (4) inconsistent or unrealistic results because re-
2 ceptor models do not include information on the strength
0% MHBOY and location of source emissions; and (5) not accounting
e s B e o I B B e e b Losv for physical process such as complex meteprology. Second,
303 % 3| % 3| %] 3| 3| 3 % 3 the refinement and evaluation of the source impact estimates
ks, | Eiiomps, | Bubok |sincsion| it | Filia | use measurement data that are independent from those used

. o i . to develop the initial source impact estimates. Additionally,
Figure 4. January 2004 average initial and refined source impact§ys hyhrig method can be applied to obtain spatial fields of
in percentage (%) of total Pk impact at the six sites for the re- source impacts providing refined hourly spatial fields.

grouped 13 sources. Both primary and secondary impacts are in- . S
cluded. These 13 sources include 7 unchanged sources from the A number of potential uncertainties from the CTM mod-

original 33 sources and 6 newly merged sources, which are (1)eling can lead to uncertainties in the estimated impacts from
LDGV - light-duty gasoline vehicles, merged from NRGASO- the hybrid approach. The assumption for deriving concentra-
LINE and ORGASOLINE; (2) HDDV — heavy-duty diesel vehicles, tions and sensitivities for the elements that are not explic-
merged from NRDIESEL, ORDIESEL, RAILROAD, and DIESEL- itly simulated in the CTM model might not always hold.

CMB; (3) BURN - vegetative burning, merged from AGRIBURN, The missing pathways of secondary organic aerosol forma-
LWASTEBURN, OPENFIRE, PRESCRBU, WILDFIRE, WOOD-  tjon and inaccurate representation of nitrate formation in the
FUEL, and WOODSTOVE; (4) NATURALGAS — merged from  CTM model can lead to underestimation of secondary source
NAGASCMB and NRNAGAS; (5) FUELOIL — merged from FU- jmpacts. Errors in the meteorology may result in errors in the

ELOILC and NRFUELOI; (6) AllOthers — merged from the left- : : % : .
i source fingerprints {*.) and source-r r relationships.
over hybrid sources: BIOGENIC, LIVESTOCK, LPGCMB, MEX- fingerprints£;) and source-receptor relationships
Errors in the initial emissions inventory, particularly in the

CMB_M, NRLPG, NROTHERS, OTHERCMB, OTHERS, and . - . .
SOLVENT spatial and/or temporal variability and in the composition

of the emissions, also introduce potential errors, particularly

when using the model to temporally interpolate the impact
(3—27 % vs. 20-44 %, Table 6). The difficulties in simulating adjustments, i.e., to provide 1 h impact fields after using the
particulate nitrate have been noted previously (Chang et al.24 h, speciated Pbt measurements. Thus, it is best to con-
2011). The simulated nitrate from CMAQ tended to be bi- sider using results of this approach applied to 24 h averaged
ased low in the base simulation at some locations and timedields.
The hybrid method adjusted the nitrate upwards to better On the other hand, evaluating the hybrid model results on
match the observed value, but will not force it to an exacta species basis can help identify errors in the original source
match. This is because the adjustment is limited by the secprofiles. Additionally, including measurements from multi-
ond term on the right-hand side of Eq. (12) that penalizesple sites in a region and/or spatially dense satellite retrievals
over-adjusting the impact based upon the estimated unceiin the process of adjusting emissions can further help sta-
tainty in the emissions (of NQin this case). Given that es- bilize R;. This will provide more accurate refinements and
timated emissions of NOfrom power plants are viewed as address the possibility of the measurements taken at a single
well estimated and emissions from mobile sources are not apoint being overly influenced by local sources. In this direc-
uncertain as, for example, dust emissions, this term will limit tion, the hybrid source results can be more accurate represen-
the adjustment of impacts from those sources more than othdations of the pollutant levels spatially because they integrate
sources. Typical RM methods do not have a similar term forestimates of the spatial distribution of emissions and the local
secondary contributions; they allow the attribution of specieschemical and physical atmospheric processes.
to secondary contributions to match the observations exactly.

The Supplement related to this article is available online
at doi:10.5194/acp-14-5415-2014-supplement
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