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a b s t r a c t

Most of currently reported models for predicting PM2.5 concentrations from satellite retrievals of

aerosol optical depth are global methods without considering local variations, which might introduce

significant biases into prediction results. In this paper, a geographically weighted regression model was

developed to examine the relationship among PM2.5, aerosol optical depth, meteorological parameters,

and land use information. Additionally, two meteorological datasets, North American Regional

Reanalysis and North American Land Data Assimilation System, were fitted into the model separately

to compare their performances. The study area is centered at the Atlanta Metro area, and data were

collected from various sources for the year 2003. The results showed that the mean local R2 of the

models using North American Regional Reanalysis was 0.60 and those using North American Land Data

Assimilation System reached 0.61. The root mean squared prediction error showed that the prediction

accuracy was 82.7% and 83.0% for North American Regional Reanalysis and North American Land

Data Assimilation System in model fitting, respectively, and 69.7% and 72.1% in cross validation. The

results indicated that geographically weighted regression combined with aerosol optical depth,

meteorological parameters, and land use information as the predictor variables could generate a better

fit and achieve high accuracy in PM2.5 exposure estimation, and North American Land Data Assimilation

System could be used as an alternative of North American Regional Reanalysis to provide some of the

meteorological fields.

& 2012 Elsevier Inc. All rights reserved.
1. Introduction

Many recent epidemiological studies have shown that fine
particles (PM2.5; particles having aerodynamic diameter less than
2.5 mm), which in populated regions are emitted primarily from
anthropogenic and biogenic sources, are associated with various
health outcomes, including increased risk of cardiovascular and
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respiratory diseases (Dominici et al., 2006), myocardial infarction
(Peters et al., 2001), and significantly reduced heart rate varia-
bility (Gold et al., 2000). Furthermore, PM2.5 exposure can cause
respiratory problems and deficits in lung development in children
(Gauderman et al., 2004; Schwartz and Neas, 2000). Long-term
PM2.5 concentration monitoring and accurate PM2.5 exposure
prediction are crucial to air quality assessment and to address
public health concerns.

Although many epidemiological studies have used measurements
from stationary ambient monitoring sites as surrogates for personal
exposure of PM2.5 (Ito et al., 2001; Pope et al., 2002), the number of
such sites is limited and its distribution is often sparse and unba-
lanced, which makes continuous spatial monitoring difficult. Remote
sensing technology provides a new way to generate an extensive
coverage of PM2.5 monitoring within a study area at various scales
by using satellite-retrieved aerosol optical depth. Aerosol optical
depth is a measure of the degree to which aerosols prevent light
from penetrating the atmosphere. In addition, aerosol optical depth
retrieved using visible channels is most sensitive to particles with
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sizes from 0.1 to 2 mm (Kahn et al., 1998) and can be used to measure
loadings of fine particles. To date, many studies have examined the
linkage between ground-level PM2.5 concentrations and aerosol
optical depth retrieved from various satellite sensors such as the
Moderate Resolution Imaging Spectroradiometer (MODIS) (Liu et al.,
2007a; Zhang et al., 2009), the Multiangle Imaging SpectroRadiometer
(MISR) (Liu et al., 2007a, 2007b, 2007c), and the Geostationary
Operational Environmental Satellite Aerosol/Smoke Product (GASP)
(Liu et al., 2009; Paciorek et al., 2008).

Some previous studies predicted surface PM2.5 concentrations
by establishing the direct relationship between PM2.5 and aerosol
optical depth with aerosol optical depth being the only indepen-
dent variable (Hu, 2009; Schaap et al., 2009), while others
estimated ground-level PM2.5 concentrations using satellite aero-
sol optical depth in conjunction with meteorological fields (e.g.,
boundary layer height, relative humidity, air temperature, and
wind speed) (Paciorek et al., 2008) and land use information (e.g.,
road length, land use types, and population density) (Liu et al.,
2009). Those meteorological and land use variables have been
recognized as effective predictors of PM2.5 and can significantly
improve the model predictability (Liu et al., 2005, 2007a, 2009;
Tian and Chen, 2010).

Numerous studies used linear regression models to examine
the association between PM2.5 measured at fixed-site monitors
and aerosol optical depth (Kumar et al., 2007; Liu et al., 2005;
Schaap et al., 2009; Schafer et al., 2008; Wallace et al., 2007).
Previous studies showed that the correlations between PM2.5 and
aerosol optical depth are spatially non-stationary (Engel-Cox
et al., 2004; Hu, 2009). The spatial nonstationarity denotes that
the relationships between dependent and independent variables
are not constant across space and change with spatial context.
The spatial nonstationarity led to a poorer performance of models
that used globally fixed parameters, which are based on an
assumption that the relationship between PM2.5 and aerosol
optical depth does not vary spatially, than local models such as
the geographically weighted regression (Wang et al., 2005; Zhao
et al., 2010). Geographically weighted regression is a technique
that can examine the spatial variability and nonstationarity
by producing local regression results (Fotheringham et al.,
1998). To date, few studies have developed geographically weighted
Fig. 1. Stud
regression models to estimate PM2.5 concentrations. Hu (2009) used
geographically weighted regression to generate a PM2.5 surface by
establishing a local relationship between PM2.5 and aerosol optical
depth. However, a drawback of this study was that aerosol optical
depth was the only predictor variable in the model without
accounting for the meteorological parameters and land use informa-
tion. As discussed above, many meteorological variables can sub-
stantially affect the relationship between PM2.5 and aerosol optical
depth and are significant predictors of PM2.5 concentrations.
Neglecting those parameters might reduce the prediction accuracy
and increase the bias, and thus should be avoided.

The first objective of this paper is to establish a quantitative local
relationship between ground-level PM2.5 and aerosol optical depth
using geographically weighted regression together with meteorolo-
gical parameters and land use information. The local regression
model is cross-validated and used to predict ground-level PM2.5

concentrations within the study domain. A PM2.5 surface is then
derived from the predictions to illustrate the distribution of ground-
level PM2.5 concentrations within the study area. The second objec-
tive is to compare the impacts of meteorological fields from two
different datasets, the North American Regional Reanalysis (NARR)
and the North American Land Data Assimilation System (NLDAS), on
the PM2.5 concentration predictions to examine the performance of
NLDAS, given its higher temporal and spatial resolution than NARR.
2. Materials and methods

2.1. Study area

The study area for this analysis is approximately 750 km by 750 km, covering

most of Georgia, Tennessee, and Alabama and small portions of Kentucky, West

Virginia, North and South Carolina, and Florida, centered at the Atlanta metro area

(Fig. 1).

2.2. Materials

2.2.1. EPA PM2.5 measurements

The 24-h average EPA PM2.5 concentrations in the study area for year 2003

were downloaded from the EPA’s Air Quality System Technology Transfer

Network. The data were collected from the federal reference monitors within

the study region. The measured PM2.5 concentrations were used as the dependent
y area.
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variable in the model, and the PM2.5 concentrations less than 2 mg/m3 (3.6% of

total records) were discarded as they are below the established limit of detection

(EPA, 2008) to avoid introducing errors into the model. There are a total of 119

PM2.5 monitoring sites within the study domain in 2003. Although some of the

monitoring sites are close to each other, we did not combine them because

the number of monitoring sites is very limited, and combining them will reduce

the number of records. Moreover, geographically weighted regression modeling is

based on distance between points. Thus, combining original sites might alter the

relationship between PM2.5 and the predictors for each regression point. Only 7.5%

of the total data points fall inside the same grid cell on the same day, and spatially

averaging these sites does not change our findings in any significant way. In

addition, forest cover is one of the predictors and is calculated within 1 km radius

of each station (900 m by 900 m). As a result, merging nearby stations will reduce

the resolution of this parameter.

2.2.2. Aerosol optical depth data

MODIS is an instrument aboard the Terra and Aqua satellites operated by

National Aeronautics and Space Administration (NASA) (Remer et al., 2005).

MODIS measures the abundance of atmospheric particles on the global scale at

a moderate spatial resolution (10 km). The 2003 MODIS aerosol data (collection 5)

at 550 nm wavelength were downloaded from the Earth Observing System Data

Gateway at the Goddard Space Flight Center (http://delenn.gsfc.nasa.gov/

-imswww/pub/imswelcome). Because MODIS aerosol optical depth pixels shift

in space between orbits, it is difficult to compare model predictions with ground

PM2.5 measurements. Therefore, a base grid is needed for prediction. We re-

sampled these data to the 12 km Community Multiscale Air Quality (CMAQ) grid

using a nearest neighbor approach. CAMQ is a commonly used grid that results in

little sacrifice of resolution. The re-sampling might introduce additional varia-

bility. However, both CMAQ and MODIS have similar spatial resolutions (12 km

and 10 km, respectively), and the study domain is large (750 km by 750 km). Thus,

the variability should be relatively small. In case a grid cell had aerosol optical

depth observations from both Terra and Aqua, their average value was assigned

for that grid cell. In 2003, that case only happened for 10.2% of the days on

average. On the other hand, grid cells had either only Terra observations or only

Aqua observations in 14.1% and 13.1% of the days, respectively. On average, grid

cells had no observations at all for 62.6% of the days, due to cloud coverage.

2.2.3. Meteorological fields

The National Centers for Environmental Prediction has released the NARR

dataset, a long term, consistent, high-resolution climate dataset for North America

(Mesinger et al., 2006). The NARR project is an extension of the National Centers

for Environmental Prediction Global Reanalysis which is run over the North

American Region (http://www.emc.ncep.noaa.gov/mmb/rreanl/). The NARR model

uses the high resolution Eta Model (32 km/45 layer) (Black, 1988; Janjic, 1994;

Mesinger et al., 1988) together with the Regional Data Assimilation System which

assimilates precipitation along with other variables. The Eta model is a state-of-

the-art atmospheric model initially developed in the 1970s. It was formally

adopted for operation by the National Centers for Environmental Prediction in

1993. The improvements in the model/assimilation have resulted in a dataset with

substantial improvements in the accuracy of temperature, winds and precipitation

compared to the earlier National Centers for Environmental Prediction—

Department of Energy Global Reanalysis 2 (Kanamitsu et al., 2002). The spatial

resolution of the NARR meteorological data is approximately 32 km. The data set

contains parameters such as boundary layer height, relative humidity, air

temperature, and wind speed at 3-h intervals. The daily meteorological data were

obtained by averaging the 3-h NARR measurements sampled from 10 a.m. to 4

p.m. local time to cover the satellites overpass time.

The NLDAS (Phase 2) meteorological data were downloaded from the NLDAS

website (http://ldas.gsfc.nasa.gov/nldas/). The NLDAS provided quality controlled,

spatially and temporally consistent, real-time, and retrospective forcing datasets

(Cosgrove et al., 2003). The non-precipitation land-surface forcing fields for NLDAS

(Phase 2) are derived from the analysis fields of the NARR. Those NARR fields that

are utilized to generate NLDAS (Phase 2) forcing fields are spatially interpolated to

the finer resolution of the NLDAS 1/8th-degree (�13 km) grid and then temporally

disaggregated to the NLDAS hourly frequency. Also, the fields of surface pressure,

surface downward longwave radiation, near-surface air temperature, and near-

surface specific humidity are adjusted vertically to account for the vertical

difference between the NARR and NLDAS fields of terrain height. This vertical

adjustment applies the traditional vertical lapse rate of 6.5 K/km for air tempera-

ture. The details of the spatial interpolation, temporal disaggregation, and vertical

adjustment are presented by Cosgrove et al. (2003). The hourly NLDAS measure-

ments sampled from 10 a.m. to 4 p.m. local time were averaged to generate the

daily meteorological fields.

2.2.4. Land use information

A 2001 Landsat-derived land cover map covering the study area with a spatial

resolution of 30 m was downloaded from the National Land Cover Database

(http://www.epa.gov/mrlc/nlcd-2001). A forest map was generated by converting

the values of the forest pixels into one and others into zero.
2.2.5. The southeastern aerosol research and characterization study experiment

(SEARCH) data

The SEARCH network is designed to establish detailed aerosol climatology for the

Southeast United States (http://www.atmospheric-research.com/studies/SEARCH/

index.html). The 2003 SEARCH data from two monitor stations within our study

region including North Birmingham, Alabama and Jefferson St. Atlanta, Georgia were

downloaded from the website. The predictions at these two monitor sites were

compared to the observed PM2.5 mass as independent validation of our model.

2.2.6. Data integration

Since the original projections and spatial resolutions of the datasets varied, all the

datasets were re-projected to the USA Contiguous Albers Equal Area Conic USGS

coordinate system before combining them. For meteorological parameters and the

aerosol optical depth data, a nearest neighbor approach was applied. That is, the

meteorological and aerosol optical depth values acquired from the nearest center

point of the pixel which is either in NARR, NLDAS, or CMAQ grid were assigned to the

PM2.5 monitor site. For the forest cover, a 900 m by 900 m square buffer centered at

each PM2.5 monitor site was created, with each buffer containing 900 forest cover

pixels. We chose 900 m because the smallest distance between any two monitor sites

is around 1 km. For each buffer, the percentage of forest cover was calculated and

assigned to the corresponding PM2.5 monitor site. The geographically weighted

regression modeling was conducted for each day by selecting 10 as a threshold for

number of records. For year 2003, there were 137 days that met the criterion, and the

maximum number of observations in one day was 101.

2.3. Methods

2.3.1. Geographically weighted regression

Instead of estimating global parameters, geographically weighted regression

can generate a continuous surface of parameter values by taking measurements of

the parameters at each local observation to denote the spatial variations of the

surface. In this study, the adaptive bandwidths were used due to the uneven

distribution of the data points, and the bandwidths were obtained by minimizing

the corrected Akaike Information Criterion value. There are other bandwidth

selection criteria such as Akaike Information Criterion and Bayesian Information

Criterion. Compared to Akaike Information Criterion, the corrected Akaike Infor-

mation Criterion is less biased and can avoid the large variability and tendency to

undersmooth (Hurvich et al., 1998). Unlike Akaike Information Criterion, Bayesian

Information Criterion is not an estimator of Kullback–Leibler information distance

that can be used to decide which model is closest to reality. How Bayesian

Information Criterion could be extended to variable bandwidth non-parametric

models with effective degrees of freedom is also not clear (Fotheringham et al., 2002).

In general, the best model should have the lowest corrected Akaike Information

Criterion value (Fotheringham et al., 2002).

2.3.2. Model structure

In this study, a separate geographically weighted regression model was

established for each selected day (137 days in this case). The model structure

could be expressed as:

PM2:5 �HPBLþRHþTEMPþWIND_SPEEDþFOREST_COVERþMODIS_AOD ð1Þ

where PM2.5 refers to the daily ground-level PM2.5 concentrations (mg/m3), HPBL is

the boundary layer height (m), RH denotes the relative humidity (%), TEMP is the

air temperature (K), WIND_SPEED refers to the surface wind speed (m/sec),

FOREST_COVER denotes the percentage of the forest cover (unitless), and MOD-

IS_AOD is the MODIS aerosol optical depth value (unitless). we also tested the

u-wind and v-wind as separate parameters instead of wind speed. The prediction

accuracy drops significantly, and the model becomes more complex due to one

more predictor included. This phenomenon might be due to the limited number of

records on some days, and too many predictors might lead to model over-fitting.

Hence, wind speed is used in our model because it can not only improve the

prediction accuracy, but keep the model simpler. Two combinations of meteor-

ological parameters were applied. One was completely derived from NARR. The

other contained boundary layer height from NARR and other parameters from

NLDAS, since NLDAS does not provide the boundary layer height. Both models

were then used to predict the ground-level PM2.5 concentrations in the study

domain and generate a continuous PM2.5 surface for each day. The annual mean

PM2.5 surfaces for the two models were derived from the daily surfaces and

compared visually to examine the impacts of the two different meteorological

datasets on the PM2.5 concentration prediction. In addition, relative difference

values were calculated to quantitatively denote the difference between the two

annual mean PM2.5 surfaces. The relative difference formula is defined as

Dif f ¼
bNARR�bNLDAS

0:5 bNARRþbNLDAS

� �

�����

�����
� 100% ð2Þ

where bNARR and bNLDAS denote the two annual mean predicted PM2.5 surfaces

derived from the geographically weighted regression model using NARR and

NLDAS, respectively.

http://delenn.gsfc.nasa.gov/-imswww/pub/imswelcome
http://delenn.gsfc.nasa.gov/-imswww/pub/imswelcome
http://www.emc.ncep.noaa.gov/mmb/rreanl/
http://ldas.gsfc.nasa.gov/nldas/
http://www.epa.gov/mrlc/nlcd-2001
http://www.atmospheric-research.com/studies/SEARCH/index.html
http://www.atmospheric-research.com/studies/SEARCH/index.html
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2.3.3. Model fitting and residual spatial autocorrelation

The geographically weighted regression model generates a local R2 for each

regression point which indicates how well a local model can replicate the data in

the vicinity of the regression point (Fotheringham et al., 2002).

In this study, a mean local R2 for each day was determined since the

geographically weighted regression model was implemented on a daily basis,

and a mean local R2 for all the regression points and days was also calculated in

order to quantitatively compare the overall performance of NARR and NLDAS on

the geographically weighted regression model calibration.

Spatial autocorrelation measures the similarity between samples for a given

variable as a function of spatial distance (Legendre, 1993). A commonly used index

to measure spatial autocorrelation is the Moran’s I statistic. Moran’s I values larger

than zero indicate positive spatial autocorrelation, values smaller than zero denote

negative spatial autocorrelation, and values near zero means no spatial auto-

correlation. Moran’s I is defined as

I¼
n

Pn
i

Pn
j wij

�

Pn
i

Pn
j wij ri�rð Þ rj�r

� �

Pn
i ri�rð Þ

2
ð3Þ

where n is the sample size. wij is the spatial weight between point i and point j. r is

the mean of the residuals. ri and rj are the geographically weighted regression

residuals for the ith and jth points, respectively.

Wang et al. (2005) and Zhao et al. (2010) found that geographically weighted

regression can solve the problems of spatially autocorrelated error terms in global

Ordinary Least Squares (OLS) models, and ideally the residuals of the geographi-

cally weighted regression model have no significant spatial autocorrelation.

Spatially autocorrelated error terms indicate that some variations cannot be

explained by the current covariates, and statistical inference is affected, yielding

biased results. In this study, the global Moran’s I index of the geographically

weighted regression residuals was calculated for each day, and a significance test

was conducted to examine if there was any significant spatial autocorrelation in

the error terms.

2.3.4. Model validation for prediction

To validate model performance, a prediction of the ground-level PM2.5

concentration was made at each regression point for each day using the

geographically weighted regression model. The predicted PM2.5 concentrations

were fitted against the observed values using a linear regression model with zero

intercept, and the slope indicates the overall prediction bias. Furthermore, the

correlation coefficient was calculated to denote the degree of goodness of fit

between predicted and observed PM2.5 concentrations. Mean prediction error

(MPE) and root mean squared prediction error (RMSPE) (Yanosky et al., 2008)

were adopted to evaluate the model prediction accuracy. All the statistics were

calculated for all days. In addition, predictions were made at the two monitor

stations (North Birmingham, Alabama and Jefferson St. Atlanta, Georgia) from the

SEARCH network to compare to the observed PM2.5 concentrations for indepen-

dent validation. The data collected from SEARCH network were independent from

those used in the modeling. The data used in the modeling were collected from the

federal reference monitors. The correlation coefficient, MPE, and RMSPE for all

days were calculated to quantitatively denote the goodness of fit between the

predicted and observed values.

10-fold cross validation was applied for each daily geographically weighted

regression model to test for potential model over-fitting. The dataset was first split
Fig. 2. Histograms of dependent
into ten folds with approximately 10% of the total data points in each fold. In each

round of the cross validation, one fold (10% of the total data points) was used as

the testing data, the remaining nine folds (90% of the total data points) were used

to fit the model, and predictions were made on the held-out testing fold (10% of

the total data points). In next round, another fold (another 10% of the total data

points) was used for testing, and the remaining nine folds (another 90% of the total

data points) were used for training. The process is repeated ten times until every

fold is tested. To incorporating different combinations of random selections, we

repeated cross validation for one hundred times. The same statistics (e.g., the

slope, the correlation coefficient, MPE, and RMSPE) for all days were calculated for

the cross validation results. Furthermore, a comparison was conducted between

the cross-validation and the model-fitting statistics to assess the degree of

potential model over-fitting.

The geographically weighted regression results were also compared to those

derived from an Ordinary Least Squares (OLS) model using the same aerosol

optical depth, land use, and meteorological parameters to examine if the

geographically weighted regression model has better predictability of PM2.5

concentrations than a global model.
2.3.5. Sensitivity analysis for the number of records

A sensitivity analysis was conducted on the R2 values calculated from

regressing the predicted against the observed PM2.5 concentrations as a function

of a daily minimum number of observations. Our model is built for each day. For

some days, the number of records is limited, which might impact the model

significance. The sensitivity analysis is to remove the days with too few valid

records in order to improve the overall prediction accuracy. By examining the

fluctuation of the R2 variations, an optimum minimum number of records for each

day which yielded relatively stable R2 values was identified and adopted as the

threshold. The days with a number of records smaller than the threshold were

considered insufficient and excluded from the analysis. After filtering, there were

137 out of 365 days that met the criteria and therefore were included in the

geographically weighted regression modeling.
3. Results

3.1. Descriptive statistics

The histograms of variables for all days are illustrated in Fig. 2,
which shows that all the variables are roughly unimodal and log-
normally distributed. The geometric mean, standard deviation,
maximum, and minimum for all the variables for all days are also
presented (Table 1). The annual mean PM2.5 concentration for all
the monitor sites is 13.66 mg/m3, and the overall mean of MODIS
aerosol optical depth is 0.13.

A Pearson’s correlation was performed among all the indepen-
dent variables to avoid potential multicollinearity problems.
The results showed that the correlation coefficients among all
and independent variables.



X. Hu et al. / Environmental Research 121 (2013) 1–10 5
the independent variables were relatively low, and thus all of
them were kept in the model calibration.

The agreement between NARR and NLDAS meteorological
parameters was examined by conducting a linear regression
analysis with zero intercept. The results indicate that all the
meteorological fields are highly comparable between NARR and
NLDAS with slopes of 1.02, 0.999, and 1.003, and the correlation
coefficients of 0.98, 0.998, and 0.98 for relative humidity, air
temperature, and wind speed, respectively.

Fig. 3 shows the results of the sensitivity analysis for the
number of daily observations. When the number of matched data
records reaches ten, model prediction becomes relatively stable.
Hence, the minimum number of ten observations for each day
was accepted as the threshold. When the number of records
reaches seventy, the R2 values become instable, because the
number of days and records starts to drop significantly.
3.2. Results of model fitting and residual spatial autocorrelation

As shown in Fig. 4(a), the mean local R2 values of daily
geographically weighted regression models range from 0.22 to
0.99 for the models using NARR and from 0.20 to 0.99 for the
models using NLDAS. The overall mean local R2 values were 0.60
and 0.61 for the models using NARR and NLDAS, respectively.
These two values indicate that despite poor performance of the
Table 1
Descriptive statistics for dependent and independent variables (N¼4477).

Mean Standard

deviation

Minimum Maximum

NARR PM2.5 (mg/m3) 13.66 6.85 2.10 53.30

Boundary layer

Height (m)

1134.12 348.40 236.19 2694.47

Relative

humidity (%)

60.00 8.87 23.38 95.51

Air

temperature

(K)

290.27 8.43 264.00 305.41

Wind speed

(m/s)

3.75 1.97 0.03 13.01

NLDAS Relative

humidity (%)

59.01 8.63 23.70 89.11

Air

temperature

(K)

290.56 8.39 265.07 305.58

Wind speed

(m/s)

3.75 1.92 0.04 12.77

Forest cover 0.14 0.18 0 0.91

MODIS Aerosol

optical depth

0.13 0.18 -0.05 1.47

Fig. 3. Sensitivity analysis
geographically weighted regression model for some days, the
overall performance was relatively high. Furthermore, we also
fitted a geographically weighted regression model with aerosol
optical depth as the only predictor variable, and the overall mean
local R2 was 0.38 which was less than the models incorporating
NARR and NLDAS, indicating that meteorological fields can sig-
nificantly improve the model performance. The mean adjust R2 of
the OLS model is 0.44 and 0.47 for NARR and NLDAS, respectively,
suggesting that the geographically weighted regression model has
better performance than the OLS model.

Fig. 4(b) illustrates the results of Moran’s I calculation for the
error terms. The results show that the Moran’s I values of model
residuals ranged from �0.75 to 0.33 and from �0.72 to 0.31 for the
models using NARR and NLDAS, respectively. The mean Moran’s I
value was �0.10 for the models with NARR and �0.14 for the
models with NLDAS. In addition, a two-tailed significance test
(a¼0.05) with the null hypothesis of no significant spatial auto-
correlation was conducted, and the results showed that there were
no significant spatial autocorrelation within the geographically
weighted regression model residuals of 107 days (78.1% of days)
for both NARR and NLDAS, while there were only 95 days (69.3% of
days) for NARR and 91 days (66.4% of days) for NLDAS in which the
OLS model residuals did not show significant spatial autocorrelation.
The result suggested that geographically weighted regression suffi-
ciently captures any spatially autocorrelated error terms in the global
parameter OLS models.
for record numbers.

Fig. 4. Model validation. (a) Daily mean local R2; (b) global Moran’s I index.

The box gives 25–75% percentile, and the line in box denotes the median. The

whisker indicates the minimum and maximum data values, and if there are

outliers, the whisker extends to a maximum of 1.5 times the inter-quartile range.

The points are outliers.



Fig. 5. Predicted vs. Observed PM2.5 concentrations. (a) Model fitting and (b) cross validation.

Table 2
Model validation.

Correlation

coefficient r

Slope Mean prediction

error

Root mean squared

prediction error

Relative

accuracy (%)a

Model fitting Geographically weighted regression NARR 0.94 0.97 1.60 2.37 82.7

NLDAS 0.94 0.98 1.55 2.32 83.0

Ordinary least squares NARR 0.91 0.97 1.91 2.78 79.6

NLDAS 0.92 0.97 1.85 2.70 80.2

Cross validation Geographically weighted regression NARR 0.82 0.96 2.59 4.14 69.7

NLDAS 0.84 0.97 2.46 3.81 72.1

ordinary least squares NARR 0.80 0.96 2.74 4.32 68.4

NLDAS 0.83 0.96 2.60 4.00 70.7

a Relative accuracy is defined as 100%-Root Mean Squared Prediction Error/the mean PM2.5 concentration. The mean PM2.5 concentration is 13.66 mg/m3.
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3.3. Results of model validation

A regression with zero intercept (Fig. 5) was performed to fit the
predicted against the observed values, and the correlation coeffi-
cient, the slope, MPE, and RMSPE were calculated to evaluate the
predictive power of the geographically weighted regression model
(Table 2). The results showed that all the correlation coefficients and
the slopes of NARR and NLDAS were close to unity, which indicated
that the predictions made from both model fitting and cross
validation agreed well with the observed values. However, the
correlation coefficients and the slopes of the predicted against the
observed values, derived from the cross validation, were smaller
than those generated from the model fitting. On the other hand,
MPE and RMSPE obtained from the cross validation were larger than
those derived from the model fitting, which indicated a slight model
over-fitting. The results also showed that the geographically
weighted regression model outperformed the OLS model. The
geographically weighted regression model generated higher correla-
tion coefficient and lower RMSPE and MPE than the OLS model for
both model fitting and cross validation. We also tested the model
with aerosol optical depth removed. The RMSPE values from model
fitting for NARR and NLDAS are 2.46 and 2.42 mg/m3, respectively,
and those from cross validation are 4.09 and 3.79 mg/m3. The results
indicate that the prediction accuracy does not change significantly
with aerosol optical depth removed from the model, which is in line
with the findings of Paciorek and Liu (2009) that aerosol optical
depth might be helpful for estimating temporal heterogeneity rather
than spatial heterogeneity due to the weak spatial correlation
between PM2.5 and aerosol optical depth. In addition, there are
many powerful predictors in the model, and the predicting power of
a single predictor might be reduced. Without aerosol optical depth,
the model over-fitting is also reduced, which is due to the small
sample sizes on some days. Fig. 5 shows that there were under-
estimations primarily at high concentration levels, the model fitting
under-predicted the PM2.5 concentrations by 2–3% (e.g., fitted
PM2.5¼0.98 or 0.97 observed PM2.5), and the cross validation
under-predicted the PM2.5 concentrations by 3–4%. The mean
differences of observed and predicted PM2.5 concentrations for
model fitting at each monitor site ranged from �2.64 to
2.35 mg/m3 for NARR and from �2.47 to 2.30 mg/m3 for NLDAS.
The mean differences for cross validation at each monitor site
ranged from �4.43 to 3.67 mg/m3 for NARR and from �4.14 to
3.72 mg/m3 for NLDAS. Fig. 6 illustrates the distribution of the mean
differences of observed and predicted PM2.5 concentrations, which
shows that the negative and positive differences are largely inter-
twined and randomly distributed, and no systematic spatial pattern



Fig. 6. The mean difference between predicted and observed PM2.5 concentrations at each monitor site. (a) Model fitting and (b) cross validation.

Table 3
Independent validation.

Correlation

coefficient r

Mean prediction

error

Root mean squared

prediction error

Relative

accuracy (%)a

North Birmingham, Alabama Geographically weighted regression NARR 0.90 3.07 4.37 77.1

NLDAS 0.90 2.95 4.21 77.9

Ordinary least squares NARR 0.87 3.44 4.96 74.0

NLDAS 0.88 3.28 4.73 75.2

Jefferson St. Atlanta, Georgia Geographically weighted regression NARR 0.82 2.90 4.39 71.2

NLDAS 0.80 2.94 4.58 70.0

Ordinary least squares NARR 0.81 2.90 4.41 71.1

NLDAS 0.80 2.98 4.63 69.7

a Relative accuracy was defined as 100%-root mean squared prediction error/the mean PM2.5 concentration. The mean PM2.5 concentrations of 19.07 mg/m3 for the

North Birmingham, Alabama site and 15.26 mg/m3 for the Jefferson St. Atlanta, Georgia site.
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is observed. Large negative differences occurring in large urban areas
are in line with the fact that the model tends to under-estimate in
areas with high PM2.5 concentrations. However, large negative
differences are likely to occur in but not limited to large urban areas.

The independent validation for the geographically weighted
regression model also showed a good fit between the predicted
and observed values, and the geographically weighted regression
model outperformed the OLS model for both North Birmingham,
Alabama and Jefferson St. Atlanta, Georgia sites (Table 3).

3.4. Predictions of PM2.5 concentrations

The NARR and NLDAS annual mean (based on 137 days) PM2.5

surfaces on the CMAQ grid (12 km by 12 km) are shown in Fig. 7.
The results show that NARR predicted the PM2.5 concentrations
within the range from 4.93 to 17.84 mg/m3 with a mean of
12.16 mg/m3, while NLDAS predicted PM2.5 concentrations from
4.69 to 17.76 mg/m3 with a mean of 12.56 mg/m3. The prediction
of NLDAS was slightly higher than NARR. The relative differences
between the predictions of the NARR and NLDAS are around 0–
10% in most of the domain, except for some rural areas and the
mountainous areas in the northeast, where differences exceed
20%. The PM2.5 surfaces predicted by the geographically weighted
regression model with NARR and NLDAS are similar and consis-
tent with land use and transportation corridors, as well as the
patterns showed in previous research (Al-Hamdan et al., 2009),
i.e., high values of PM2.5 exposure primarily appeared in large
urban areas and along major highways, while low values occurred
in rural or mountainous areas.

Table 4 lists the parameters estimated from the geographically
weighted regression model, which were averaged at each CMAQ pixel
for all the daily geographically weighted regression models to
illustrate the spatial variation. The results show that there is spatial
nonstationarity in the data, and the parameters vary spatially. In most
of the study region, boundary layer height, relative humidity, wind
speed, and forest cover have generally negative relationships with
PM2.5 concentrations (median beta values were negative), while the
air temperature and aerosol optical depth values show a positive



Fig. 7. Prediction results. (a) North American Regional Reanalysis and (b) North American Land Data Assimilation System and (c) relative differences between North

American Regional Reanalysis and North American Land Data Assimilation System.

Table 4
Parameter estimates for the geographically weighted regression model.

BetaPBL BetaRH BetaTMP BetaWind BetaForest BetaMODIS

NARR Mean �0.003 �0.06 0.25 �0.39 �4.33 12.78

Minimum �0.007 �0.24 �0.09 �0.998 �6.72 5.31

25%

Quantile

�0.004 �0.09 0.18 �0.50 �4.76 11.81

Median �0.003 �0.05 0.27 �0.39 �4.34 12.76

75%

Quantile

�0.0028 �0.03 0.32 �0.28 �3.95 13.76

Maximum �0.0002 0.10 0.54 0.18 �1.82 19.49

NLDAS Mean �0.003 �0.08 0.35 �0.32 �3.70 14.18

Minimum �0.006 �0.32 �0.11 �0.99 �6.56 6.90

25%

Quantile

�0.004 �0.11 0.26 �0.47 �4.23 12.85

Median �0.003 �0.08 0.36 �0.33 �3.65 14.18

75%

Quantile

�0.0026 �0.05 0.44 �0.15 �3.18 15.64

Maximum 0.001 0.59 1.43 0.53 �0.26 22.27
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association with PM2.5 exposure (median beta values were positive).
The phenomenon can be explained by several factors. First, lower
boundary layer height could increase the ground-level PM2.5 con-
centrations by reducing vertical mixing. Second, high relative
humidity can increase the size and light extinction efficiencies of
some particles such as ammonium sulfate and ammonium nitrate,
while PM2.5 measurements only account for dry particle mass under
controlled relative humidity conditions (relative humidity¼�40%).
Thus, the same aerosol optical depth value at high relative humidity
levels represents lower particle dry mass (lower PM2.5 concentra-
tions) than those at low relative humidity conditions (Liu et al.,
2005). Third, high wind speed can increase horizontal mixing,
therefore diluting PM2.5 concentrations. Finally, higher forest cover
implies fewer particle emission sources such as industries, resulting
in lower PM2.5 concentrations. The air temperature is positively
related to PM2.5 because the high air temperature accelerates the
generation of secondary particles near the surface (Liu et al., 2007a).
Aerosol optical depth values are directly related to the number of
particles in the air, and thus showed a strongly positive relationship
with PM2.5 concentrations.
4. Discussion

The predictions derived from the models using NARR and NLDAS
shared a similar pattern and the relative differences were fairly
small in most of the domain, except for some rural or mountainous
areas, because most of the NLDAS (Phase 2) land surface forcing
fields are derived from the NARR analysis fields after applying some
spatial interpolation and temporal disaggregation techniques. Also,
some meteorological fields of the NLDAS (Phase 2) data such as
surface pressure, near-surface air temperature, and near-surface
specific humidity were adjusted vertically to account for the vertical
difference between the NARR and NLDAS fields of terrain height
(Cosgrove et al., 2003), which might be the reason for differences of
PM2.5 predictions in high elevation areas. There was strong agree-
ment between the NARR and NLDAS meteorological fields in the
annual comparison, and the advantage of NLDAS was that its spatial
resolution was higher than NARR. However, NLDAS did not provide
boundary layer height, which must be obtained from NARR or
another meteorological dataset. Due to the higher spatial resolution,
predictions from NLDAS have the potential to generate finer
structure than those from NARR. Nevertheless, in this study, both
data sets were re-sampled to a 12 km grid, and thus the results of
NLDAS did not show much difference from the NARR results. It is
expected that NLDAS will illustrate more details of the predicted
surface than NARR when the spatial resolution of the surface
increases. Another explanation is that our domain is relatively flat
and has some distance from the ocean. As a result, the temperature
and humidity fields are rather smooth, so the advantage of higher
spatial resolution of NLDAS cannot be fully demonstrated.

The number of PM2.5 sites is very limited in the study domain.
For different days, the model significance varies due to different
number of records that is used to fit the model. However, our
objective is to generate an annual mean prediction. We assess the
prediction accuracy for all days rather than for each day.
The results showed that the overall accuracy is satisfying. In
addition, the number of observations on some days was insuffi-
cient compared to the number of variables. In general, the
number of independent observations must be equal to or larger
than the number of predictor variables (n) plus one because there
are nþ1 unknown parameters. However, on many days, the
number of observations does not meet this criterion. In addition,
even if this criterion were met, too few observations might lead to
model over-fitting and therefore reduce the model prediction accu-
racy. At the same time, the annual mean PM2.5 prediction required as
many days as possible to be accounted for. Thus, a trade-off between
the number of days and the number of observations per day needs to
be established, and it is important to identify an optimal minimum of
observation numbers for each day in order to include the maximum
number of days to generate an accurate annual mean PM2.5 exposure
prediction. In this study, we conducted a sensitivity analysis for the
daily number of records. The results showed that the predictions of
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the models became relatively stable when the minimum number of
records reached ten. As a result, we accepted ten observations as the
threshold in the model calibration.

Both negative and positive differences between predicted and
observed PM2.5 concentrations occurred in some urban areas,
because the measured PM2.5 concentrations recorded by numer-
ous monitor sites which are close to each other geographically
can vary substantially. Some monitor sites might be close to
heavy emission sources such as industrial areas, and therefore
record a much higher value of PM2.5 concentrations than their
neighbors. Those monitor sites in the urban areas cluster together
within a range of one to five kilometers which are much smaller
than the spatial resolution of our datasets (e.g., aerosol optical
depth in CMAQ:12 km, NARR: 32 km, and NLDAS: �13 km), and
thus our model is unable to capture the difference. The results are
expected to be improved when data with higher spatial resolution
(e.g., 1 km) become available.
5. Conclusions

This study moved a step forward by including other significant
parameters such as meteorological fields (e.g., boundary layer height,
relative humidity, air temperature, and wind speed) and land use
information (e.g., forest cover) as the independent variables in the
geographically weighted regression modeling to predict the ground-
level PM2.5 concentrations. The results showed that meteorological
fields and land use information can significantly improve the model
performance. Moreover, there was spatial nonstationarity within the
data, and the model parameters varied over space. In addition, the
predicted PM2.5 surfaces illustrated a reasonable spatial pattern with
high concentrations of PM2.5 in large urban areas and along major
highways and low values of PM2.5 concentrations in rural or
mountainous areas. The results also indicated that the geographically
weighted regression model combined with aerosol optical depth,
meteorological fields, and land use information as the predictor
variables had a strong predictive power for the ground-level PM2.5

concentrations.
We also examined the possibility of using the NLDAS as an

alternative to the NARR for providing the meteorological data in the
geographically weighted regression modeling. Annual comparison
between the two meteorological datasets showed good agreement
between them. In addition, the prediction results from the NARR
and NLDAS shared a similar pattern, and the relative differences
between them were fairly small in most of the domain. Although the
NLDAS lacked some valuable parameters such as the boundary layer
height, given the high spatial and temporal resolution, NLDAS has
the potential to be used as an alternative to NARR for providing
some of meteorological fields in the PM2.5 exposure prediction, and
NLDAS is expected to predict surfaces with finer structures when
the spatial resolution of the surfaces increases.
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