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Abstract. Gas and particle-phase organic carbon compounds
soluble in water (e.g., WSOC) were measured simultane-
ously in Atlanta throughout the summer of 2007 to inves-
tigate gas/particle partitioning of ambient secondary organic
aerosol (SOA). Previous studies have established that, in the
absence of biomass burning, particulate WSOC (WSOCp) is
mainly from secondary organic aerosol (SOA) production.
Comparisons between WSOCp, organic carbon (OC) and
elemental carbon (EC) indicate that WSOCp was a nearly
comprehensive measure of SOA in the Atlanta summer-
time. WSOCp and gas-phase WSOC (WSOCg) concentra-
tions both exhibited afternoon maxima, indicating that pho-
tochemistry was a major route for SOA formation. An ad-
ditional nighttime maximum in the WSOCg concentration
indicated a dark source for oxidized organic gases, but this
was not accompanied by detectable increases in WSOCp. To
study SOA formation mechanisms, WSOC gas/particle par-
titioning was investigated as a function of temperature, RH,
NOx, O3, and organic aerosol mass concentration. No clear
relationship was observed between temperature and parti-
tioning, possibly due to a simultaneous effect from other
temperature-dependent processes. For example, positive
temperature effects on emissions of biogenic SOA precur-
sors and photochemical SOA formation may have accounted
for the observed similar proportional increases of WSOCp

and WSOCg with temperature. Relative humidity data indi-
cated a linear dependence between partitioning and predicted
fine particle liquid water. Lower NOx concentrations were
associated with greater partitioning to particles, but WSOC
partitioning had no visible relation to O3 or fine particle OC
mass concentration. There was, however, a relationship be-
tween WSOC partitioning and the WSOCp concentration,
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suggesting a compositional dependence between partitioning
semi-volatile gases and the absorbing organic aerosol. Com-
bined, the overall results suggest two dominant SOA forma-
tion processes in urban Atlanta during summer. One was
the photochemical production of SOA from presumably bio-
genic precursors that increased with the onset of sunrise and
peaked in the afternoon. The other, which showed no appar-
ent diurnal pattern, involved the partitioning of semi-volatile
gases to liquid water, followed by heterogeneous reactions.
The co-emission of water vapor and biogenic VOCs from
vegetation may link these processes.

1 Introduction

The gas/particle partitioning of oxidized semi-volatile or-
ganic compounds (SVOCs) is an integral process in the for-
mation of secondary organic aerosol (SOA), making it one
of the most important routes for producing fine atmospheric
particles. At present, there is little data that characterizes
the total gas/particle partitioning of ambient SOA, largely
due to the plethora of species involved in partitioning and
the highly complex nature of SOA. Ambient studies have,
however, examined the partitioning of individual secondary
organic compounds. For example, Matsunaga et al. (2005)
simultaneously measured ten carbonyls in the gas and parti-
cle phases at a site near Tokyo, while Fisseha et al. (2006)
made simultaneous measurements of four carboxylic acids
in the gas and particle phases in Zurich. One limitation to
these studies, and others like them, is that they characterize a
very minor fraction of the total SOA (and hence, organic car-
bon aerosol (OC)) mass, so their behavior may not be repre-
sentative of the SOA. Additionally, heterogeneous reactions
may alter the condensed phase component to forms difficult
to detect, which would then not be considered in single com-
ponent analysis partitioning studies.
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Smog chamber experiments have described the
gas/particle partitioning behavior of total SOA gener-
ated from a given volatile organic compound (VOC) or VOC
mixture. Evidence from chamber experiments suggests
that the partitioning of SVOCs between gas and particle
phases is highly dependent upon the organic aerosol mass
(Odum et al., 1996; Odum et al., 1997; Hoffmann et al.,
1997), consistent with SOA gas/particle partitioning models
(e.g., Pankow, 1994). The strong temperature dependence
of SOA formation in smog chamber experiments is also
consistent with partitioning theory (Takekawa et al., 2003).
The translation of these studies to the ambient atmosphere
remains a challenge, as current models employing these
mechanisms systematically under-predict ambient SOA
concentrations (de Gouw et al., 2005). The cause(s) of this
discrepancy is still not clear, and is not necessarily the result
of uncertainties in the partitioning model: other factors
could be responsible, including additional SOA precursors
not currently considered (Goldstein and Galbally, 2007;
Volkamer et al., 2009). The lack of ambient data that may
provide clear and comprehensive mechanistic insights into
the SOA formation process inhibits an understanding of the
exact causes for the modeling discrepancies.
In this study, we analyze the gas/particle partitioning

of ambient SOA through extensive time-resolved measure-
ments of water-soluble organic carbon compounds in the gas
(WSOCg) and particle (WSOCp) phases in summertime At-
lanta. In making a bulk measurement like WSOC, chemical
specificity related to individual compounds is lost, but in-
stead a major fraction of the SOA, and hence, a large fraction
of total OC mass, is characterized.

2 Methods

Ambient gas and particle measurements were conducted
from 11 May–20 September 2007 on the Georgia Institute
of Technology Campus, located near the center of Atlanta.
The measurement platform was ∼30–40m above ground,
and the instruments were located in the rooftop laboratory
of the Ford Environmental Science&Technology Building.
WSOCp measurements were conducted via a particle-

into-liquid sampler (PILS) coupled to a Total Organic Car-
bon analyzer, a method which has been detailed by Sulli-
van et al.(2004). Briefly, particles with aerodynamic diam-
eter less than 2.5µm, selected using a non-rotating micro-
orifice impactor (Marple et al., 1991), were collected into
the liquid phase by a PILS (Orsini et al., 2003) operated at
15 Lmin−1. The aqueous sample was then transferred to a
Total Organic Carbon (TOC) analyzer (GE Analytical) for
the semi-continuous determination of the water-soluble frac-
tion of the carbonaceous aerosol. Two studies have shown
that this approach agrees to within ∼10% with WSOCp ex-
tracted from integrated filters (Sullivan and Weber, 2006;
Miyazaki et al., 2006). The TOC analyzer was operated with

a six-minute integration time, the maximum sampling rate
of the analyzer employed. Twice daily, the sample airstream
was diverted through a filter to determine the organic car-
bon content of the collection water and any interference from
VOCs potentially collected by the PILS. This dynamic blank
was subtracted from sample organic carbon values to quan-
tify the ambient concentration of WSOCp. The limit of de-
tection was approximately 0.1µgCm−3 and the estimated
uncertainty of the method is ∼10% (Sullivan et al., 2004).
WSOCg concentrations were measured with a method

similar to that of Anderson et al. (2008), but modified and
configured for the present study. Sample air was pulled at
21±1 Lmin−1 through a Teflon filter for particle removal,
and immediately entered a glass mist chamber (MC) (Cofer
and Edahl, 1986) initially filled with 10mL of ultra-pure
(>18.0M�, low carbon) water. The MC, which was oper-
ated with a sample residence time of approximately 0.45 s,
efficiently collects gases with a Henry’s Law constant greater
than 103 M atm−1 (Spaulding et al., 2002). The collec-
tion efficiency was tested using nitric acid, and found to be
95.1%±2.1% (mean± 1σ ). One five-minute batch sample
was collected every ten minutes using an automated valve to
open and close flow from the MC to the vacuum pump. Once
collected, the sample was analyzed by a Total Organic Car-
bon analyzer (GE Analytical). In between sample analyses,
the carbon content of the 18.0M� ultra-pure water was de-
termined and the MC was rinsed with the ultra-pure water as
well. The carbon content of the pure water was subtracted
from the organic carbon content of the subsequent sample to
quantify the organic carbon of the captured ambient organic
gases.
Factory calibrations were performed on the two TOC ana-

lyzers used to measure WSOCp and WSOCg , and sucrose
standards were also periodically run over the full range
(50–2000 ppbC) of expected liquid concentrations to verify
proper analyzer accuracy throughout the measurement pe-
riod.
Accurate determination of the concentrations measured

with the MC depends on an accurate measure of the vol-
ume of water used to collect the sample. Consequently, wa-
ter evaporation effects during sample collection need to be
accounted for. Calibrations of water evaporation were per-
formed using gravimetric analysis on three separate days (n
total = 56). It was found that evaporation was approximately
constant, regardless of ambient temperature and relative hu-
midity (RH) conditions. During the calibrations, ambient
temperature exhibited a range of 18.5–32.4◦C while ambi-
ent RH exhibited a range of 23–66%. With an initial vol-
ume of 10mL, the ending volume after five minutes of sam-
pling was 8.75mL± 0.12mL (1.4%) at the 95% confidence
interval. Because the ambient temperature and RH condi-
tions encountered during calibrations covered much of the
range observed during sampling, the use of a constant end-
ing water volume is assumed to be valid throughout the study
period. At an air flow rate of 21 Lmin−1 and a five-minute
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sample integration time, the LOD for the WSOCg measure-
ment was 0.9µgCm−3. Based on uncertainties in the air-
flow (±5%), ending water volume (±1.4%), TOC analyzer
uncertainty (±2%), and uncertainty in the TOC background
concentration (±2%), the overall estimated uncertainty for
the WSOCg measurement is 7%.
Measurements of aerosol organic carbon (OC) and ele-

mental carbon (EC) were made with a Sunset Labs OCEC
Field Analyzer (Sunset Laboratory Inc., Tigard, OR) in ac-
cordance with NIOSH method 5040 (NIOSH, 1996). The
measurements consisted of a 45-min collection period fol-
lowed by 15min of analysis time. The data are not blank-
corrected and may be systematically overestimated by about
0.5µgCm3 (Peltier et al., 2007). At a sampling time
of 45min, the method uncertainty is estimated at 20%
(Peltier et al., 2007). NOx concentrations measured via
chemiluminescence were taken from the Georgia Depart-
ment of Natural Resources (DNR) Ambient Monitoring Net-
work (http://www.georgiaepd.org/air/amp/) site co-located
with the aerosol measurements discussed above, while O3
data were taken from a Georgia DNR site approximately
5 km from the Georgia Institute of Technology campus.
Measurements were carried out for approximately 4.5

months, with intermittent periods for instrument mainte-
nance/repair and calibrations, such that the total number of
observations was equivalent to approximately 3 months of
continuous sampling. As detailed above, the measurements
were carried out at a high time resolution; six minutes for
the WSOCp measurement, a five-minute WSOCg sample ev-
ery 10min, and hourly for the OC and EC measurements.
The high time resolution and extended length of the mea-
surements resulted in the collection of extensive data sets
that provided high statistical significance for the analyses
performed (n=19 049 for WSOCp, n=12 298 for WSOCg ,
n=1478 for OC and EC, the sample size for an averaged
dataset corresponds to the instrument with lower sampling
rate). This may provide insights into overall trends that
would not have been detected with a shorter data set due to
the many short-term factors that cause day-to-day variability
in ambient SVOC and particle concentrations.

3 Results and discussion

3.1 WSOC in Atlanta

In the following analysis, infrequent periods of biomass
burning influence were removed from the data set.
For the entire summer, WSOCp was in the range of
0.2–12.1µgCm−3 and had an average concentration of
3.3±1.8µgCm−3 (mean ±1σ , for n=19 049). WSOCp was
highly correlated with OC (R2=0.73) and the slope (0.70µg
C/µgC) indicates that a high fraction of the OC was soluble
and hence likely to be secondary. (Note, the results are based
on a Deming linear regression that minimizes the distance

Fig. 1. Scatter plot of WSOCp versus WSOCg for the entire sum-
mer data set and Deming linear regression results (note, using stan-
dard linear regression analysis, the slope is 0.23 if the fitted line is
forced through 0).

between the observed data and fitted line in both the x and y
directions and is more appropriate than regular linear regres-
sion for this type of data (Cornbleet and Gochman, 1979)).
The range of WSOCg concentrations observed for the en-
tire summer was 1.1–73.1µgCm−3, and the mean WSOCg

concentration was 13.7µgCm−3. Overall, WSOCp and
WSOCg were correlated during the summer, though there
was a large amount of scatter in the data (Fig. 1). A Dem-
ing linear regression gives a slope of 0.24 and an intercept of
0.27µgCm−3, as shown in the WSOCp vs. WSOCg plot of
Fig. 1 (if forced through 0, standard linear regression gives a
slope of 0.23).
Since WSOCp and WSOCg have oxygenated functional

groups, it is expected that both are mostly secondary. In At-
lanta, particle and gas-phase WSOC originate mainly from
biogenic VOC oxidation, since they dominate the VOC emis-
sions budget (Environmental Protection Agency, National
Emissions Inventory; Guenther et al., 1994). The correla-
tion between WSOCp and WSOCg (Fig. 1) supports a com-
mon source (biogenic VOCs). The large amount of scatter in
the data, however, may indicate differences that include their
formation mechanisms and atmospheric lifetimes.
The average diurnal trends of WSOCp and WSOCg are

shown in Fig. 2. WSOCp reached an average daily max-
imum of 3.8µgCm−3 at 14:00 Local Time (Eastern Day-
light Time). On average, WSOCp steadily increased in con-
centration from a morning minimum of 3.1µgC m−3 at
06:00 Local Time to a daily maximum of 3.8µgC m−3 at
14:00. Following the afternoon concentration maximum, the
average WSOCp concentration decreased until it reached a
level of 3.2µgC m−3 at 20:00. During the evening and
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Figure  2  
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Fig. 2. Average diurnal profiles for O3, WSOCp , and WSOCg . The vertical bars on each data point represent the standard error (standard
deviation/

√
N).

night (between 20:00 and 06:00 the next morning) the mean
WSOCp concentration was relatively constant, ranging be-
tween 3.1–3.3µgCm−3. Between the hours of 06:00 and
20:00, diurnal profiles of WSOCp and WSOCg were highly
similar. The average WSOCg peak concentration also oc-
curred at 14:00 (14.5µgC m−3) in between minima at 06:00
(12.4µgCm−3) and 19:00 (12.3µgCm−3). The mid-day
increases in WSOCp and WSOCg concentrations suggest
that photochemical formation was one of the primary sources
for secondary organic gases and particles in Atlanta, but
the relatively modest enhancement (∼20%) over pre-sunrise
concentrations indicates a substantial regional WSOC back-
ground and a relatively long lifetime of both classes of ma-
terial. This is consistent with the findings of Weber et
al. (2007), who showed the highly regional nature ofWSOCp

in and around Atlanta.
Figure 2 also indicates that substantial WSOCg formation

occurred through nighttime processes that did not lead to sig-
nificant enhancements in the WSOCp concentration. Unlike
WSOCp, the WSOCg concentration increased at night and
had another maximum (15.4µgCm−3) at 23:00. This night-
time WSOCg increase was approximately equal to the day-
time (i.e., photochemical) concentration increase, indicating
the importance of this nighttime WSOCg source. This dif-
ference led to a lower WSOCp/WSOCg slope at night (0.22)
than during the day (0.26).
Ambient studies suggest that nighttime sources for bio-

genic VOCs may be relatively common. Significant dark
emissions of monoterpens from pine species have been ob-
served (e.g., Simon et al., 1994; Hakola et al., 2000; Janson et
al., 2001) and, though isoprene emissions are driven by light
and temperature (Tingey et al., 1979), Warneke et al. (2004)
observed a buildup of isoprene concentrations in the late-
afternoon/early evening as the OH concentration decreased.
Dark biogenic VOC oxidation is known to occur through re-

actions with both O3 and the nitrate radical (NO3) (Griffin
et al., 1999), though our observations imply that NO3 was
the dominant oxidant initiating nighttime WSOCg formation
for this study. From 19:00 to midnight, when the WSOCg

nighttime concentration peaked, the average O3 concentra-
tion decreased sharply from 46 ppb to 22 ppb (Fig. 2). Also,
the average nighttime trend of WSOCg closely resembled
the average diurnal profile of NO3 observed in other studies
(Stark et al., 2007). It is noteworthy that a reaction mecha-
nism, presumably between biogenic VOCs and NO3, would
produce significant WSOCg and yet little WSOCp relative to
daytime production. Yields of α–pinene or isoprene reaction
with NO3 are consistent with our observations of minimal
increases in nighttime WSOCp. Hallquist et al. (1999) ob-
served SOA yields from the reaction of NO3 with α – pinene
of less than 1%. If the 3.1µgCm−3 increase in WSOCg

(between 19:00–midnight) was due largely to an α – pinene
−NO3 reaction that had an aerosol yield of 1% or less, then
a correlated nighttime increase in WSOCp would not be ex-
pected since the signal would not be detected above random
variability. Since isoprene emissions are high in the South-
east (Guenther et al., 1994), and since it may build up in the
evening due to afternoon emissions combined with dimin-
ishing OH (Warneke et al., 2004), the nighttime WSOCg in-
crease may also have been due to reactions of isoprene with
NO3. Ng et al. (2008) found SOA yields from the isoprene-
NO3 reaction that ranged from 4.3–23.8% in terms of organic
mass, or roughly 2 to 12% on a carbon mass basis (Brown et
al., 2009). The isoprene SOA yields were a strong function
of the amount of isoprene reacted and total organic loading,
indicating that yields in the ambient atmosphere are likely to
be on the low end of the range reported by Ng et al. (2008)
since the chamber concentrations were, in general, higher
than ambient. Thus, like α–pinene −NO3, yields of only a
few percent for isoprene −NO3 reactions would not produce
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an appreciable amount of WSOCp at the observed nighttime
WSOCg concentrations. Recent field observations suggest
that background WSOCp concentrations may limit our abil-
ity to detect SOA enhancements from nighttime isoprene ox-
idation (Brown et al., 2009). For relatively high WSOCp

background conditions, nighttime isoprene oxidation did not
appear to contribute significantly to WSOCp concentrations.
This was opposed to observations with a relatively low back-
ground WSOCp concentration where nighttime isoprene ox-
idation did produce a detectable WSOCp concentration in-
crease. In each case, the amount of isoprene oxidized was
comparable. Although the relatively high and persistent con-
centrations of WSOCp in Atlanta may be a factor, the data
suggest that if nighttime isoprene oxidation occurred, it may
have been a significant source for nighttime WSOCg , but it
was not a significant source of WSOCp compared to daytime
production. Finally, smog chamber studies indicate that SOA
yields from NO3 reaction with biogenic VOCs other than iso-
prene and α- pinene (i.e., β-pinene, �3-carene, or sabinene,
Griffin et al., 1999) are likely to be higher. For these com-
pounds, the production of a significant mass of oxidized gas-
phase species (e.g., WSOCg) would be accompanied by a
significant increase in SOA (e.g., WSOCp) as well. Because
this was not observed in our ambient data, the yields are ei-
ther lower, or the concentrations of these VOCs too low to
significantly contribute to WSOCg . Overall, the reaction of
NO3 with some combination of α-pinene and isoprene was
likely responsible for the nighttime increase in WSOCg con-
centration.

3.2 WSOC partitioning

The fraction of total WSOC in the particle phase, Fp, is used
to investigate partitioning, by,

Fp= WSOCp

WSOCp+ WSOCg
(1)

Fp is related to the WSOCp/WSOCg concentration ratio:

fp=WSOCp

WSOCg
= Fp

1−Fp
(2)

There is evidence that, in the absence of significant
biomass burning influence, the compounds that make up
WSOCp are largely secondary (Sullivan et al., 2006; We-
ber et al., 2007), although WSOCp may not be a com-
pletely comprehensive measurement of SOA in certain lo-
cations. For example, SOA estimated by the EC tracer
method in Tokyo was highly correlated with WSOCp

(R2=0.70–0.79) and observed WSOCp/SOA slopes were
0.67–0.75 (Miyazaki et al., 2006). The same study also found
90% or more of primary organic aerosol to be insoluble in
water. A study by Favez et al. (2008) observed prominent
formation of water-insoluble SOA in Cairo, a highly arid ur-
ban center. In Atlanta however, WSOCp is accounting for
most, if not all, of the SOA. This can be seen from Fig. 3,
where strong similarities between the mean diurnal profiles
of water-insoluble organic carbon (WIOCp=OC–WSOCp)
and elemental carbon (EC) are evident, indicating that it is
mostly primary. Clear differences between the diurnal trends
of WIOCp and WSOCp indicate very different sources be-
tween the two. Many studies have established that organic
compounds constitute one of the largest fractions of PM2.5
in Atlanta (e.g., Weber et al., 2003; Chu et al., 2004), thus at
∼70% (gC/gC) of the summertime OC, processes contribut-
ing toWSOCp (i.e., SOA) have a large impact on the region’s
air quality. Additionally, because of the high contribution of
WSOCp to the total SOA, these results describe the partition-
ing behavior of a significant fraction of SOA in an ambient
atmosphere. Various factors that may influence Fp are inves-
tigated in the following sections.
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3.2.1 The Fp-temperature relationship

According to equilibrium gas/particle partitioning theory,
temperature (T ) imparts a strong effect on the gas/particle
partitioning of organic compounds (Pankow and Bidleman,
1991). From Pankow (1994), an expression for the partition-
ing constant, Kp, is

Kp=Cp/Mo

Cg
= 760RTfom

106MWomζp◦
i

(3)

where Kp has units of m3 µg−1, Cp is the compound’s
particle-phase concentration,Mo is the mass concentration of
the absorbing organic phase (including water), and Cg is the
compound’s gas-phase concentration. Kp can also be pre-
dicted from the properties of the partitioning species, where
R is the ideal gas constant, T is temperature, fom is the ab-
sorbing fraction of total particulate mass, MWom is the av-
erage molecular weight of the absorbing organic (and aque-
ous) phase, ζ is the particle-phase activity coefficient, and p◦

i
is the saturation vapor pressure. The vapor pressures of or-
ganic compounds approximately double for every 10 K tem-
perature increase (Seinfeld et al., 2001). Thus, the tempera-
ture effect on partitioning in the ambient atmosphere will be
dominated by the temperature effect on individual compound
saturation vapor pressures, with higher temperature favoring
the gas-phase and lower temperature favoring the particle
phase. A strong temperature effect on SOA formation was
observed in chamber studies using anthropogenic (toluene,
m-xylene, 1,2,4-trimethylbenzene) and biogenic (α-pinene)
VOCs (Takekawa et al., 2003).
For our ambient measurements, the box plot of Fig. 4

shows that there was no well-defined relationship between
Fp and temperature (for median Fp vs. T , R2=0.02), (also
no relationship between fp and temperature). The ambient
temperature range was large enough (greater than 20◦C) that
any effect of temperature on WSOC partitioning should be
present. It is likely, however, that a discernable temperature
effect on partitioning was obscured by other temperature-
dependent processes affectingWSOC and its precursor emis-
sions.
Overall, concentrations of both WSOCp (R2=0.22) and

WSOCg (R2=0.24) were weakly correlated with tempera-
ture, however median concentrations of WSOCp (R2=0.91)
and WSOCg (R2=0.97) were highly correlated with temper-
ature (Fig. 5a, b). This indicates that multiple factors influ-
enced WSOC concentrations, but the central tendency over
the entire summer was for higher WSOC concentrations to
be associated with higher temperatures. The high correla-
tion with median concentrations accompanied with a large
amount of scatter in the overall data (evident from the spread
in 10th, 25th, 75th, and 90th percentile values in Fig. 5) im-
plicates temperature as one of multiple factors that affected
WSOC concentrations. The emissions of biogenic precursors
to WSOC (Tingey et al., 1980) and the photochemical for-
mation of WSOC (Tsigaridis et al., 2005) are both positively

Figure  4  
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related to temperature, and likely explain these trends. This
suggests that the positive effects of temperature on biogenic
emissions and reactivity may dominate over the negative ef-
fect of volatility on WSOCp, demonstrated by the increase
in both WSOCg and WSOCp with temperature.
It is possible that a temperature effect on WSOC

gas/particle partitioning did exist, but was not visible due
to the relationships WSOCp and WSOCg exhibited with
temperature (Fig. 5a, b). The slopes of the median
WSOCp-T and the median WSOCg-T correlation lines were
0.199µgC/m3/◦C and 0.821µgC/m3/◦C, respectively. If
background concentrations of WSOCp and WSOCg are both
assumed zero, then, using the median relationships, a nomi-
nal temperature change would produce a constant Fp value of
0.195, which compares closely with the mean Fp for the en-
tire study (0.203). This supports the view that a temperature-
partitioning effect was obscured and highlights the dynamic
nature of the ambient system in which the measurements
were made. Specifically, an increase in temperature led to
additional inputs of WSOC (particle and gas) into the sys-
tem that made the determination of a specific temperature
effect on partitioning ambiguous. This difficulty with ambi-
ent sampling underscores the need to pair ambient measure-
ments with controlled laboratory experiments that can isolate
experimental variables.

3.2.2 The Fp-RH and liquid water relationship

Hennigan et al. (2008a) observed, at RH levels >70%, a
strong increase in Fp with RH that was likely due to liquid
water uptake by fine (PM2.5) particles. This was evident from
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the similarities between the Fp-RH curve and the two other
independent predictions of liquid water uptake as a function
of RH (Fig. 6). The RH effect on gas/particle partitioning
led to increases in SOA mass (0.3–0.9µgCm−3) that were
significant in the context of ambient concentrations. Figure
6 indicates a positive linear relationship between Fp and pre-
dicted liquid water concentration (linear regression R2 be-
tween median Fp and liquid water for RH>45% is 0.997,
n=5). The relationship between Fp and RH had no appar-
ent diurnal variability, as it was nearly constant across day-
time and nighttime conditions (Hennigan et al., 2008a). This
explains why, though this may be a significant source of
WSOCp in Atlanta, the only diurnal signature evident for
WSOCp was the obvious photochemical source. Although
these results point to a Henry’s Law-type partitioning pro-
cess (by Henry’s Law the ratio of particle to gas concentra-
tion is directly proportional to liquid water concentration),
we have noted that Henry’s Law partitioning alone cannot
account for the significant increase in Fp observed at ele-
vated RH levels (Hennigan et al., 2008a). Additionally, ap-
plication of Henry’s Law assumes dissolution into an ideal
solution, while ambient particles are non-ideal. The liquid
water increase, even in a polluted atmosphere under high
RH (>90%), is not enough to simply dissolve soluble semi-
volatile gases (e.g., acetic acid or formic acid, etc.) and ac-
count for the SOA increase (Hennigan et al., 2008a). Using
10µgm−3 liquid water concentration and an Fp value of 0.3
(approximately equal to the observed Fp above 90% RH),
we calculate an effective Henry’s Law constant for the to-
tal WSOC of ∼2×109 M atm−1. This value agrees well with
the experimentally-derived value of Volkamer et al. (2009),
and suggests that condensed phase reactions are playing an
important role in WSOCp formation in Atlanta.
Seinfeld et al. (2001) predict a substantial influence of liq-

uid water on SOA formation due to the effect of the uptake
of water on two terms in Eq. (3), MWom and ζ . Though the
effects ofMWom and ζ due to water uptake may be in compe-
tition, depending on the hydrophilic nature of the partition-
ing SVOCs, Seinfeld et al. (2001) predicted overall higher
Kp values (more partitioning to the particle phase) at higher
liquid water levels. Pun and Seigneur (2007) also predict an
enhancing effect of aerosol water on SOA formation due to
the greater absorptive capacity of added water (the role in
Mo, Eq. 3), its decreasing effect on theMWom term (thus in-
creasing Kp), and acid-catalyzed oligomer formation in the
aqueous phase from glyoxal. Chang and Pankow (2008) pro-
pose an SOA model that incorporates the effects of water on
MWom and ζ , as shown by Seinfeld et al. (2001), while also
including phase separation considerations.
At present, understanding the effect of humidity on SOA

formation is incomplete. It is known that water vapor af-
fects the oxidation pathway of terpene ozonolysis, and thus,
SOA formation by this mechanism (e.g., Bonn and Moort-
gat, 2002; Jonsson et al., 2006; Stenby et al., 2007). Bonn et
al. (2002) showed that, strictly through an effect on gas-phase
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Fig. 5. Box plots of WSOCp (a) and WSOCg (b) versus Tem-
perature. The plots show median values (thick horizontal bar),
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tively), and 10th and 90th percentiles (lower and upper whiskers,
respectively) for each bin. For the WSOCp-T plot (a), the average
N per bin = 1803, and for the WSOCg-T plot, the average N per
bin = 1165.

chemistry, water vapor is likely to influence SOA formation
only through oxidation processes initiated by O3, and not OH
or NO3. Experimentally, the effect of liquid water on SOA
formation appears to be variable. Smog chamber studies by
Cocker et al. (2001a, b) found no enhancement in SOA for-
mation from α–pinene, m-xylene, or 1,3,5-trimethylbenzene
due to liquid water. Edney et al. (2000) also found no
water effect on SOA formation in smog chamber studies
with toluene as the precursor VOC. In contrast, Volkamer
et al. (2009) observed a positive linear dependence between
acetylene (C2H2) SOA yields and the liquid water content of
particles in chamber experiments. This was attributed to the
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gas phase hydroxyl radical (OH) oxidation of C2H2 to pro-
duce glyoxal and its subsequent uptake and reaction in the
aqueous phase. The variable effects of liquid water observed
between smog chamber studies may be due to differing ex-
perimental conditions, or to differences in the water solubili-
ties of the oxidation products from different precursor VOCs.
Overall, our ambient results showed a strong effect of RH on
Fp, and so are in better agreement with the smog chamber
results of Volkamer et al. (2009) and less-so with the tradi-
tional partitioning theory involving Kp.

3.2.3 The Fp-NOx relationship

In addition to relative humidity, the data demonstrate that
NOx levels impacted Fp as well. A box plot of Fp versus
RH was constructed after sorting the data according to NOx
mixing ratios, and mean values are plotted for the high NOx
and low NOx data (Fig. 7a). The mean NOx mixing ratio for
the high NOx data was 33±23 ppb (mean±1σ ) while that
for the low NOx data was 6±2 ppb (mean ±1σ ). Below
80% RH, low NOx conditions were associated with higher
values of Fp (mean=0.208), while high NOx conditions
were associated with lower values of Fp (mean = 0.180).
Overall, the mean Fp difference (0.028) below 80% RH
was statistically significant at the 99.9% confidence inter-
val (t=7.793 from student’s t-test, df =1046). Multiplying
this �Fp by the mean total WSOC concentration below
80%RH (18.58µgCm−3) yields a WSOCp enhancement
from this difference of 0.52µgCm−3. The difference in Fp

values between high NOx and low NOx regimes (0.028) may
appear small, despite its statistical significance. However,
the difference is non-negligible given that the mean WSOCp

concentration for the entire summer was 3.3µgCm−3.
The difference in WSOC partitioning with NOx levels

could explain the Fp differences observed between the night-
time and the daytime, where generally more WSOC was par-
titioned in the particle phase during the day than at night
(Hennigan et al., 2008a). Though it is possible that the
day/night differences in Fp were not driven by changes in
NOx levels, the evidence for a NOx effect is compelling.
Median Fp values had a strong negative linear correlation
(R=−0.97) to the NOx mixing ratio (Fig. 7b). (Note, corre-
lation remains strong (R=−0.84) even with the highest NOx
point removed). The data was also subdivided into day/night
periods to investigate the role of NOx during these times.
When only daytime data was considered, the mean Fp value
corresponding to the top 15% of NOx mixing ratios was sta-
tistically lower (at the 99.5% confidence level) than the mean
Fp value for the bottom 15% of NOx mixing ratios (t=3.111
from student’s t-test, df=264). This was also the case for
nighttime only data (t=4.676 from student’s t-test, df =335)
and it supports the existence of a NOx effect on Fp versus
an indirect impact from another effect, such as oxidant (OH,
O3) concentration.

Figure  6  

    

  

4

3

2

1

0

f(R
H)

9080706050403020
Relative Humidity (%)

0.40

0.35

0.30

0.25

0.20

0.15

F p

50

40

30

20

10

0

-10

ISO
R

R
O

PIA
 liquid w

ater (µg m
-3)

 f(RH), from Malm and Day [2001]
 ISORROPIA-predicted liquid water
 Bin width

Fig. 6. Relationship between partitioning and liquid water uptake,
adapted from Hennigan et al. (2008a). The box and whiskers repre-
sent ambient Fp data, with median values (thick horizontal bar),
25th and 75th percentiles (lower and upper box bounds, respec-
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tion of RH is based on an average inorganic aerosol composition
(see Hennigan et al. (2008a) for discussion), and the f(RH) trace is
a measure of the scattering enhancement due to particulate water
uptake reported by Malm and Day (2001).

In general, for a given precursor VOC concentration, SOA
yields from the reaction of hydrocarbons with ten or fewer
carbon atoms are significantly higher at low NOx levels com-
pared to high NOx levels (Kroll and Seinfeld, 2008). These
small hydrocarbons include isoprene (Kroll et al., 2006; Pan-
dis et al., 1991) and monoterpenes (Presto et al., 2005; Ng et
al., 2007a), biogenic species with high emission rates in the
Southeast (Guenther et al., 1994). Conversely, SOA yields
from the reaction of larger hydrocarbons are, in general,
highest at high NOx levels (Kroll and Seinfeld, 2008). The
NOx effect on SOA yields arises from its substantial influ-
ence on the oxidant initiating SOA formation (i.e., hydroxyl
radical, nitrate radical, or ozone) and on the fate of the RO2
and RO radicals (Kroll and Seinfeld, 2008). In general, reac-
tion of smaller VOCs in the presence of higher NOx concen-
trations leads to the formation of higher volatility products
(e.g., fragmentation and formation of short aldehydes) com-
pared to smaller VOC reactions in low NOx conditions that
produce lower volatility products (e.g., hydroperoxides and
acids from reaction of RO2+HO2). As isoprene and monoter-
penes are expected to be the major SOA precursors in the
southeastern US, the observed relationship between Fp and
NOx is qualitatively consistent with the smog chamber stud-
ies which observed a similar phenomenon. It is noted that
the absolute NOx concentration may not be a critical param-
eter in VOC oxidation; rather, it is likely the VOC: NOx ratio
in the air mass during the period of SOA formation which
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impacts the oxidation product distribution (Kroll and Sein-
feld, 2008). For this study, parent VOCs were not measured,
and thus an analysis of Fp as a function of the VOC: NOx
ratio is not possible. This may partly explain the large spread
observed in Fig. 7b, as the parent VOC concentrations were
likely highly variable for a given NOx concentration.
A limitation with the non-chemically specific approach

used here is that Fp can depend on both the oxidation process
leading to SVOCs and partitioning, similar to the process de-
scribed by the Yield (Seinfeld and Pandis, 1998). Thus, this
data does not provide evidence whether the observed NOx
effect is due to the types of SVOCs produced under differ-
ent NOx concentrations, or if NOx plays a role in partition-
ing. Given the smog chamber results, the NOx effect on the
SVOCs product distribution seems the most likely cause for
the observed effect on Fp.
In contrast to NOx, ozone (O3) concentrations did not ap-

pear to impact WSOC partitioning at all. The mean Fp

at O3 concentrations above 70 ppb (0.211) was not statisti-
cally different from the mean Fp at O3 concentrations be-
low 20 ppb (0.214). This result is in contrast to high aerosol
yields from O3 reactions with biogenic VOCs that have been
observed in smog chamber studies (e.g., Griffin et al., 1999).
It is possible, though, that O3 was prominently involved in
VOC oxidation but that O3 was abundant, and VOCs lim-
iting, in O3-VOC reactions and thus little dependence was
seen between Fp and O3.

3.2.4 The Fp-organic aerosol mass relationship

Equation (3), along with extensive chamber experimental re-
sults (Odum et al., 1996; Odum et al., 1997; Hoffmann et al.,
1997), suggests that the mass concentration of the absorbing
organic phase, Mo, will also impact equilibrium gas/particle
partitioning. The relationship suggests that, at a given tem-
perature, a higher Mo will lead to a higher fraction of a par-
titioning compound in the particle phase due to a greater ca-
pacity (i.e., volume) of absorbing medium for the partition-
ing of SVOCs. Figure 8a shows a box plot of Fp as a function
of the organic carbon aerosol (OC) mass concentration and
suggests that an Fp−Mo (i.e., Fp−OC) relationship did not
exist across the entire summer. When the data were binned
into smaller temperature ranges (<20◦C, 20–25◦C, 25–30◦C,
>30◦C), the same trend was observed as that for the overall
analysis; generally no correlation observed between Fp and
OC. The total OC concentration was used because of (1) the
strong dependence of SOA yields and partitioning on the to-
tal concentration (by mass) of organic aerosol in smog cham-
ber studies (Odum et al., 1996), and (2) the substantial pre-
dictive capability of this method when used for subsequent
smog chamber experiments of SOA formation from complex
VOC mixtures (Odum et al., 1997). For these reasons, this
formulation has been widely applied to air quality models,
but these data suggest this may not be appropriate in all en-
vironments.
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Fig. 7. Relationship between NOx and Fp . Mean Fp versus RH
for data sorted by NOx mixing ratio (a) (Data represent the highest
and lowest 35% of NOx mixing ratios). Particulate WSOC fraction,
Fp , as a function of NOx mixing ratio (b). The data were binned
according to NOx mixing ratios and median (thick horizontal line),
25th and 75th percentiles (lower and upper box), and 10th and 90th
percentiles (lower and upper whiskers) are shown for each bin (av-
erage N per bin = 197).

Following the traditional line of reasoning on SOA for-
mation, because Fp describes the partitioning of only water-
soluble carbon compounds, WSOCp may be a more appro-
priate partitioning medium than OC due to the higher chemi-
cal similarities between WSOCp and WSOCg compared to
similarities between OC and WSOCg . This greater simi-
larity arises because WSOCg is oxygenated and thus is pre-
dominantly secondary like WSOCp, while OC is comprised
of significant fractions of both secondary and primary com-
ponents. Alternatively, heterogeneous reactions involving
WSOCp would also be expected to make investigating Fp
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relative to WSOCp a more appropriate parameter than OC.
Using WSOCp concentrations as the mass of the absorb-

ing organic phase, Fig. 8b does suggest a relationship be-
tween gas/particle partitioning and existing organic aerosol
mass. Higher WSOCp concentrations were associated with
a larger fraction of total WSOC partitioned in the particle
phase, however, a dependence was only seen for WSOCp

concentrations below ∼4µgCm−3. That the dependence
between Fp and WSOCp appeared to diminish and end at
WSOCp above∼4µgCm−3 may suggest that the “average”
WSOCp sampled in the Atlanta summertime was relatively
non-volatile (Seinfeld and Pandis, 1998; Ng et al., 2007b).
Lanz et al. (2007) found that approximately 2/3 of the oxy-
genated aerosol (interpreted as SOA) was non-volatile in
Switzerland, where, like Atlanta, most of the SOA is from
biogenic precursors in summer.
Note that Fp and WSOCp are related through Eq. (1) and

it cannot be ruled out that the behavior of Fig. 8b was an ar-
tifact of this Fp-WSOCp relationship. However, since the
magnitude of WSOCg was significantly larger than WSOCp,
weakening any Fp-WSOCp direct dependence, there is rea-
son to believe it is real. Additional analyses support this
view, and suggest that WSOC partitioning was impacted by
the WSOCp concentration. (A number of tests were under-
taken, including applying the Deming regression results of
Fig. 1 to predict Fp, and testing randomly generated log-
normal distributions of WSOCp and WSOCg based on ob-
served medians and geometric standard deviations. Neither
test resulted in an Fp-WSOCp dependence similar to the ob-
servations of Fig. 8b. Furthermore, plotting Fp vs. WSOCp

is directly analogous to the plots of SOA Yield vs. Mo (e.g.,
Odum et al., 1996) used to formulate current partitioning the-
ory).
An Fp dependence on WSOCp was also evident when

the WSOCp concentration was incorporated into the Fp-RH
analysis. When the data were sorted according to WSOCp

concentrations (Fig. 9a), there was a substantial difference in
mean Fp values plotted against RH for high WSOCp con-
centrations (top 35% of data, mean WSOCp=5.3µgCm−3)
compared with low WSOCp concentrations (bottom 35% of
data, mean WSOCp=1.7µgCm−3). All of the eight points
are statistically different at the 99.9% confidence interval.
Note that this high versus low WSOCp range spans the tran-
sition at ∼4µgCm−3 in Fig. 8b (i.e., the transition from a
Fp–WSOCp dependence to no dependence).
The differences between the Fp–OC and Fp–WSOCp re-

lationships may be due to composition differences between
the two systems and may suggest that the chemical nature
of the absorbing organic phase is a meaningful parameter
to the partitioning process. Specifically, it appears as if
the total organic aerosol may not be acting as a partition-
ing medium for the condensation of water-soluble organic
compounds. Rather, only condensed-phase compounds that
are water-soluble (and water, itself) participate in the up-
take of WSOCg . This is in general agreement with the re-

Figure  8  

     

     

  

  

0.35

0.30

0.25

0.20

0.15

0.10

F p

12108642
OC (µg C m-3)

 Bin width

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

F p

1086420
WSOCp (µg C m-3)

 Bin width

A  

B  

Fig. 8. WSOC partitioning (Fp) as a function of OC concentra-
tion (a) and WSOCp concentration (b). For the box plot of par-
ticulate WSOC fraction, Fp , versus OC (a), which shows median
values (thick horizontal bar), 25th and 75th percentiles (lower and
upper box bounds, respectively), and 10th and 90th percentiles
(lower and upper whiskers, respectively) for each bin, average N
per bin = 139. For the box plot of Fp versus WSOCp (b), average
N per bin = 1220. The curve is forced through zero based on the
definition of Fp (Eq. 1).

sults of Song et al. (2007), who observed no relationship be-
tween the mass of primary organic aerosol (POA) and the
yield of SOA from α-pinene, implying that the POA did
not actively participate in the SOA formation. Addition-
ally, Volkamer et al. (2009) observed a significant seed com-
position effect on SOA formation from C2H2: yields us-
ing ammonium sulfate plus fulvic acid seed particles were
a factor of 3–4 higher than yields using only ammonium
sulfate seed. The absorbing organic plus aqueous phase has
also demonstrated a compositional effect on the partition-
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ing of semi-volatile organics in model predictions. Sein-
feld et al. (2001) found that the partitioning of hydrophilic
compounds to the particle phase was enhanced by partic-
ulate water uptake while that for hydrophobic compounds
was diminished by water uptake. Bowman and Karamale-
gos (2002) found a compositional effect on SOA mass con-
centrations in model simulations based on the effect of the
composition-dependent activity coefficient, ζ , on Kp. It is
noteworthy that the differences in Fp versus WSOCp and
OC were present despite an observed high correlation be-
tween WSOCp and OC (R2=0.73, see above), and despite
WSOCp accounting for, on average, 70% of OC. This im-
plies that approximately 30% of OC was insoluble in wa-
ter, and similarities between this water-insoluble organic car-
bon fraction and the EC diurnal profiles suggest that these
insoluble organic compounds (calculated as OC-WSOCp)
were largely primary (Fig. 3). These primary compounds are
chemically much different from WSOCp, including signifi-
cant differences in oxidation, functional groups, and polarity
(Saxena and Hildemann, 1996). The primary component of
OC, and its different chemical character from that of WSOC,
may in part explain the lack of an Fp dependence on OC.
Though the general trends in data and fit in Fig. 8b are some-
what similar to the smog chamber SOA Yield-Mo relation-
ship found by Odum et al., (1996), where in that case Mo

was OC mass formed in the chamber, it is also possible that
the Fp-WSOCp relationship resulted from a completely dif-
ferent process than absorptive partitioning. Additionally, the
results in Fig. 9a and b suggest that RH and WSOCp impact
WSOC partitioning through different means. The high RH
analysis in Fig. 9b only included data with RH levels above
65% (mean RH=78.2%) while the low RH analysis only in-
cluded data with RH levels below 50% (mean RH=38.5%).
This contrasts how WSOCp affected partitioning for very
wet particles and those with significantly less water.
The results in Fig. 9a and b may indicate that the pro-

cess is similar on particles containing an abundance of liquid
water and particles with a modest liquid water contribution.
This has two implications. First, the role that the particle
organic component (e.g., WSOCp) plays in partitioning is
present even when particle H2O concentrations likely far ex-
ceeded WSOCp concentrations. This behavior would not be
expected if partitioning were described solely by the parti-
tioning coefficient, Kp. As the liquid water content of par-
ticles increases, the importance of water in the partitioning
process should increase and the importance of the WSOCp

concentration should diminish. This is due to the significant
impact of water on the average molecular weight of the ab-
sorbing organic plus aqueous phase, MWom, and on the in-
crease it would bring to the total mass of the absorbing or-
ganic plus aqueous phase, Mo (Eq. 3). For example, at RH
levels above 90%, the liquid water concentration may be an
order of magnitude higher than the WSOCp concentration,
and so would dictate any relationship withMo. Our ambient
results suggest that this did not occur with WSOC partition-
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Fig. 9. WSOC partitioning as a function of RH and
WSOCp concentration. Mean Fp values versus RH for
the highest (mean WSOCp = 5.3µgCm−3) and lowest (mean
WSOCp = 1.7µgCm−3) 35% of WSOCp concentrations (a).
Mean Fp values as a function WSOCp , segregated for high and
low RH levels (b). The two data points at (0, 0) are not measured,
but are based on the definition of Fp (Eq. 1). Note that the curves
only represent the central tendency and that there is considerable
scatter about the mean (e.g., see Fig. 8b)

ing: at the highest RH levels, the WSOCp concentration still
appears to be important (Fig. 9a, b). It indicates that WSOCp

and liquid water both somewhat independently contribute to
WSOC gas/particle partitioning. As an example, the liq-
uid water may affect absorption of the water-soluble gases,
and the WSOCp in the particle may influence the hetero-
geneous production of lower vapor pressure products. This
qualitatively agrees with the conceptual models proposed by
Kroll et al. (2007) and Chan et al. (2007), who suggest that
condensed phase reactions may significantly affect the par-

www.atmos-chem-phys.net/9/1/2009/ Atmos. Chem. Phys., 9, 1–16, 2009



12 C. J. Hennigan et al.: Gas/particle partitioning of ambient WSOC

titioning of SVOCs. Our results indicate that particle-bound
water is critical to enhanced SVOC partitioning and hetero-
geneous reaction. The types of heterogeneous reactions that
take place in the liquid particle may account for the observed
Fp dependence on WSOCp. Secondly, because the curve for
the much dryer particles (Fig. 9b) is essentially identical in
shape to the wet particles, the overall partitioning mechanism
appears to be similar throughout the RH range measured: the
role of water is not just confined to RH>80% when particles
rapidly absorb water and are very wet. In an ambient study,
Khlystov et al. (2005) found that fine particles contained wa-
ter at RH levels as low as 20–30% in the summer, compared
to winter conditions in which fine particles were essentially
dry below ∼60%RH. This water associated with fine parti-
cles, even at low abundances, may play an important role in
heterogeneous chemistry leading to SOA formation.
There is substantial evidence from both laboratory and

ambient studies suggesting that heterogeneous chemical re-
actions are important. Limbeck et al. (2003) observed en-
hanced isoprene SOA yields in the presence of acidic seed
particles compared to yields using neutral seed particles.
Kroll et al. (2007) found systematically higher SOA yields
from aromatic VOCs in the presence of ammonium sulfate
seed particles compared to experiments in which no seed
particles were present. In experiments designed to simu-
late the chemistry occurring within cloud droplets, Altieri et
al. (2008) observed the formation of oligomers from methyl-
glyoxal, while Volkamer et al. (2009) observed SOA for-
mation from acetylene in smog chamber experiments and
attributed this to the formation of glyoxal and its subse-
quent uptake and reaction in particles. The results of Volka-
mer et al. (2009) included a linear correlation between SOA
yields and aerosol liquid water concentrations, and an ap-
parent effect of the existing organic aerosol composition on
SOA yields as well, very similar to our findings. Perhaps
the strongest proof of heterogeneous reactions is the pres-
ence of macromolecular organic compounds, or oligomers,
as components of organic aerosol (e.g., Kalberer et al.,
2006; Denkenberger et al., 2007). It is highly unlikely that
oligomer formation occurs in the gas-phase, thus their pres-
ence in ambient particles confirms the occurrence of particle-
phase reactions as well. In relation to heterogeneous chem-
istry and the gas/particle partitioning of SVOCs, model sim-
ulations by Chan et al. (2007) demonstrate that the rates of
SOA formation and the amount of SOA formed may be im-
pacted by extensive heterogeneous reactions.

3.3 General discussions/implications

The above findings are based on measurements made over
an extended period in the ambient atmosphere, hence
they are relevant for regulatory and modeling applications.
First, the observed NOx effect on Fp could be important
for control strategies of O3 and PM2.5, criteria pollutants
which annually exceed EPA attainment limits in Atlanta

(http://www.epa.gov/oar/oaqps/greenbk/). At high NOx lev-
els, Fp values were lower compared to those at low NOx
levels, indicating that a higher fraction of the total WSOC
was in the particle phase when NOx levels were low. Atlanta
is a NOx-limited environment, which suggests NOx reduc-
tions may be the most effective means of controlling O3 con-
centrations. The present results indicate that mitigating O3
concentrations through NOx reductions could increase PM2.5
mass concentrations. The importance of a NOx feedback on
PM2.5 levels to NOx control is noteworthy and should be ex-
amined in more detail. (Note that decreasing NOx may also
decrease SOA yields of certain compounds like sesquiterpens
and large (C>12) alkanes (Kroll and Seinfeld, 2008), though
the overall contribution of these compounds to the SOA bud-
get is small in the Southeast. Thus, the feedback potential is
likely greater with VOCs which exhibit inverse SOA yields
with NOx, though this question should be examined as well).
There is evidence, however, that some other anthropogenic
component may also influence WSOCp production, signify-
ing that there may be additional unidentified processes lead-
ing to SOA formation that could still restrict accurate predic-
tion (Weber et al., 2007; Hennigan et al., 2008b).
The results presented in this study suggest that traditional

SOA theory based solely on the partitioning of SVOCs as
described by Kp formulation (Eq. 3) may not be a suitable
predictor of SOA in Atlanta. SOA partitioning theory pre-
dicts a strong relationship between Kp (i.e., Fp) and OC
(e.g., Odum et al., 1996) that was not seen in our ambient
data. Though we note apparent differences between the ap-
plication of theory based on the smog chamber results of
Odum et al. (1996, 1997) and the present study, the smog
chamber results, themselves, are actually in agreement with
our observations. The absorbing organic medium, Mo, in
those experiments is the SOA which was formed in the ab-
sence of any primary organic aerosol. It is thus likely that
Mo, even the low-volatility components, is chemically sim-
ilar to the SVOCs whose partitioning is enhanced by added
organic aerosol since they arise from oxidation of the same
VOCs. The real discrepancy arises when this theory is ap-
plied to the ambient atmosphere and the total organic aerosol
is assumed to contribute wholly and equally to the absorptive
partitioning of different SVOCs. Our results suggest that the
chemical composition of Mo is a critical factor in the par-
titioning process. This was apparent through the relation-
ship observed between Fp and WSOCp, though it differed
from the relationships observed in chamber studies. Kp the-
ory predicts a strong effect of water on partitioning, and a
strong Fp-RH effect was seen in the ambient results. How-
ever, Kp theory also predicts that as the mass of liquid water
exceeds WSOCp (or OC), Fp should become increasingly
insensitive to WSOCp. This behavior was not observed in
the ambient data, where the WSOCp concentration remained
an important factor for WSOC gas/particle partitioning even
at the highest RH levels. A mechanism that incorporates both
a partitioning of SVOCs to fine particle water and the reac-
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tion of organic compounds in the aqueous phase may bet-
ter represent the partitioning that occurs in the Atlanta sum-
mer. This enhancement in particle phase partitioning, along
with a photochemical mechanism, represent the major SOA
formation pathways identified in the present study. A pre-
vious study has shown that these processes may be related
(Hennigan et al., 2008b). In that study, periodic episodes of
high correlation between WSOCp and water vapor were ob-
served throughout the summer. The co-emission of biogenic
VOCs and water vapor from vegetation may have been re-
sponsible for the correlation. Subsequent oxidation of the
biogenic VOCs and uptake of the water vapor to the aerosol
phase upon ambient temperature changes may have increased
SOA formation further, according to the mechanism sug-
gested above.
Further ambient studies are required to investigate if the

findings presented here apply to other locations as well, and
identify the SVOCs and possible heterogeneous chemical
mechanisms. Finally, an important issue not investigated is
the reversibility of the observed partitioning, and how this
varies with RH. There is evidence from an earlier study in
Mexico City that a significant fraction (20 to 50%) of the
WSOCp formed during a period of high RH (∼90%) sub-
sequently evaporated when RH dropped a few hours later
(Hennigan et al., 2008c). A translation of results from Mex-
ico City to Atlanta is uncertain, as Mexico City VOCs are
predominantly anthropogenic (Volkamer et al., 2006) while
Atlanta’s are predominantly biogenic. Additionally, the pro-
cesses affecting aerosol formation (i.e., emission profiles and
photochemistry) may be highly different in the two cities as
well. Nevertheless, the potential reversibility of the liquid
water/heterogeneous reaction mechanism in Atlanta is a sig-
nificant question and should be investigated.

4 Conclusions

We provide a detailed characterization of SOA partitioning
in summertime Atlanta, a large urban center with substan-
tial biogenic VOC emissions. WSOC in the particle and
gas phases both had strong photochemical sources, while
WSOCg also appeared to have a unique nighttime source,
possibly involving NO3 chemistry. Partitioning, analyzed
through the fraction of total WSOC in the particle phase,
Fp, was found to have no net dependence on temperature,
though this was likely due to the emissions of precursor
VOCs and the formation of WSOC (in the gas and particle
phase), which both could have temperature dependences. Fp

was related to NOx concentrations, with higher NOx levels
corresponding to lower values of Fp. Although not likely
related to the partitioning process, this behavior could be at-
tributed to the effect of NOx on the product distribution in
VOC oxidation. In previous work, Fp was shown to have
a very strong dependence on relative humidity at RH levels
above 70% due to the uptake of liquid water by fine parti-

cles. The current work also shows a strong partitioning de-
pendence on the existing WSOCp concentration, but not on
the OC concentration, possibly indicating the importance of
the chemical similarity between partitioning SVOCs and the
absorbing aerosol phase, or the role of heterogeneous chem-
istry in SOA formation, or both. The relationship between Fp

andWSOCp was present even at the highest RH levels, when
the liquid water concentration was likely far greater than
the WSOCp concentration. Collectively, the results point
to liquid-phase heterogeneous chemical reactions as another
major SOA formation process and are remarkably similar to
the recent chamber experiments of Volkamer et al. (2009).
Finally, the summertime data indicate that WSOCp in-

corporated most, if not all, of the SOA in Atlanta. To our
knowledge, this represents the first detailed characterization
of SOA formation processes based on ambient data. Pre-
vious studies have described the gas/particle partitioning of
the total SOA within a smog chamber, and previous ambi-
ent studies have reported on the partitioning of individual
compounds. The results provide important insight into SOA
formation and the gas/particle partitioning process beyond
the current scientific understanding. Specifically, that fine-
particle water and heterogeneous chemical reactions may be
a significant mechanism for SOA formation in summertime
Atlanta. This mechanism may also play an important role in
other locations (e.g., Hennigan et al., 2008c), and may ex-
plain the systematic under-prediction of SOA by most mod-
els.
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