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< Geostatistical modeling of air pollution can inform measurement error assessment.
< Error amount and type present in time-series epidemiologic studies were assessed.
< Reduced statistical power in health risk estimates is expected due to spatial variability.
< Bias in risk estimates is expected due to limited number and placement of monitors.
< Results suggest large differences across pollutants and across pollutant metrics.
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a b s t r a c t

In recent years, geostatistical modeling has been used to inform air pollution health studies. In this study,
distributions of daily ambient concentrations were modeled over space and time for 12 air pollutants.
Simulated pollutant fieldswere produced for a 6-year time period over the 20-countymetropolitan Atlanta
area using the Stanford Geostatistical Modeling Software (SGeMS). These simulations incorporate the
temporal and spatial autocorrelation structure of ambient pollutants, as well as season and day-of-week
temporal and spatial trends; these fields were considered to be the true ambient pollutant fields for the
purposes of the simulations that followed. Simulatedmonitor data at the locations of actualmonitors were
then generated that contain error representative of instrument imprecision. From the simulated monitor
data, four exposure metrics were calculated: central monitor and unweighted, population-weighted, and
area-weighted averages. For each metric, the amount and type of error relative to the simulated pollutant
fields are characterized and the impact of error on an epidemiologic time-series analysis is predicted. The
amount of error, as indicated by a lack of spatial autocorrelation, is greater for primary pollutants than for
secondarypollutants and is onlymoderately reducedbyaveragingacrossmonitors;moreerrorwill result in
less statistical power in the epidemiologic analysis. The type of error, as indicated by the correlations of
error with the monitor data and with the true ambient concentration, varies with exposure metric, with
error in the central monitor metric more of the classical type (i.e., independent of the monitor data) and
error in the spatial average metrics more of the Berkson type (i.e., independent of the true ambient
concentration). Error typewill affect the bias in the health risk estimate,with bias toward the null and away
from the null predicted depending on the exposure metric; population-weighting yielded the least bias.

� 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding measurement error impacts in studies of
ambient air pollution and health is challenging due to the use of
group-level exposure measures derived from monitor data to infer
the adverse health effects of air pollution on the individual level.
Moreover, the true ambient air pollution level is not known. Here,
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we address measurement error in a time-series analysis that
utilizes health outcomes aggregated over a geographical area, with
the true unobserved exposure defined as the regulatory ambient
concentration at individual residences.

Measurement error is inherent in time-series epidemiologic
studies of air pollution that rely on ambient monitor data. Instru-
ment error and, to a greater degree, exposure misclassification due
to the spatial variability have been shown to bias effect estimates in
large population studies (Chen et al., 2007; Goldman et al., 2010;
Sarnat et al., 2010;Wilson et al., 2007). Time-series studies that rely
on central monitor data have been criticized for uncertainty related
to exposure measurement errors and the substantial variation
present in some air pollutant measures (Dominici et al., 2006). Both
error amount and error type affect health risk estimates and
statistical power. An increase in the amount of error decreases the
statistical power to detect health associations (e.g., Goldman et al.,
2011). Error type (e.g., classical and Berkson) has been demon-
strated to modify the extent to which measurement error attenu-
ates health effect estimates (Armstrong,1998; Goldman et al., 2011;
Sheppard et al., 2005; Zeger et al., 2000). Classical error is that in
which the measurement varies randomly about the true exposure.
In contrast, with Berkson error the true exposure varies randomly
about the measurement, such as might be the case if an average of
individual exposures across the at-risk population is used to char-
acterize ambient exposure. Purely Berkson error is expected to
decrease significance of an association but will yield an unbiased
effect estimate (Armstrong, 1998; Zeger et al., 2000). Because the
distribution of true concentrations cannot be knownwith certainty,
assessment of error type for a given dataset is challenging.

Increasingly, advanced spatial modeling techniques are being
employed to gain insight on the distribution of true ambient
concentrations (Jerrett et al., 2010). Several studies have developed
methods for simulating air pollutant concentrations, taking into
account both spatial and temporal characteristics of concentrations
(Nunes and Soares, 2005; Sahu and Mardia, 2005); however, few
studies have used such simulations to assess the amount and type
of measurement error in time-series studies (Peng and Bell, 2010).
Gryparis et al. (2009) used a smoothing method of spatial
measurement error modeling to explore the relative uncertainties
associated with use of different exposure metrics in a study of
particulate matter (PM) and birth weight in greater Boston. Fuentes
et al. (2006) utilized multivariate regression to model the spatial
structure of concentrations in order to quantify uncertainties in an
association between mortality and fine PM. Peng and Bell (2010)
estimated county-wide average concentrations to assess spatial
misalignment error and apply statistical methods to obtain
adjusted health risk estimates in a time-series study of PM
components and hospital admissions for cardiovascular disease.
Lee and Shaddick (2010) jointly modeled pollutant concentrations
and health data using a Bayesian spatio-temporal model and found
that pollution surface modeling may provide better health effect
estimates in areas where a large number of monitoring sites are
available, particularly for more spatially varying species.

In previous work, we found instrument error and the lack of
spatial autocorrelation of ambient pollutant concentrations can lead
to substantial reduction in statistical power and potential attenua-
tionof risk estimates (Goldmanet al., 2010),with error type affecting
the amount of attenuation (Goldman et al., 2011). Our previous
studies did not, however, characterize the type of error actually
present in ambient measurements or account for the spatial
heterogeneity in pollution levels. Moreover, while there has been
substantial discussion of the potential impact of error type, few
studies have attempted to determine the error type of air pollutant
monitoring data in a time-series setting. To do this, the relationship
between the true ambient concentration and themeasured ambient
concentration used in the health study should be understood and
quantified. Receptor-based approaches for assessing this relation-
ship require detailed spatial and temporal observations that are not
typically available from ambient monitoring networks. Emissions-
based models of ambient air pollution, such as the Community
Multi-scaleAirQuality (CMAQ)modeling system, observation-based
interpolationmethods, such as kriging (Mulholland et al.,1998), and
hybrids of thesemethods (Kaynak et al., 2009;Mendoza-Dominguez
and Russell, 2001) are able to capture many characteristics of
ambient concentrations at high spatial and temporal resolution;
however, they fail to describe the low spatial dependence for some
pollutants that is evident from observational data. This is particu-
larly relevant to assessing error in time-series studies where moni-
tors placed using criteria that do not necessarily maximize
representativeness are used to derive population average exposure.
In this work, we use geostatistical methods to create simulated
ambient air pollution fields that have the desired spatial and
temporal distribution properties found in actual ambient monitor
data for 12 air pollutants. For each pollutant time-series, six prop-
erties were modeled: temporal autocorrelation, spatial autocorre-
lation, mean, standard deviation, seasonal trend, and day-of-week
trend. Using these “true” ambient air pollution fields, monitor data
are simulated that incorporate instrument imprecision as classical
error. Next, the amount and type of measurement error present in
using alternative time-series exposure metrics (i.e., central monitor
data and various monitor averages) to represent ambient air
pollutant levels over time and space are assessed. Finally, the impact
of measurement error on health risk estimates is predicted.

This work addresses measurement error with respect to the
assessment of health risk associated with ambient air pollution
using a time-series study design and regulatory air pollution
monitors. This work does not address near-source variability in
ambient air pollution, such as near roadways, or variability in
personal exposure.

2. Methods

2.1. Air quality data

To assess spatio-temporal trends in air pollutant concentrations,
dailymeasures of ambientmonitor data for the 20-county studyarea
for a 6-year period (1999e2004) were analyzed for 12 ambient air
pollutants: 1-hmaxNO2,1-hmaxNOx, 8-hmaxO3,1-hmax SO2,1-h
max CO, 24-h PM10 mass, 24-h PM2.5 mass, and 24-h PM2.5 compo-
nents sulfate ðSO2�

4 Þ, nitrate ðNO�
3 Þ, ammonium ðNHþ

4 Þ, elemental
carbon (EC) and organic carbon (OC). Datawere obtained from three
monitoring networks: the US EPA’s Air Quality System (AQS),
including State and Local Air Monitoring System and Speciation
Trends Network for PM2.5 component measurements; the South-
eastern Aerosol Research and Characterization Study (SEARCH)
network (Hansen et al., 2003), including the Atlanta EPA supersite at
Jefferson Street (Solomon et al., 2003); and theAssessment of Spatial
Aerosol Composition in Atlanta (ASACA) network (Butler et al.,
2003). While some differences exist between measurement
methods used by themonitoring networks, these discrepancies have
been discussed in detail elsewhere (Goldman et al., 2010) and are
expected to have a negligible impact on this analysis.

Monitor site locations are shown in Fig.1. Data from six NO2/NOx

monitors, five CO monitors, five SO2 monitors, five O3 monitors,
eight PM10 monitors, nine PM2.5 monitors, and five speciated PM2.5

monitors were used. The following distributional features of the
pollutant fields were characterized: temporal autocorrelation,
spatial autocorrelation, and mean, standard deviation, seasonal
trend, and day-of-week trend as functions of distance from the
urban center.
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2.2. Characterization of air pollutant temporal and spatial
distributions

Short-termtemporal autocorrelation ispresent indailyambientair
pollutant data due to meteorological events occurring on time-scales
of days to weeks. Correlations of data from eachmonitor were calcu-
lated for one to fourteen day lags (see Supplementary material,
Figure S.1 for central and rural monitor results). The temporal auto-
correlation trend with increasing lag was similar for urban, suburban
and rural monitors, so short-term temporal autocorrelation was
characterized as being independent of location. Across the 12 pollut-
ants studied, means and standard deviations of the one-day and two-
day lag Pearson correlation coefficients were 0.59 � 0.13 and
0.33 � 0.17, respectively. Secondary pollutants tend to have greater
levels of short-term temporal autocorrelation thatpersists over longer
lag periods.

Spatial autocorrelation depends on the distribution of emission
sources and transport phenomena. Correlograms were constructed
for each pollutant using data from all monitor pairs (Supplementary
material, Figure S.2). Primary pollutants, i.e., those largely emitted
directly to the atmosphere such as NOx, CO, SO2 and EC, have much
less spatial autocorrelation than secondary pollutants, i.e., those
largely formed in the atmosphere such as O3, NO�

3 and SO2�
4 .

Pollutants of mixed origin, e.g., PM2.5 total mass and OC, have
intermediate levels of spatial autocorrelation. Isotropic exponential
models of the correlograms were developed, with the correlation
coefficient at distance zero based on collocated instrument data. To
estimate an average spatial autocorrelation for the study population,
the correlogram for each pollutant was modeled as a function of
distance from the urban center, correlation coefficients at 660
census tract centroids were estimated using this model, and these
values were population-weighted and averaged by Eq. (1) using
2000 census population data (Goldman et al., 2010).

R ¼ 1
Ptotal

0
@X660

j¼1

RjPj

1
A (1)

Here, Rj is the Pearson correlation coefficient and Pj is the pop-
ulation at census tract j. Values of R ranged from 0.90 for O3 to 0.21
for SO2 (Supplementary material, Table S.1).
Fig. 1. Map of the 20-county metropolitan Atlanta study area. Census tracts, expressways, an
intersection of expressways near the monitor labeled S, and the central monitor was defin
Air pollutant monitor data tend to have a lognormal distribu-
tion. Log means and log standard deviations are shown versus
distance from the urban center in Supplementary material,
Figures S.3 and S.4, respectively. Ambient concentrations of
pollutants predominantly from mobile sources (NO2, NOx, CO, and
EC) decrease with increasing distance from the urban center.
Pollutants largely of secondary origin, such as O3 and PM2.5 mass,
tend to be relatively spatially homogeneous. The mean and stan-
dard deviation of air pollutant log concentrations were modeled as
linear functions of distance from the urban center to 60 km; beyond
60 km these values were fixed at rural background levels.

Day-of-week and seasonal trends in air pollutant concentrations
are shown in Supplementary material, Figures S.5 and S.6, respec-
tively. These trends result from variation in emissions by day-of-
week and from variation in meteorology that affects mixing rates
as well as formation and removal rates by season. Day-of-week
trends were found to be similar at different monitor locations;
these were modeled categorically. Seasonal trends were modeled
using fourth-order polynomial functions under the constraints that
the value and slope on the first day of each year are the same.
Seasonal trends were found to differ between monitors in urban,
suburban, and rural locations; therefore, fitted coefficients were
varied with distance up to 60 km.

2.3. Simulation of ambient pollutant fields

Daily air pollutant fields were generated for the 20-county
Atlanta region (16,000 km2) at a 5-km resolution for a 6-year
period (2192 days) for the 12 ambient air pollutants. Additionally,
10 independent sets of simulations of daily CO fields were produced
to assess the amount of numerical noise in this approach. These
fields do not simulate actual ambient pollutant concentrations on
any given day, but simulate air pollution over time and space for
a population of days based on the characteristics described above.
Simulations were produced via a two-step process. First, the direct
sequential simulation method (Soares, 2001) in the Stanford Geo-
statistical Modeling Software (SGeMS) (Remy, 2005) was used to
generate normalized fields (Eq. (2)) with the desired short-term
temporal and spatial autocorrelation.

c*ij ¼
lnCij � mlnCj

slnCj

wNð0;1Þ (2)
d ambient air pollutant monitoring sites are shown. The urban center was defined at the
ed as monitor A, the EPA supersite location.
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Here, c*ij is the normalized “true” pollutant level on day i at
location j, Cij is the concentration on day i at location j, mln Cj

is the
log concentration mean over all days at location j (Supplementary
material, Figure S.3), and sln Cj

is the log concentration standard
deviation over all days at location j (Supplementary material,
Figure S.4). Thus, at each location j, c*ij has a mean of zero and
a standard deviation of one. SGeMS was used in this application to
provide spatial autocorrelation in two dimensions and temporal
autocorrelation in a third dimension.

The second step in generating pollutant field simulations was
denormalization to yield concentration fields with the desired
means, standard deviations, day-of-week trends, and seasonal
trends. This was achieved by inverting Eq. (2) and applying factors
to achieve the desired day-of-week and seasonal trends (Eq. (3)).

Z*ij ¼ awkayrexp
�
c*ijsr þ mr

�
(3)

Here, Z*ij is the “true” concentration on day i at location j, mr is the
log concentration mean modeled as a linear function of distance
from urban center r, sr is the log concentration standard deviation
modeled as a linear function of r, awk is the day-of-week factor
modeled independent of r, and ayr is the season factor modeled as
a fourth-order polynomial function of r. Steps 1 and 2 were iterated
in order to preserve the spatial and temporal autocorrelation
structure observed in the monitor data (see Supplementary
material, Figures S.1 and S.2) after the simulated concentrations
were denormalized and distribution trends were added. The final
parameters mr, sr, awk, and ayr used to simulate spatial trends in the
mean and standard deviation and temporal trends by day-of-week
and by season, respectively, are provided in Tables S.2eS.4.

2.4. Simulation of monitor data and calculation of exposure metrics

To simulate measurements at actual monitor site locations,
classical instrument error was introduced to the simulated true
values such that the Pearson correlation coefficient between the
simulated monitor data (Z) and simulated true ambient (Z*)
equaled the square root of the correlation between actual collo-
cated instrument data (Z1 and Z2); i.e., RðZ; Z*Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RðZ1; Z2Þ
p

(Goldman et al., 2010). The simulated monitor data were then used
to compute the following exposure metrics: central monitor and
unweighted average, population-weighted average and area-
weighted average of monitor data. The simulated Jefferson Street
monitor time-series was defined as the central monitor exposure
metric. A time-series of the unweighted average of simulated
monitor data for each pollutant was computed as a second expo-
sure metric. A population-weighted average time-series was
computed from the simulated monitor data using census tract
population from the 2000 census and a previously developed
spatial interpolation method (Ivy et al., 2008). Lastly, an area-
weighted average was computed using spatially interpolated
simulated monitor data and census tract areas. These four time-
series represent different exposure metrics that have been used
in time-series epidemiologic studies to characterize population
exposure.

Measurement error, εij, was calculated for each exposure metric
on eachday i at each location in space j as the difference between the
simulated exposuremetric (Zi), which is only a function of time, and
the simulated true ambient concentration ðZ*ijÞ, which is a function

of both time and space: εij ¼ Zi � Z*ij. Population-weighted Pearson

correlation coefficients were computed between εij and the
“measured” time-series (Zi) and between εij and the “true”
concentrations ðZ*ijÞ by first calculating correlation coefficients over

time at the 660 census tract centroids and then weighting each
coefficient by Eq. (1). For Berkson error, the expected value of

Rjðεij; Z*ijÞ is zero, whereas for classical error the expected value of

Rjðεij; ZiÞ is zero. In the subsequent presentation of results, subscripts
denoting time and space and overbars denoting population-
weighted averages are omitted for simplicity of presentation.

Finally, an expected amount of bias in the risk ratio estimate due
to measurement error for each pollutant was calculated as the
population-weighted slope of εij versus Zi based on our previous
findings (Goldman et al., 2011). In epidemiologic time-series
studies, Poisson regression models are often used to estimate risk
ratios and confidence intervals for health effects associated with
exposures. Here the risk ratio is the estimate of the proportional
increase in the daily count of health outcomes, after controlling for
potential confounding variables, associated with a given increase in
exposure. In a large population epidemiologic study, there is error
in the exposure estimate due to spatial variability that can bias the
risk ratio estimate as well as reduce the statistical power to detect
an effect of pollution.

3. Results

3.1. Comparison of ambient monitor data and ambient field
simulations

Simulation results are provided in Supplementary material in
parallel with the presentation of observational data for the six
features observed in monitor data described previously: short-term
temporal autocorrelation (Figure S.8 e simulation; Figure S.1 e

observation), spatial autocorrelation (Figure S.9 and Table S.5 e

simulation; Figure S.2 andTable S.1eobservation),mean (Figure S.10
e simulation; Figure S.3 e observation), standard deviation
(Figure S.11 e simulation; Figure S.4 e observation), day-of-week
trend (Figure S.12 e simulation; Figure S.5 e observation), and
seasonal trend (Figures S.13 andS.14e simulation; Figures S.6 andS.7
e observation). Spatial trends in the mean and standard deviation
and temporal trends by day-of-week and by season are well simu-
lated by the denormalization parameters used in Eq. (2) (mr, sr, awk,
and ayr, respectively). Observed and simulated short-term temporal
autocorrelation and spatial autocorrelation are compared below;
simulation of these features is essential to the evaluation of
measurement error in this study, requiring the use of SGeMS.

Only small differences in short-term temporal autocorrelation
(lags up to 14 days) were observed between urban and rural
monitors; therefore, short-term temporal autocorrelation was
modeled as independent of distance from the urban center.
Observed and simulated short-term temporal autocorrelation
trends are compared at the central monitoring site (Fig. 2). The
simulations capture the observed lower short-term autocorrelation
of primary pollutants, such as NOx, SO2, CO and EC, relative to
secondary pollutants, such as O3, SO2�

4 and NO�
3 .

Spatial autocorrelation, as characterized by correlograms, is well
captured by the simulations (Fig. 3). The observed autocorrelation
at distance zero is based on collocated instrument data, whereas
the simulated true ambient autocorrelation goes to one as distance
approaches zero. Instrument error is included by simulating
monitor data, as described next.

3.2. Exposure metric simulation

Time-series monitor data were simulated at actual monitor
locations by introducing instrument error, consistent in amount
with that of collocated instrument data for each pollutant and
consistent in type with that of classical error on a log basis. Four
alternative exposure metrics were derived from the simulated



Fig. 2. Short term temporal autocorrelation of measurements (black) and of the simulated time-series (gray) at the central monitoring site.

G.T. Goldman et al. / Atmospheric Environment 57 (2012) 101e108 105
monitor data: central monitor, unweighted monitor average,
population-weighted monitor average, and area-weighted monitor
average. Means and standard deviations for these four time-series,
as well as for the true population-weighted average calculated from
the true ambient fields, are provided in Table 1. For primary
pollutants, the central monitor means and standard deviations are
much higher, and the area-weighted average values are lower, than
those of other metrics, as expected, due to the averaging of
heterogeneous pollutant fields. Also as expected, the monitor-
based population-weighted metric has a mean and standard
deviation most similar to the true population-weighted average;
differences are largely due to the limited number and location of
monitors. The unweighted average means and standard deviations
tend to be most similar to the population-weighted average values,
indicative of the fact that moremonitors are located in areas of high
population density.

3.3. Exposure metric evaluation of error type and amount

Having produced simulated true air pollution fields and, from
these fields, simulated monitor data and exposure metrics, we now
address the type and amount of error present in each of the metrics
for each pollutant. To assess the amount of numerical noise present,
10 independent sets of simulations of daily CO fields were produced.
Standard deviations of results using these 10 simulations, shown in
the figures and tables that follow, demonstrate that numerical noise
impacts are small relative measurement error impacts.

As an indicator of error type, we calculate population-weighted
Pearson correlation coefficients between error (ε ¼ Z e Z*) and Z*,
the “true” ambient concentration, and also between error and Z, the
“measured” ambient concentration; results are shown in Table 2 for
the four exposure metrics, as well as for the true population-
weighted average. A zero value of R (ε,Z*) suggests classical error,
i.e., error independent of the true value; a zero value of R (ε,Z)
suggests Berkson error, i.e., error independent of the measured
value.

The true population-weighted average, that is, the population-
weighted average of the true ambient concentration at all loca-
tions, has error of the Berkson type, as expected, as evidenced by its
near-zero values of R (ε,Z) (Table 2). This type of error would result
in no bias in the health effect estimate. However, because the
ambient concentration is measured imperfectly and at a limited
number of locations, the error type when using the monitor-based
metrics is not Berkson (i.e., R (ε,Z)s 0) or classical (i.e., R (ε,Z*)s 0).
The results in Table 2 suggest that errors associated with use of the
different monitor averages are similar and perhaps more Berkson
than classical, and errors associated with use of central monitor
data are more classical-like than errors associated with use of
monitor averages.

As an indicator of the amount of measurement error, we
calculate the population-weighted correlation between measured
exposure metric values and the true concentrations (Fig. 4). The
greater the measurement error, the lower this correlation and the
less representative of population exposure is the measured expo-
sure. In a time-series air pollution health effects study, a lower
correlation reduces the power to detect a given association. As
expected, primary pollutants such as CO, NO2, NOx, SO2 and EC have
lower correlations than secondary pollutants such as O3, SO

2�
4 , and

NO�
3 , indicative of greater measurement error. Also as expected,

central monitor data on average are less correlated with the true
ambient exposure than monitor average data. Interestingly, there is
little difference between using an unweighted average of monitor
data or using a population-weighted average, likely due to the fact
that there are few monitors for each pollutant and these tend to be
located in more populated areas. Finally, it is noted that the
population-weighted correlation between the true population-
weighted average and the true ambient concentration is only
slightly higher than the population-weighted correlation between
the monitor averages and the true ambient concentration. This
suggests that the amount of error is largely due to the use of a single
metric to characterize exposure for a population for which there is
spatial variability in the exposure. Nonetheless, while the amount
of error, as indicated by the population-weighted average correla-
tion between measured ambient concentration and true ambient
concentration (Fig. 4), is similar across monitor-based average
metrics, the type of error, as indicated by the population-weighted
correlation between error and the measured and true ambient
concentrations (Table 2), varies across metrics.



Fig. 3. Spatial correlogram from monitoring site data (black line represents regression model result) and from simulated time-series results (gray points).
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4. Discussion

Having used the simulation results to assess error type (Table 2)
and amount (Fig. 4) in four monitor-based exposure metrics,
potential impacts of measurement error on bias and reduced
statistical power in health risk estimates are discussed. Error type,
as indicated by the correlation between error and the measured
and true exposure (i.e., R (ε,Z) and R (ε,Z*), respectively), is expected
to affect the bias in the health risk estimate whereas error amount,
as indicated by a lack of correlation between the measured expo-
sure and the true exposure (i.e., R (Z,Z*) < 1), is expected to reduce
statistical power in the health risk estimate.

In previous work, we showed that the regressed slope, m, of
measurement error (Z � Z*) versus measurement (Z) is a good
predictor of bias in the health risk estimate, such that m is
approximately equal to the attenuation in risk ratio per unit where
the fractional attenuation is defined as one minus the ratio of the
health risk estimate based on measured exposure to the health risk
estimate based on true exposure (Goldman et al., 2011). Therefore,
we calculate a population-weighted value of m for each exposure
Table 1
Means and standard deviations over a six-year period of different exposure metrics calcul
population-weighted average (PWA), and area-weighted average (AWA) e and of the tru
concentration field. Standard deviations for results of 10 independent sets of CO simulat

Pollutant CM UA PWA

Mean St dev Mean St dev Mean

NO2 (ppb) 44.5 20.3 29.4 12.6 23.5
NOx (ppm) 0.117 0.118 0.065 0.057 0.046
CO (ppm) 1.58 � 0.02 1.31 � 0.06 1.07 � 0.02 0.69 � 0.04 0.75 �
SO2 (ppb) 14.0 22.8 12.8 12.3 10.3
O3 (ppb) 44.9 27.9 44.8 23.0 43.9
PM10 (mg/m3) 25.1 14.9 24.0 13.1 22.6
PM2.5 (mg/m3) 18.0 10.0 17.0 8.9 16.1
SO2�

4 (mg/m3) 5.35 5.29 5.03 4.67 4.93
NO�

3 (mg/m3) 1.34 1.56 1.15 1.23 1.11
NHþ

4 (mg/m3) 2.32 1.85 2.34 1.72 2.24
EC (mg/m3) 0.90 0.88 0.70 0.54 0.62
OC (mg/m3) 5.93 4.29 5.33 3.31 5.10
metric and each pollutant (Fig. 5). Risk ratio bias is predicted to be
higher for primary pollutants (CO, SO2, NO2, NOx, and EC) than for
secondary pollutants (O3, NO�

3 , SO2�
4 , and NHþ

4 ). Use of the
population-weighted average yields the least predicted bias (i.e., m
nearest zero). Predicted bias-to-null is greatest when central
monitor data are used as the exposure metric (i.e., largest m),
whereas a bias away from the null (i.e., negative m) is predicted for
use of the area-weighted average. The low variance of ambient
pollution in less densely populated regions of the study area results
in the low variation of the area-weighted average as compared to
that of the true population-weighted average; thus, an observed
association (i.e., observed change in health outcomes for a pop-
ulation per change in average exposure) will be greater (bias away
from null) if the area-weighted average is used due to the under-
estimated change in exposure. In Fig. 6, predicted bias, m, is shown
across all pollutants and exposure metrics to be approximated as
one minus the ratio of the true population-weighted average
standard deviation to the measured exposure time-series standard
deviation. These findings rely on the assumption that the appro-
priate ambient concentration to assign to each individual within
ated from simulated monitor data e central monitor (CM), unweighted average (UA),
e population-weighted average (TPWA) calculated from the simulated true ambient
ions are shown.

AWA TPWA

St dev Mean St dev Mean St dev

11.5 15.4 8.8 24.7 10.4
0.041 0.025 0.021 0.052 0.042

0.01 0.42 � 0.02 0.45 � 0.01 0.20 � 0.01 0.72 � 0.03 0.34 � 0.04
10.6 8.9 7.9 12.2 8.56
23.0 44.1 20.0 44.6 24.6
13.1 21.2 12.5 23.0 12.4
8.9 11.0 8.9 16.1 8.49
4.71 4.67 4.33 4.96 4.54
1.19 1.01 1.07 1.13 1.18
1.72 2.22 1.64 2.30 1.70
0.49 0.50 0.38 0.68 0.50
3.28 4.69 2.90 5.16 3.15



Table 2
Population-weighted correlations between measurement error and true values, R (ε,Z*), and between measurement error and measured values, R (ε,Z), where the true values,
Z* are the true ambient concentration fields and the measured values, Z, are the monitor-based metrics of central monitor (CM), unweighted average (UA), population-
weighted average (PWA), and area-weighted average (AWA) and the true population-weighted average (TPWA). Standard deviations of the correlations for 10 independent
sets of CO simulations are shown.

Pollutant CM UA PWA AWA TPWA

R (ε,Z*) R (ε,Z) R (ε,Z*) R (ε,Z) R (ε,Z*) R (ε,Z) R (ε,Z*) R (ε,Z) R (ε,Z*) R (ε,Z)

NO2 �0.46 0.61 �0.73 0.20 �0.78 0.14 �0.87 �0.04 �0.82 0.0017
NOx �0.11 0.81 �0.63 0.29 �0.81 0.02 �0.96 �0.31 �0.80 �0.00042
CO �0.09 � 0.02 0.86 � 0.02 �0.48 � 0.03 0.53 � 0.04 �0.78 � 0.02 0.17 � 0.05 �0.99 � 0.004 �0.21 � 0.04 �0.86 � 0.015 0.0016 � 0.000045
SO2 �0.40 0.74 �0.73 0.35 �0.79 0.25 �0.88 0.08 �0.86 �0.0003
O3 0.03 0.39 �0.2 0.11 �0.21 0.11 �0.25 0.07 �0.28 �0.0006
PM10 �0.32 0.40 �0.43 0.15 �0.44 0.14 �0.51 0.07 �0.51 0.00039
PM2.5 �0.10 0.41 �0.28 0.14 �0.28 0.14 �0.29 0.13 �0.38 0.00065
SO2�

4 �0.05 0.41 �0.27 0.10 �0.25 0.12 �0.45 �0.09 �0.34 �0.00035
NO�

3 0.08 0.58 �0.31 0.13 �0.38 0.05 �0.57 �0.16 �0.40 0.0022
NHþ

4 �0.37 0.28 �0.45 0.06 �0.45 0.07 �0.51 �0.02 �0.46 �0.00027
EC �0.28 0.64 �0.65 0.14 �0.71 0.06 �0.85 �0.17 �0.70 �0.00007
OC �0.18 0.54 �0.45 0.13 �0.46 0.12 �0.62 �0.07 �0.51 0.00007

G.T. Goldman et al. / Atmospheric Environment 57 (2012) 101e108 107
the study population is the true concentration at their place of
residence. To the extent that individuals move about the urban area
throughout the day this assumption will be violated, and hence
even perfect measurement of outdoor concentrations throughout
the urban area could lead to bias.

As evident from the lack of correlation between the true
ambient concentration fields and the true population-weighted
average concentration (Fig. 4), the amount of exposure measure-
ment error in this time-series study of acute health effects and
ambient air pollution is largely the result of spatial variability.
While error due to spatial variability alone is not expected to bias
the health risk estimate as it is of the Berkson type (Table 2), it will
result in loss of statistical power for assessing health risks.
Monitor-based exposure metrics, which are used in health studies
because the true population-weighted average is unknown, also
contain error associated with instrument imprecision; moreover,
the limited number and placement of monitors affects error type
which can result in substantial bias in risk ratio estimates.
Therefore, measurement error impacts need to be assessed in
total.

In this study of the Atlanta metropolitan area, health risks per
unit increase in pollutant concentration associated with primary air
pollutants are predicted to be attenuated by up to 80%when central
monitor data are used, and up to 50% when an unweighted average
across monitors is used. For secondary pollutants, attenuation is
less than 30% if central monitor data are used, and less than 10% if
Fig. 4. Population-weighted R2 values between the true ambient concentration field
and different exposure metrics, R2 (Z,Z*), where the exposure metrics are the monitor-
based metrics of central monitor (CM), unweighted average (UA), population-weighted
average (PWA) and area-weighted average (AWA), as well as the true population-
weighted average (TPWA). Standard deviations of 10 sets of CO simulations are shown.
an unweighted average across monitors is used. Use of an area-
weighted average, on the other hand, results in bias away from
the null. Use of a population-weighted average of monitor data is
predicted to result in the least bias because it provides the best
estimate of the true average exposure variance.

The ambient concentration variability modeled here is repre-
sentative of ‘regulatory ambient concentration’ variability, that is,
the variability expected of outdoor monitors sited to capture
ambient pollutant levels used for regulatory purposes. Microscale
variability in space and time, such as that which occurs near
roadways or near point sources, was not modeled; however, the
method presented here could be adapted for such analyses. A
second limitation of the current work is that a stationary isotropic
semivariance model was assumed here. While this simplification is
reasonable for many applications, true variance of pollutant
concentrations over space and time is likely to have a more
complex spatial and temporal variance structure.

This work demonstrates a method for simulating ambient air
pollutant concentrations over space and time which allows for
assessment of the amount and type of error present in time-series
health studies. Attenuation in risk ratio estimates is predicted for
use of different monitor-based exposure metrics. In ongoing work,
the simulations are being coupledwith health outcome simulations
for use in an epidemiologic model to assess the impact of
measurement error on risk estimates and significance levels and
evaluate the predictions presented here.
Fig. 5. Population-weighted slope of error versus measurement, m, for four exposure
metrics: central monitor (CM), unweighted average (UA), population-weighted average
(PWA), and area-weighted average (AWA). Error bars denote standard deviations from
10 sets of CO simulations.



Fig. 6. Predicted health estimate bias, m, as a function of the ratio of the standard
deviation of the true population-weighted average to that of the exposure metric,
sTPWA/s, for four metrics: central monitor (CM), unweighted average (UA), population-
weighted average (PWA), and area-weighted average (AWA). For each, points corre-
spond to 12 pollutants studied. Error bars denote standard deviations from 10 sets of
CO simulations. A one-to-one line is shown as reference.
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5. Conclusion

Geostatistical modeling of ambient air pollutant concentrations
over space and time can provide valuable insights on the amount
and type of measurement error present in time-series epidemio-
logic studies that use monitor-based exposure metrics. The amount
and type of measurement error are assessed through a geo-
statistical simulation approach rather than predicting ambient
pollutant fields directly, using methods such as emissions-based
modeling (e.g., CMAQ) or receptor-based interpolation, because
the latter produce ambient pollutant fields with too much spatial
autocorrelation. Reduced statistical power in assessments of health
risks is expected due to spatial variability, which affects the amount
of error. Bias in health risk estimates is expected due to the limited
number and placement of monitors, which affects the type of error.
Results suggest large differences in error amount and type across
pollutants and across pollutant metrics.
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