
Ambient Air Pollutant Measurement
Error: Characterization and Impacts
in a Time-Series Epidemiologic
Study in Atlanta
G R E T C H E N T . G O L D M A N , †

J A M E S A . M U L H O L L A N D , * , †

A R M I S T E A D G . R U S S E L L , †

A B H I S H E K S R I V A S T A V A , †

M A T T H E W J . S T R I C K L A N D , ‡

M I T C H E L K L E I N , ‡ L A N C E A . W A L L E R , §

P A I G E E . T O L B E R T , ‡ A N D
E R I C S . E D G E R T O N |

School of Civil and Environmental Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, Department
of Environmental Health and Department of Biostatistics and
Bioinformatics, Rollins School of Public Health, Emory
University, Atlanta, Georgia 30329, and Atmospheric Research
& Analysis, Inc., Cary, North Carolina 27513

Received April 28, 2010. Revised manuscript received
August 25, 2010. Accepted August 26, 2010.

In time-series studies of ambient air pollution and health in
largeurbanareas,measurementerrorsassociatedwith instrument
precision and spatial variability vary widely across pollutants.
In this paper, we characterize these errors for selected air
pollutants and estimate their impacts on epidemiologic results
from an ongoing study of air pollution and emergency
department visits in Atlanta. Error was modeled for daily
measures of 12 air pollutants using collocated monitor data to
characterize instrument precision and data from multiple
study area monitors to estimate population-weighted spatial
variance. Time-series simulations of instrument and spatial error
were generated for each pollutant, added to a reference
pollutant time-series, and used in a Poisson generalized linear
model of air pollution and cardiovascular emergency
department visits. Reductions in risk ratio due to instrument
precision error were less than 6%. Error due to spatial variability
resulted in average risk ratio reductions of less than 16% for
secondary pollutants (O3, PM2.5 sulfate, nitrate and ammonium)
and between 43% and 68% for primary pollutants (NOx, NO2,
SO2, CO, PM2.5 elemental carbon); pollutants of mixed origin (PM10,
PM2.5, PM2.5 organic carbon) had intermediate impacts.
Quantifying impacts of measurement error on health effect
estimates improves interpretation across ambient pollutants.

Introduction
Exposure measurement error is inherent to time-series
studies of ambient air pollution and health in large popula-
tions and its assessment has been cited as a research priority
(1–4). Zeger et al. (5) describe three components of mea-

surement error: (1) differences between individual exposures
and average personal exposure, (2) differences between
average personal exposure and ambient levels, and (3)
differences between measured and true ambient concentra-
tions. In this paper, we investigate this third component of
measurement error, which can be divided into two subcat-
egories (6): (a) instrument error, which results from inac-
curacy and imprecision in the ambient monitor observations,
and (b) spatial error, which results from the inability of a
single time-series to accurately represent the ambient levels
throughout the study area.

Instrument error can be examined through analysis of
measurements from collocated monitors. Discrepancy be-
tween independent measurements at the same location may
be due to instrument calibration and drift as well as errors
in sample preparation, collection, analysis, data acquisition,
and data processing. Uncertainty estimates based on labora-
tory tests often underestimate error associated with actual
use of the instrument when assessed from collocated
instrument data (7, 8).

A second source of error addressed here is that resulting
from the use of a single measure (e.g., central monitor data
or spatial average estimates using data from multiple
monitors) to characterize ambient pollutant levels over a
study area. Both micro- and macro-scale variations in
ambient air pollution have been observed in metropolitan
areas (9). Spatial variation, if not independent of ambient
concentration, can bias effect estimates in time-series health
studies. Sheppard et al. (10) found that measurement error
resulting from spatial variability led to an attenuation of acute
health effect estimates of 7.7% for PM2.5 mass when exposure
was estimated from a single monitor. Wilson et al. (11)
observed associations between ambient PM2.5 and cardio-
vascular mortality to be lower in geographical subpopulations
farther from a central monitoring site compared with
populations close to the central site in a daily time-series
study. While investigating three spatial models in a study of
airborne particles and respiratory emergency hospital ad-
missions, Chen et al. (12) found that effect estimates of PM10

were underestimated when a nonspatial approach was used.
In a recent study of ambient air pollution and emergency
department visits, effect estimates for spatially heterogeneous
pollutants (CO and NO2) were dependent on which monitor
was used, whereas observed associations for spatially ho-
mogeneous pollutants (O3 and PM2.5) were similar regardless
of the monitoring site (13). These results suggest that there
may be greater attenuation of health risk estimates for
spatially heterogeneous primary pollutants than for spatially
homogeneous secondary pollutants, as one might expect.

In this paper, we address the need for a comprehensive
examination of measurement error impacts on health risk
estimates in a study of air pollution and emergency depart-
ment (ED) visits for cardiovascular disease (CVD) in Atlanta.
Our objectives were, first, to characterize and model mea-
surement error using ambient air monitoring data, and,
second, to assess the impact of measurement error by
rerunning epidemiologic models using reference pollutant
data with modeled error added. For selected ambient air
pollutants in the metropolitan Atlanta region, we provide a
detailed characterization of both instrument precision error
and error due to spatial variability as these errors have been
previously demonstrated to be the relevant sources of
potential bias in regression coefficients in time-series studies
(14). This study is limited to variability in ambient air pollution
as assessed from regulatory and regional study monitors at
fixed locations throughout the area of interest; microscale
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variability, such as that associated with near-roadway
concentrations, is not addressed; nor is temporal microscale
variability addressed, such as that associated with meteo-
rological events on subhour time scales. Microscale spatial
and temporal variability in pollutant levels may be sources
of error in etiologic investigations of acute health effects from
air pollution, but this study examines the impact of error on
health risk estimates for ambient levels of pollutants mea-
sured in accordance with regulatory specifications. Finally,
this study addresses the effects of instrument imprecision
and spatial variability, not the effects of instrument inaccuracy
and spatial heterogeneity (e.g., urban-rural differences in
primary air pollutant concentrations). The former result in
day-to-day lack of correlation between air pollutant mea-
surements at either the same location with different instru-
ments or at different locations; the latter reflect systematic
differences in pollutant concentration measurements be-
tween instruments or over space.

Methods
Our approach for characterizing measurement error and
assessing its impact in a time-series health study involves
five steps: (1) collection of ambient air pollutant data; (2)
characterization of instrument precision by analyzing col-
located instrument data; (3) characterization of spatial
variability using geostatistical methods; (4) generation of
simulations by adding modeled error to reference pollutant
data; and (5) use of the simulations in epidemiologic models
and comparison of results with those obtained using the
reference time-series data. Methods used in each of these
steps follow.

Ambient Air Pollutant Data. Twelve pollutants were
assessed: NO2, NOx, O3, SO2, CO, PM10 mass, PM2.5 mass, and
PM2.5 components sulfate (SO4), nitrate (NO3), ammonium
(NH4), elemental carbon (EC), and organic carbon (OC).
Metropolitan Atlanta area monitors are shown in Figure 1.
Air pollution measurements from three sources were utilized:
the US EPA’s Air Quality System (AQS), including State and
Local Air Monitoring System and Speciation Trends Network
for PM2.5 component measurements; the Southeastern
Aerosol Research and Characterization Study (SEARCH)

network (15), including the Atlanta EPA supersite at Jefferson
Street (16); and the Assessment of Spatial Aerosol Composi-
tion in Atlanta (ASACA) network (17). To assess measurement
error due to instrument imprecision and spatial variability,
1999-2004 data sets were used, except where noted.

For several pollutants, different measurement methods
were used. SEARCH monitors (sites A and B) independently
measure NO and NO2, whereas the AQS NOx measurement
may include additional oxides of nitrogen. For SO2 measure-
ment, less SO2 is lost by water condensation in the SEARCH
sampling system than in the AQS measurement. For PM2.5

mass measurements, both Federal Reference Method (FRM)
instruments, which provide 24-h average filter-based mea-
surements, and Tapered Element Oscillating Microbalance
(TEOM) instruments, which provide 1-h semicontinuous
data, were used. The TEOM analyzers were operated to
minimize loss of semivolatiles (18). For PM2.5 components,
data were obtained from particle composition monitors
(PCM) providing 24-h filter samples, except for collocated
data which were obtained using continuous methods. Ions
(SO4, NO3, NH4) were detected by chromatographic analysis;
for carbon data, SEARCH uses the thermal optical reflectance
method for differentiating EC and OC, whereas AQS uses the
thermal optical transmittance method. The EC-OC split
differs between these methods (19); however, the measures
are highly correlated (20). The differences between measure-
ment methods are expected to have little impact on the
assessment of instrument error in this study because error
here is based on the correlation, not the bias, between
measurements.

Instrument Precision. Collocated instrument data during
1999-2004 were available for NO2, NOx, and O3 at Yorkville
(Figure 1, site B) from AQS and SEARCH monitors. For PM2.5

total mass and major components, collocated filter-based
measurements and unadjusted continuous data (18) at the
Jefferson Street SEARCH site (Figure 1, site A) were used over
the six-year period 2002-2007. For SO2, CO, and PM10,
collocated instrument data were not available.

Continuous PM2.5 ion measurements tend to underesti-
mate concentrations (21, 22), which has been attributed to
excess water in the instrument and reductions in flash

FIGURE 1. Map of 20-county metropolitan Atlanta study area. Census tracts, interstate highways, and ambient air pollutant
monitoring sites are shown.
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volatilization efficiency at high concentrations (21, 23). For
carbon fractions, the filter-based EC and OC measurements
were compared with aethalometer measurement of black
carbon and a semicontinuous total carbon measurement
with the aethalometer black carbon subtracted, respectively.
Compounded error in the continuous OC estimates is
expected to result in conservatively high estimates of
instrument error for this pollutant.

Spatial Variability. The semivariogram provides infor-
mation on the spatial correlation of data and has been used
previously for air pollutant data (24, 25). In this study,
modified semivariograms were used to assess spatial vari-
ability error over the entire six-year study period. In the raw
semivariogram, γ(h), defined here as one-half of the variance
of the differences between observations (Cj and Ck) at two
locations (j and k) located a distance h apart over all days,
is plotted versus h. Here, the semivariance is normalized by
the temporal variance of the average of two observations to
yield a scaled semivariance, γ′

Thus, γ′ represents the spatial semivariance scaled to a
quantity indicative of the range of exposures over which
health risk is being assessed; it is unitless and allows for
comparison across pollutants. It can be shown that this scaled
semivariance is related to the Pearson correlation coefficient
(R) between observations at two sites as follows (25)

Thus, a scaled semivariance value of 0 corresponds to
perfectly correlated observations (R ) 1) and a value of 1
corresponds to perfectly uncorrelated observations (R ) 0).
The scaled semivariance as defined by eqs 1 and 2 is,
therefore, a measure of spatial variability for the entire study
period that can be compared across pollutants. Since the
power to observe an association in a time-series health study
depends on the temporal variability of pollutant concentra-
tions, the impact of error due to spatial variability will depend
on how large the spatial variance is relative to the temporal
variance, evaluated for the entire study population over the
entire study period.

Assuming the spatial variation of air pollutants to be
isotropic, the scaled semivariance was modeled as a function
of the distance between observations, h, as follows

Here, γo′ , called the nugget, is the semivariance when monitors
are collocated and, therefore, represents instrument precision
error scaled by the temporal variance. Collocated monitor
data were analyzed to determine the nugget semivariance
and, thus, characterize instrument precision error. The sill,
γo′ + γe′, is the asymptote of the semivariance, and the range,
3ae, is the distance at which 95% of the sill is reached. The
exponential model above provided a reasonable fit to the
data, as will be shown.

We used the theoretical semivariogram to compute an
average scaled semivariance relative to the urban center for
the entire study population for each pollutant. Data from
the 2000 census for 660 tracts in the metropolitan Atlanta
study area were used to develop the following relationship
between population density, P(r), and distance from the
urban center, r (Supporting Information, Figure S1)

Parameters A and B are regression coefficients. This rela-
tionship (eq 4) was used with the modeled semivariogram
(eq 3) to calculate an integrated population-weighted semi-
variance, γj′, for each pollutant

Here, the radius of the Atlanta study area, R, is 80 km, B is
0.052 km-1, and the nugget (γo′), partial sill (γe′), and range
(3ae) are determined for each pollutant (Supporting Infor-
mation, Table S1). Since a nonzero nugget is included in the
integration, the population-weighted semivariance includes
instrument imprecision effects. We hypothesize that this
integrated scaled semivariance can be used to predict the
impact of error due to spatial variability on health risk
estimation.

Simulations. To develop simulated data sets with modeled
instrument and spatial error added to measurements, the
steps shown in Figure 2 were taken. First, a reference time-
series was chosen so that impacts on health effect estimates
of adding error for each pollutant could be compared to the
same base case. Based on preliminary epidemiologic model
results, we chose the 1-h maximum CO time-series at a central
monitor (site A) as our base case because of its significant
positive association with ED visits for CVD. Site A was chosen
as the base case because it is a former EPA supersite and is
heavily used in epidemiologic studies in Atlanta. Second,
the log-normally distributed CO concentrations were nor-
malized to avoid negative concentrations and preserve log-
normality after error is added

Here, �i* is the normalized concentration on day i, and
µln C and σln C are the mean and standard deviation,
respectively, of the log concentrations over all days; thus,
the mean and standard deviation of �i* are 0 and 1,
respectively. Third, error in the normalized concentration
was modeled as a function of concentration based on the
observed dependence of error on pollutant concentration

Here, ε�i is the modeled error in �i* for day i, Ni is a random
number with distribution Ñ(0,1) and inclusive of short-
term temporal autocorrelation, and a and b are constants
obtained by optimization under the constraints described
below. Fourth, the simulated error was introduced to
normalized data (eq 8), and, fifth, to provide simulations
of CO data with error added that have similar distributions
to the original CO data, these were denormalized (eq 9)

Here, σ� is the standard deviation of �i, which is slightly
larger than 1 due to the error added to �i*. Thus, the
simulations with error added (Zi) have the same log mean
and standard deviation as the central monitor CO data.
These simulations represent alternative time-series derived

γ′(h) ≡
Var(Cj - Ck

2 )
Var(Cj + Ck

2 )
) spatial semivariance

temporal variance
(1)

γ′(h) ) 1 - R(h)
1 + R(h)

(2)

γ′(h) ) γ′o + γ′e{1 - exp(- h
ae

)} (3)

P(r) ) Ae-Br (4)

γ′ )
∫0

R
γ′(r)P(r)rdr

∫0

R
P(r)rdr

) γ′o + γ′e{1 - ( B

B + ae
-1)2

×

((BR + ae
-1R + 1)e-(B+ae

-1)R - 1

(BR + 1)e-BR - 1 )} (5)

�i* )
ln Ci - µln C

σln C
(6)

ε�i ) NiaCi
b (7)

�i ) �i* + ε�i (8)

Zi ) exp(�i

σln C

σ�
+ µln C) (9)
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from the same base case (i.e., the “true” time-series, Z*)
with error added and with similar distributions as the base
case.

For each pollutant, two semivariograms were constructed,
one using log-concentration data and the other using
concentration data directly. The corresponding two semi-
variogram nuggets and two population-weighted semivari-
ances provide constraints for optimizing a and b for
instrument imprecision and spatial variability, respectively.
These constraints are calculated from the semivariogram
nuggets and population-weighted semivariances by inverting
eq 2, as shown in eq 10 and eq 11, respectively

For instrument error, since the relationship between mea-
surements is known but the relationship between measure-
ment and truth is not, simulated time-series data sets are
constrained to have intercorrelations, R(lnZ1,lnZ2) and
R(Z1,Z2), that equal those from collocated instruments (Ro).
It was found that these constraints yielded error of the same
magnitude and concentration dependence as observed in
the data (Supporting Information, Figure S2). For spatial error,
defined here as the error that results from extrapolating
central site exposures to locations removed from the central
site, simulated time-series data sets are constrained to have
correlations with the base case, R(lnZ,lnZ*) and R(Z,Z*), that
equal the average of correlations of ambient pollution time-
series data sets at residences of all people in the study area
with a central ambient pollutant time-series ( jR). This
optimization procedure was repeated 20 times to obtain
average a and b values for use in 1000 Monte Carlo
simulations.

Three measurement error models were developed for each
of 12 pollutants in order to simulate three scenarios: (1)
instrument error with semivariogram nuggets constrained
and temporal autocorrelation of error included; (2) spatial
error with population-weighted semivariances constrained
and temporal autocorrelation of error included; (3) spatial
error simulations with population-weighted semivariances

constrained but without temporal autocorrelation of error
included. Thus, 36 sets of 1000 simulated time-series for the
six-year period 1999-2004 of central monitor (site A) CO
data with error added were produced.

Epidemiologic Model. Relationships between daily mea-
sures of ambient air pollution and daily counts of ED visits
for CVD (including ischemic heart disease, dysrhythmia,
congestive heart failure, and peripheral/cerebrovascular
disease) were assessed using methods described elsewhere
(26) and briefly summarized here. There were 166,950 ED
visits for CVD in the 20-county metropolitan Atlanta area
during 1999-2004. Lag 0 associations between daily pollutant
concentration and the daily count of ED visits were assessed
using Poisson generalized linear models that accounted for
overdispersion. The general form of the epidemiologic model
is

where Yi is the count of emergency department visits on day
i, Zi is the pollutant concentration on day i at a central
monitor, and confoundersi is the vector of potential con-
founders on day i. The specific potential confounders
included in the model were indicator variables for day-of-
week, season, and when a hospital entered or left the study;
cubic terms for maximum temperature and dew point; and
a cubic spline with monthly knots for day of follow-up. The
parameter R is the intercept, � is the log of the rate ratio for
a change in pollutant concentration, and γ is the vector of
regression coefficients for the suspected confounders in-
cluded in the model. The risk ratio (RR) is given by eq 13

Using data from the central monitor (site A), preliminary
epidemiologic assessments were performed for all air pol-
lutants and ED visits for CVD. Consistent with previous
findings (26), significant positive associations were found
for several traffic-related pollutants, including 1-h maximum
NOx, 1-h maximum CO, and 24-h average EC. To compare
the impacts of adding error across all pollutants, we selected
1-h maximum CO for our base case time-series. Monte Carlo
simulations of instrument and spatial error added for each
pollutant to the base case were used to test the impact of
measurement error on epidemiologic analyses. With this
approach, the actual central monitor CO observations are
considered the “true” values (Z*), and the simulated data
sets with error added are the “measured” values (Z). A total
of 36,000 epidemiologic analyses were performed using
simulated time-series.

Results and Discussion
Ambient Air Quality Data. Daily metrics for 12 ambient air
pollutants were calculated: 1-h maximum NO2, NOx, SO2,
and CO, 8-h maximum O3, and 24-h average PM10, PM2.5,
and PM2.5 components NO3, SO4, NH4, EC, and OC. These
measures were found to be best described by log-normal
distributions. Lognormal distribution properties (geometric
mean, µg, and standard deviation, σg) for all 12 pollutants
measured at the central SEARCH monitor (site A) and at the
rural SEARCH monitor (site B) are listed in Table 1. Data
completeness for 1999-2004 (2192 days) ranged from 82%
to 97% across the pollutants. Levels of primary pollutants
(NO2, NOx, SO2, CO, and EC) are much higher at the urban
monitor and much less spatially correlated (urban-rural R
ranging from 0.10 to 0.43). For pollutants of largely secondary
origin (O3, NO3, SO4, and NH4), the average levels are similar
at urban and rural sites and the spatial correlation is much
higher (urban-rural R ranging from 0.72 to 0.92). Pollutants

FIGURE 2. Time-series simulation flowchart. For each error type
and each pollutant, the procedure was repeated 20 times to
obtain average of a and b and then repeated without
optimization (dashed lines) to generate 1000 simulated
time-series.

Ro )
1 - γ′o
1 + γ′o

(10)

Rj ) 1 - γ′
1 + γ′

(11)

log[E(Yi)] ) R + �Zi + γ confoundersi (12)

RR ) e � (13)
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of mixed origin (PM2.5, PM10, and OC) have an intermediate
level of spatial heterogeneity and spatial correlation.

Instrument Precision Error. The collocated instrument
correlations in Table 1 are indicative of the amount of
instrument error for each pollutant. For PM2.5 total mass and
major constituents, the correlations between filter-based
measurements and measurements using continuous meth-
ods are lower than correlations between collocated data from
a Centreville, Alabama site using identical filter-based
instruments (shown in parentheses). Thus, our instrument
error estimations are conservative in that they include some
variability due to different instruments or analytical methods.
The collocated OC observations were least correlated, likely
due to compounded error in the continuous OC measure-
ment involving taking the difference between total carbon
and black carbon observations.

Collocated instrument time-series were used to calculate
nugget semivariance values on a concentration basis and a
log-concentration basis, which characterize instrument
precision in the error simulation model. In the case of CO,
SO2, and PM10 for which we did not have collocated
instrument data, a value fitted by the semivariogram was
used. All nugget semivariance values are listed in Supporting
Information, Table S1.

In general, instrument error was observed to increase with
increasing concentration; this concentration dependence was
modeled via eq 7. Short-term temporal autocorrelation of
error was also observed, with correlation coefficients averaged
across all pollutants of 0.59 ( 0.13 (standard deviation) and
0.33 ( 0.17 for one-day and two-day lags, respectively; this
was modeled by using a three-day running average of random
numbers for Ni (eq 7). The desired level of error autocor-
relation was verified in all models, as was the concentration
dependence of the magnitude of error. The most extreme
outliers in the observed error were not captured, however
(Supporting Information, Figure S2).

Spatial Variability Error. Correlations between observa-
tions from all pairs of monitors measuring the same pollutant
during 1999-2004 were calculated on a concentration basis
and log concentration basis. As shown in Figure 1, there
were six NO2 and NOx monitoring sites, five sites each for
SO2, CO, and O3 (with three O3 sites providing only March-
November data), eight PM10 sites (with five providing data
only every 6 days), nine PM2.5 mass sites (with four providing
data only every 3 days), and five sites with PM2.5 composition
monitors. Scaled semivariograms were constructed for both
concentrations and log concentrations, using eq 2, and
plotted as a function of distance between monitors. In Figure

3, log concentration semivariograms are shown for all
pollutants. Exponential theoretical semivariograms were fit
to the data (eq 3) by using least-squares regression to
determine the range, assuming a sill of 1 and using a nugget
derived from the instrument precision analysis.

Secondary pollutants (O3, NO3, SO4, and NH4) have large
range values (from 1100 km to 3000 km), indicating their
greater spatial autocorrelation. Primary pollutants (NO2, NOx,
SO2, CO, and EC), conversely, have lower range values (from
100 to 330 km), demonstrating greater spatial variability of
these pollutants. Scatter in the raw semivariogram suggests
a degree of anisotropic behavior (i.e., directional dependence)
in the data in addition to observational error.

Population-weighted semivariances were derived from
both the concentration and log concentration semivari-
ograms (Supporting Information, Table S1). While nuggets
were all small (<0.1), indicative of low levels of instrument
error, population-weighted semivariograms suggest much
larger error due to spatial variability. As mentioned previously,
secondary pollutants exhibit much less spatial variability than
primary pollutants. Ozone exhibits the least spatial variability,
and SO2 the most. Moreover, SO2 spatial variability is likely
underestimated due to an insufficient number of monitors
for this pollutant whose emissions are dominated by a few
point sources.

Simulations with Modeled Error Added. Optimization
yielded values of parameters a and b that were very similar
across the 20 trials (Supporting Information, Table S2) for
each error type and each pollutant, indicative of a relatively
stable solution to the error model optimization routine. After
optimization of model parameters a and b, 1000 simulations
were generated for each pollutant by adding instrument
precision error and error due to spatial variability, both with
and without temporal autocorrelation, to the reference time-
series via the procedure outlined in Figure 2. Average
correlation coefficients between simulations agreed with
expected values, with wider ranges of results from spatial
error models of primary pollutants (Supporting Information,
Figure S3). The range of simulation results is consistent with
the observed variability in yearly intermonitor covariance.

Error Impact on Health Risk Assessment. For the base
case of 1-h maximum CO exposures (Z*) and CVD outcomes,
a risk ratio of 1.0139 was observed, with a p-value of 0.000009.
Differences between this result and results from the regres-
sion of the same health outcome data against the simulations
with error added instead of the CO data reflect the impact
of error. Results of 1000 epidemiologic models for 12 air
pollutants and three error scenarios are summarized in Table

TABLE 1. Lognormal Distribution Properties of Urban (Site A) and Rural (Site B) SEARCH Monitors, 1999-2004, and Collocated
Instrument and Urban-Rural Spatial Pearson Correlation Coefficients

urban (site A) rural (site B)

µg σg µg σg collocated R urban-rural R

1-h max NO2 38.1 ppb 1.51 7.74 ppb 2.47 0.92a 0.10
1-h max NOx 86.8 ppb 2.23 8.39 ppb 2.56 0.94a 0.21
8-h max O3 35.8 ppb 1.92 45.2 ppb 1.54 0.99a 0.89
1-h max SO2 11.4 ppb 2.58 6.32 ppb 2.40 N/A 0.10
1-h max CO 0.89 ppm 2.11 0.24 ppm 1.39 N/A 0.18
24-h PM10 23.8 µg/m3 1.55 17.2 µg/m3 1.68 N/A 0.78
24-h PM2.5 15.2 µg/m3 1.62 11.5 µg/m3 1.73 0.97b (0.991)c 0.85
24-h PM2.5-SO4 3.85 µg/m3 1.95 3.71 µg/m3 2.07 0.96b (0.998)d 0.92
24-h PM2.5-NO3 0.74 µg/m3 2.13 0.63 µg/m3 2.20 0.94b (0.993)d 0.80
24-h PM2.5-NH4 2.02 µg/m3 1.79 1.97 µg/m3 1.95 0.91b (0.994)d 0.72
24-h PM2.5-EC 1.28 µg/m3 1.87 0.57 µg/m3 1.81 0.92b (0.903)d 0.43
24-h PM2.5-OC 3.79 µg/m3 1.65 2.70 µg/m3 1.71 0.85b (0.979)d 0.59

a Yorkville (site B), SEARCH and AQS monitors, 1999-2004. b Jefferson St (site A), filter-based and continuous monitors,
2002-2007. c Yorkville (site B), two filter-based FRM instruments, 2002-2008. d Centreville, Alabama, two filter-based
instruments, 2001-2008.
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2. The degree to which the risk ratio observed using the
simulations is decreased toward one (the null hypothesis)
from the risk ratio observed using the base case data can be
expressed as a percent bias-to-null in the risk ratio

Here, �* is the effect estimator when CO central monitor
data (Z*) were used in the epidemiologic model, and � is the
effect estimator when simulations with error added (Z) were
used.

The addition of instrument precision error to monitor
data was found to have little impact on risk ratio and
significance estimates. Average risk ratios ranged from 1.0131
to 1.0143 (compared to 1.0139), and median p-values ranged
from 0.000010 to 0.000045 (compared to 0.000009). In
comparison, the impact of error due to spatial variability
was much larger. Loss of significance of association at the
95% level was observed for SO2 and NO2. For primary

pollutants, risk ratios on average ranged from 1.0045 for SO2

to 1.0079 for NOx, corresponding to average bias-to-null
estimates of 68 to 43%, respectively. For pollutants largely
of secondary origin, the results exhibited less bias-to-null,
with risk ratios on average ranging from 1.0117 for NH4 to
1.0145 for NO3; these correspond to average bias-to-null
estimates of less than 16%. For pollutants of mixed origin,
intermediate levels of bias-to-null were observed. The
presence of temporal autocorrelation in spatial error slightly
decreased the bias-to-null and increased significance, likely
due to the fact that the air pollution data themselves have
temporal autocorrelation.

In Figure 4, average values of the bias-to-null from all
models are shown as a function of the integrated scaled
semivariance, which is a measure of the magnitude of error
added. These results support our hypothesis that the impact
of error due to spatial variability depends on how large the
spatial variance is relative to the temporal variance, evaluated
for the entire study population over the entire study period.

This investigation was limited to error associated with
the lack of correlation between exposure measurements.
Results are limited to single pollutant analyses. Our results

FIGURE 3. Semivariograms for the log normalized pollutant concentrations. Exponential curves are fitted to the data. Similar
semivariograms were constructed for normalized pollutant concentrations.

TABLE 2. Average Risk Ratios and Median p-Values for 1000 Trials with Error Added to Base Casea

instrument error spatial error spatial error (no autocorrelation)

RR per ppm p-value RR per ppm p-value RR per ppm p-value

1-h max NO2 1.0133 0.000021 1.0046 (1.0026-1.0065) 0.1038 (0.0236-0.362) 1.0044 0.1196
1-h max NOx 1.0132 0.000018 1.0079 (1.0057-1.0100) 0.0263 (0.0053-0.119) 1.0074 0.0321
8-h max O3 1.0139 0.000010 1.0128 (1.0118-1.0139) 0.000050 (0.000011-0.00018) 1.0126 0.000059
1-h max SO2 1.0132 0.000026 1.0045 (1.0023-1.0065) 0.1411 (0.0355-0.425) 1.0042 0.1695
1-h max CO 1.0131 0.000020 1.0059 (1.0039-1.0077) 0.0392 (0.0073-0.172) 1.0049 0.0465
24-h PM10 1.0131 0.000027 1.0103 (1.0085-1.012) 0.0017 (0.00025-0.0089) 1.0099 0.0021
24-h PM2.5 1.0138 0.000016 1.0126 (1.0113-1.0139) 0.00015 (0.000027-0.00070) 1.0123 0.00019
24-h PM2.5-SO4 1.0134 0.000015 1.0121 (1.0109-1.0133) 0.00011 (0.000019-0.00047) 1.0118 0.00012
24-h PM2.5-NO3 1.0143 0.000011 1.0145 (1.0128-1.016) 0.00015 (0.000032-0.00081) 1.0141 0.00020
24-h PM2.5-NH4 1.0141 0.000020 1.0117 (1.0101-1.0134) 0.00057 (0.000091-0.0032) 1.0113 0.00076
24-h PM2.5-EC 1.0134 0.000022 1.0079 (1.0050-1.0107) 0.0440 (0.0071-0.192) 1.0078 0.0420
24-h PM2.5-OC 1.0132 0.000045 1.0101 (1.0084-1.0118) 0.0017 (0.00024-0.0092) 1.0097 0.0021

a Base case results: RR ) 1.0139, p-value ) 0.000009. For spatial error, interquartile ranges are shown in parentheses.

RR percent bias-to-null ) (e �* - e �

e �* - 1 ) × 100% ≈

(1 - �
�*) × 100% (14)
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can be used directly to reinterpret results from single pollutant
models across multiple pollutants, with health effect estima-
tor attenuation varying across pollutants. Our modeling
framework could be extended for use in multipollutant
models as well by including joint variance effects in the
semivariogram analysis.

In this paper, we have shown the relative impacts of
measurement error on health risk assessment using simulated
time-series of ambient levels. The amount of error was derived
from observations; however, bias in the health response
estimate is dependent on both the amount and type of
measurement error. In terms of the latter, two extremes in
the conceptual framework for error type have been proposed:
classical error and Berkson error (5, 10). The type of error
simulated in this work is neither classical nor Berkson
(Supporting Information, Figures S4 and S5). In ongoing work,
we are exploring the impact of varying error type, while
keeping the amount of error constant, on health effect
estimation by relaxing the assumption that the simulations
with error added have the same distribution as the true values.
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FIGURE 4. Percent reduction in risk ratio due to instrument
precision error and spatial variability error versus semivariogram
nugget (γo) and integrated population-weighted semivariance (γj′),
respectively, on concentration basis with one-sided error bars
indicating the standard deviation of the 1000 simulations. Spatial
variability error points are labeled in order of increasing γj′. For
reference, a one-to-one line is shown.
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