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Generalized additive models (GAMs) have become popular in the air pollution epi-
demiology literature. Two problems, recently surfaced, concern implementation of these
semiparametric models. The first problem, easily corrected, was laxity of the default conver-
gence criteria. The other, noted independently by Klein, Flanders, and Tolbert, and Ramsay,
Burnett, and Krewski concerned variance estimates produced by commercially available
software. In simulations, they were as much as 50% too small. We derive an expression for
a variance estimator for the parametric component of generalized additive models that can
include up to three smoothing splines, and show how the standard error (SE) estimated by
this method differs from the corresponding SE estimated with error in a study of air pollu-
tion and emergency room admissions for cardiorespiratory disease. The derivation is based
on asymptotic linearity. Using Monte Carlo experiments, we evaluated performance of the
estimator in finite samples. The estimator performed well in Monte Carlo experiments, in
the situations considered. However, more work is needed to address performance in ad-
ditional situations. Using data from our study of air pollution and cardiovascular disease,
the standard error estimated using the new method was about 10% to 20% larger than the
biased, commercially available standard error estimate.

Key Words: Epidemiologic methods; Generalized additive models; Semiparametric mod-
els; Variance.

1. INTRODUCTION

Generalized additive models (GAMs), a relatively new approach to nonparametric or
semiparametric smoothing and data analysis (Hastie and Tibshirani 1990), have become
widely used, particularly in time series analyses of acute health effects of air pollution.
In semiparametric models, the focus of this article, the mean of the dependent variable is
modeled as a parametric, linear function of some predictors plus a sum of functions of other
predictors, which in some applications may be confounders or nuisance factors. The form of
the function used for these other predictors is quite general, hence the term semiparametric.
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Schwartz proposed application of GAMS to time series studies assessing the association
of air pollution with mortality or other outcome measures in 1994 (Schwartz 1994a), and
initially presented GAM models as a sensitivity analysis augmenting a parametric approach
(Schwartz 1994b). In the intervening years, GAMs have gained widespread popularity for
use in these types of time series studies (e.g., Borja-Aburta et al. 1998; Michelozzi et al.
1998; Burnett et al. 1999; Conceicao et al. 2001; Moolgavkar 2000; Pope, Hill, and Villegas
1999; Samet et al. 2000).

GAMs can generally be fit using S-Plus or using PROC GAM in SAS (SAS 2001).
As discussed in the following, the models can be fit using a backfitting algorithm. Hastie
and Tibshirani (1990) discussed conditions that assure convergence of this approach. Two
problems have recently surfaced, however, concerning implementation of these models. The
first problem, easily corrected, was that the default convergence criteria were not adequately
strict (Dominici, McDermott, Zeger, and Samet 2002; Katsouyanni et al. 2002). The other
problem concerns the variance estimates produced by these programs for the parametric
component of the semiparametic GAMs. The problem was noted independently by Klein,
Flanders, and Tolbert (2002) and by Ramsay, Burnett, and Krewski (2003). They showed
that the variance estimates could be as much as 50% lower than the simulated variance in
some of the situations considered. This article addresses the second problem by deriving a
relatively easily implementable variance estimator for these models.

One of the specific problems that motivated this work are the numerous published or
ongoing studies of the associations between health outcomes, such as respiratory disease,
and air pollution (e.g., Borja-Aburta et al. 1998; Michelozzi et al. 1998; Burnett et al. 1999;
Conceicao et al. 2001; Moolgavkar 2000; Pope, Hill, and Villegas 1999; Samet et al. 2000;
Tolbert et al. 2000). Some of the studies published by others have used generalized additive
models to assess the association between air pollution and disease, but an appropriate
variance estimator has been unavailable.

The purpose of this article is three-fold. First, we present an asymptotic variance esti-
mator for the parametric component of GAM semiparametric models, providing an explicit
formulation for up to three splines. Second, we empirically evaluate the performance of
this estimator in finite samples using Monte Carlo simulations and base these simulations
on actual data from an ongoing study of air pollution. Finally, we apply the estimator to
an ongoing study of air pollution and emergency department visits. We illustrate that, in
this study, the variance we estimate differs from the corresponding estimates produced by
commercially available software.

2. METHODS

In the semiparametric situations of interest here, the generalized additive model is given
by:

E(Yi | Xi, Z1i, . . . , ZJi) = g–1(ηi) = g−1(α+ βXi + f1(Z1i)

+ · · · + fJ(ZJi)), i = 1, 2, . . . , n, (2.1)
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where Yi is the number of events for the ith observation; g is a strictly monotone link

function; ηi = α + βXi + f1(Z1i) + · · · + fJ(ZJi); β is (p × 1) parameter of interest

to be estimated; Xi is a (1 × p) vector of predictors; Zji is the value of the jth covariate

for the ith observation; and fj(Zji) is an arbitrary (smoothing) function with continuous

second derivatives, for j = 1 to J . (Here, we limit consideration to J ≤ 3, but results

should extend in an analogous way for J > 3.) We assume here that the Yi given Xi, and

Z1i are independent with a Poisson distribution whose mean is given by Equation (2.1).

The Poisson distribution is typically used in applications in air pollution epidemiology.

However, results hold with obvious modifications for other distributions in the exponential

family (Hastie and Tibshirani 1990).

We derive an explicit expression for the variance estimator for a class of estimators

of β in the model given by Equation (2.1), estimated by penalized likelihood (Hastie and

Tibshirani 1990). That is, one maximizes

j(β, f) = l(η;Y ) − 1
2

3∑
j=1

λj

∫ {
f ′′

j (z)
}2
dz, (2.2)

over η and over fj in the class of functions with continuous second derivatives f ′′
j . Here, the

λj are smoothing parameters which must be specified, or estimated from the data (Hastie

and Tibshirani 1990). The functions that maximize Equation (2.2), are cubic smoothing

splines (Hastie and Tibshirani 1990). An equivalent problem (Hastie and Tibshirani 1990)

is to maximize

l(η;Y ) − 1
2

∑
λjf

t
jKjfj , (2.3)

where Kj are the n × n quadratic penalty matrices given, for example, by Buja, Hastie,

and Tibshirani (1989) for j = 1, 2, 3; f j are the n × 1 vectors fj(Zi), i = 1, 2, . . . n,

j = 1, 2, 3; and the superscript “t” denotes a matrix transpose. Using [A]− to denote the

generalized inverse, the model can be fit using a local scoring procedure that incorporates

the weighted smoothing matrices Sj = (A+Kj)−A in a backfitting algorithm as described

by Hastie and Tibshirani (1990). We assume sufficient regularity and choice of smoothing

parameters so that the local scoring procedure and the backfitting algorithm that it includes

converge in probability as the sample size increases. In particular, β̂i → βo for each i and

f̂1,i → f1,0, f̂2,i → f2,0, and f̂3,i → f3,0, in probability where β̂i−1, f̂1,i, f̂2,i, f̂3,i are the

parameter estimates at step i; and βo, f1,0, f2,0, and f3,0 are the corresponding true values.

Our approach to estimating the large sample variance of β̂ is straightforward: we find

a large sample, approximate, linear expression for β̂ in terms of Y,E(Y ), and known (or

consistently estimable) functions.
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By arguments presented by Hastie and Tibshirani (1990), the one-step updates for the

Newton-Raphson step of the fitting algorithm at the ith step are given by:

Xβ̂i = X
{
XtA(I − S2)X

}−1
XtA

(
Zc − f̂1,i−1 − f̂2,i−1 − f̂3,i−1

)
, (2.4)

�f 1,i
= S1

(
Zc −Xβ̂ − f̂2,i−1 − f̂3,i−1

)
, (2.5)

�f 2,i
= S2

(
Zc −Xβ̂ − f̂1,i−1 − f̂3,i−1

)
, (2.6)

and

�f 3,i
= S3

(
Zc −Xβ̂ − f̂1,i−1 − f̂2,i−1

)
, (2.7)

where A is the n × n matrix ∂2l/∂η∂ηt; l is the Poisson log-likelihood; Zc is the n × 1

vector of linearized dependent variables Zc = ηc +A−1u; and where u is the n× 1 vector

∂l/∂ηc, all evaluated using the current estimates of β, f1, f2, f3, and η.

Equations (2.4)–(2.7) are a system of four equations in four unknowns (vectors). A

straightforward, though tedious derivation yields the following closed form estimate for the

Newton-Raphson update of β̂i:

β̂i =
[
XtA(I–V1–V2 − V3)X

]− (
XtA (I–V1–V2 − V3)

)
Zc, (2.8)

where

V1 =
[
I − S1S3–S1 (I − S3) (I − S2S3)− S2 (I − S3)

]−

S1

(
I − S3− (I − S3)

[
I − S2S)3

]−
S2 (I − S3)

)
V2 =

[
I − S2S1–S2 (I − S1) (I − S3S1)− S3 (I − S1)

]−

S2
(
I − S1 − (I − S1) [I − S3S1]− S3 (I − S1)

)
V3 =

[
I − S3S2 − S3 (I − S2) [I − S1S2]−

S1 (I − S2)]− S3
(
I − S2 − (I − S2) [I − S1S2]− S1 (I − S2)

)
,

and Zc is expressed in terms of β̂i−1, f̂1,i, f̂2,i, f̂3,i, and η.

Equation (2.8) is an explicit form for multiple smoothing splines (in terms of the

individual smoothers S1, S2, and S3), of the result given by Hastie and Tibshirani (1990) of

the form: β̂ = [XtA(I−S)X]−(XtA(I−S))Zc. By taking S = (I−V1 −V2 −V3), one

sees that the one-step update for β in Equation (2.8) is consistent with Hastie and Tibshirani

(1990) who gave explicit results for a single spline, but noted that the same form of the

equation would hold for multiple splines. An explicit form for multiple smoothing splines

(in terms of the individual smoothers) can be obtained by applying the recursive equation

described in the Appendix.

Because the estimates converge in probability by assumption, we can imagine starting

the process at the true value ηt. Then, with a large sample size, the one-step estimator β̂ is
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given by:

β̂ =
[
XtA (I − V1 − V2 − V3)X

]− (
XtA (I − V1 − V2 − V3)

)
Zt, (2.9)

whereZt = ηt +A−1u—all parameters and expressions now evaluated at their true values.
Thus, following the arguments of by McCullagh and Nelder (1989), the one-step estimator
is a linear function of the observations, and subsequent updates should be negligible for a
large sample size (asymptotically).

Thus, the asymptotic variance is given by:

var(β̂) ≈ W ∗ var(ZT ) ∗W t

where
W = W =

[
XtA (I − V1 − V2 − V3)X

]− (
XtA (I − V1 − V2 − V3)

)
.

(2.10)

Furthermore, we can estimate var(ZT ) byA−1 andW , with all parameters evaluated at the
estimated values.

3. SIMULATIONS

To evaluate the performance of this variance estimator (Equation (2.10)) in finite sample
sizes, we performed Monte Carlo simulations in two different sets of situations—one based
on real data, the other using hypothetical data. In the first situation, we used data from our
ongoing study of emergency department (ED) visits for cardiorespiratory diseases and air
pollution in Atlanta (Tolbert et al. 2000). The outcome variable was either daily ED visits
for all types of cardiovascular disease (CVD) or for asthma from August 1, 1998, to July 31,
1999. We analyzed data for daily nitrogen dioxide (NO2) and separately for daily particulate
matter (PM10), resulting in a total of four experimental conditions based on real data (Table
1). We controlled for other ED visits, temperature, dew point, day of the week, and time
using smoothing splines in a GAM model:

E
(
Yi | Xi, Z1i, . . . , ZJi

)
= exp (α+ βXi + f1 (Z1i) + f2 (Z2i) + f3 (Z3i)) , for i = 1, 2, . . . , n, (3.1)

where Xt
i = (air pollutant on day i, all ED visits on day i, ITue, IWed, IThu, IFri, ISat, ISun),

ITue − ISun are indicators for day i; Z1i = number of days since the start of the study, Z2i =
the mean temperature for day i, and Z3i = the mean dew point on day i. To avoid ties and
division by 0, we added a small random number (mean 0, variance .01) to each temperature
and dew point. We then fit this GAM to the observed data, using 14 degrees of freedom for
the time spline, corresponding approximately to monthly knots; and, 5 each for temperature
and dew point splines. (We used 7 degrees of freedom for the CVD outcome, corresponding
approximately to seasonal knots). We then saved these model predicted values, and used
them in the simulations as the expected values, and generated independently for each day,
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Table 1. Monte Carlo Simulation Results, Expected Values Calculated from Actual ED visits and Air
Pollutants, in Atlanta

Coverage d Coverage e

Outcome Pollutant True β1
b SE (β̂) c ŜE − old d 95% CI − old ŜE − new e 95% CI − new

CVD PM10 .011 .0124 .0111 90.7% .0123 95.3%
CVD NO2 .006 .0336 .0313 93.4% .0345 95.5%

Asthma PM10 .040 .0219 .0187 89.4% .0226 95.7%
Asthma NO2 .014 .0378 .0314 90.2% .0383 94.5%

a CVD (Asthma): Emergency room visits for cardiovascular disease (asthma), used to determine expected daily counts
b Value of β1 used to determine expected value of Y , for each set of 1,000 Monte Carlo experiments.
c Standard error of β̂1 for each set of 1,000 experiments.
d Mean estimated standard error, and coverage of 95% CI produced by SAS PROC GAM (3.1); 95% CI calculated as
the point estimate +/− 1.96 times the estimated standard error.
e Mean estimated standard error, and coverage of 95% CI based on new variance estimator; 95% CI calculated as
the point estimate +/− 1.96 times the estimated standard error.

Poisson random variables. We analyzed this randomly generated series, by fitting the GAM
model (Equation (3.1)), and saving the standard error generated by SAS and that calculated
using Equation (2.10). We repeated this process 1,000 times for each outcome-air pollutant
combination. We focus on β1, the log rate ratio for the association of ED visits with the air
pollutant.

The second set of situations used was similar to that just described, except that hypo-
thetical, simulated data replaced the observed data used above to generate the daily expected
counts of ED visits. Specifically, for i = 1, 2, . . . 200 we generated (hypothetical) exposure
and covariates: εi, x2,i, t2,i, t3,i as independent, standard Gaussian variables;x1,i = εi+x2,i

and t1,i = i. We then defined the expected value of Yi as:

E
(
Yi | x1i, x2i, t1i, t2i, t2i

)
= exp

(
β0 + β1x1 − β2x2 +

1
2

cos(t1/5) +
1
2

sin(t2/5) + (t33 − t23 + 3/4t3)/200

)
.

(3.2)

We chose β0 = 3, 4, or 5 and β1 = .0 or .04, and β2 = .1, resulting in a total of six additional
experimental conditions (Table 2). We randomly generated 200 preliminary values of Yi

as independent Poisson variables with mean given by Equation (3.2). So that the model
would be correctly specified, we then fit a GAM with a smoothing splines using six degrees
of freedom each for t1, t2, and t3 to these preliminary observations and used the model-
predicted values as the expected values to generate the 200 observations Yi used for each
Monte Carlo experiment. We adjusted the smoothing parameters (λ1, λ2, λ3) to correspond
to the six degrees of freedom that we specified for use in PROC GAM. (That is, we retained
the same x1, x2, t1, t2, and t3 for each experiment, but used the predicted values from
the model fit to the preliminary data as the expected values for all 1,000 Monte Carlo
experiments in each set. This procedure should ensure that the expected values were in the
space of possible fits. Because of this process, the “true value” of β1 for each simulation
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Table 2. Monte Carlo Simulation Results, Expected Values Calculated Hypothetical Data

Mean of Coverage c Coverage d

Experiment Expected Y True β1
a SE (β̂) b ŜE − old c 95% CI − old ŜE − new d 95% CI − new

1 21.9 .0010 .0158 .0123 87.8% .0152 93.3%
2 51.2 −.0001 .0096 .0073 85.7% .0096 95.0%
3 157 .0050 .0057 .0042 84.6% .0056 94.7%
4 22.3 .049 .0161 .0125 87.6% .0163 95.3%
5 59.9 .064 .0098 .0076 89.1% .0099 95.0%
6 165 .065 .0058 .0046 88.6% .0060 95.3%

a Value of β1 used for each set of 1,000 Monte Carlo experiments.
b Standard error of β̂1 for each set of 1,000 experiments.
c Mean estimated standard error, and coverage of 95% CI produced by SAS PROC GAM (3.1); 95% CI calculated as
the point estimate +/− 1.96 times the estimated standard error.
d Mean estimated standard error, and coverage of 95% CI based on new variance estimator; 95% CI calculated as
the point estimate +/− 1.96 times the estimated standard error.

set was equal to the initial estimate, and differed slightly from 0 or .04 depending on the
baseline estimates.) Using PROC GAM in SAS (2001), we estimated β1 1,000 times for
each randomly generated series. We calculated the standard error of the estimated β1’s,
and compared this standard error with the estimated standard errors produced by the SAS
program, and with the new standard error estimate in Equation (2.10).

In the third set of experiments (Table 3), we considered estimation with a smaller
number of time points (either 100 or 50), and chose either 6, 4, or 2 degrees of freedom
for the smoothing splines. Otherwise, this last set of experiments is like the second set,
specifically experiment 6. In two experiments (12 and 14), we used two alternative types of
error structures, the normal and the binomial distributions.

4. RESULTS

Results of the first set of Monte Carlo experiments—based on the actual observations
of ED visits and air pollutants in Atlanta (situation 1)—are shown in Table 1. These results
illustrate several points. First, they illustrate a tendency for under-estimation of the standard
errors by the SAS procedure PROC GAM (3.1). For example, the “old” standard estimate
for β1 (which relates emergency room visits to PM10) averaged about .0111, compared to
.0123 ,the sample standard error of estimated β1’s. On the other hand, the new standard
error estimator was about the same, on average, as the sample standard error. A similar
pattern held for the other pollutant, and when asthma emergency room visits were used
to determine the expected values. The second point, related to the first, is that coverage
of the 95% confidence limits based on the “old” variance estimates was consistently less
than the nominal value of 95%. The coverage in these experiments was as low as 89% in
one instance. In contrast, the coverage of confidence intervals based on the new variance
estimator was close to the nominal level.

Results of the second set of Monte Carlo experiments—based on hypothetical data
(situation 2)—are shown in Table 2. These results further support these same patterns.
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Table 3. Monte Carlo Simulation Results, Expected Values Calculated Hypothetical Data

Experiment / Coverage c Coverage d

Distribution N, df True β1
a SE (β̂) b ŜE − oldc 95% CI − old ŜE − new d 95% CI − new

8†/ Poisson 100, 6 .031 .0100 .0076 89.4% .0100 95.1%
9 /Poisson 100, 4 .044 .0083 .0072 82.4% .0085 93.4%

10/Poisson 50, 6 .031 .0134 .0072 71.6% .0133 94.4%
11/Poisson 50, 4 .056 .0121 .0111 92.2% .0119 94.8%
12/Poisson 50, 2 .076 .0119 .0112 93.3% .0119 94.9%
13/Normal 100, 2 −.038 .0920 .0904 94.7% .0913 94.9%
14/Binomial 100, 4 .037 .0116 .0088 79.9% .0113 94.4%

† Each experiment is like Experiment 6 in Table 2, except for: the error distribution, the number of time points (N), and
the degrees of freedom (df).
a Value of β1 used for each set of 1,000 Monte Carlo experiments.
b Standard error of β̂1 for each set of 1,000 experiments.
c Mean estimated standard error, and coverage of 95% CI produced by SAS PROC GAM (3.1); 95% CI calculated as
the point estimate +/− 1.96 times the estimated standard error.
d Mean estimated standard error, and coverage of 95% CI based on new variance estimator; 95% CI calculated as
the point estimate +/− 1.96 times the estimated standard error.

Specifically, the old standard error estimates are consistently lower than the sample standard
error of the estimated β’s, and the coverage of the associated confidence intervals was
consistently lower than the nominal 95% level.

In the third set of Monte Carlos experiments, the new estimator of the standard error
yielded results close to the simulated standard deviation of the estimatedβ, when we reduced
the number of time points from 100 as in earlier experiments to either 100 or 500 in these.
In a few experiments with the lower number of time points and if we used more than 2–4
degrees of freedom for each spline, the average β̂ differed slightly, but significantly from
the true β (data not shown).

5. EXAMPLE: APPLICATION OF NEW METHOD

We applied the estimator to data from an ongoing study of air pollution and ED visits for
cardiorespiratory diseases in Atlanta (Tolbert et al. 2000), the data used here from August
1, 1998, to July 31, 1999. Our rationale for using GAMs reflects their inherent appeal due
in part to the semiparametric nature of the time dependency and consequent relaxation
of assumptions, and the frequent use of these models in the air pollution literature. We
calculated the standard error for parameter estimates from a semiparametic generalized
additive model, with the Poisson distribution and log link, executed using PROC GAM in
SAS, and compared this estimate to the standard error estimated with our new method. We
chose the degrees of freedom for the splines to be similar to those we used in parametric
Poisson regression; Use of generalized cross-validation, the default approach in SAS (SAS
Institute 2001), suggested slightly fewer degrees of freedom, but led to the same results. We
evaluated the association between nitrogen dioxide (NO2) and ER visits for all CVD, using
the three-day moving average of NO2, in part due to a priori interest, and controlling for
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time, for mean temperature, and for dew point using cubic splines with 7, 7, and 5 degrees of
freedom, respectively. We also controlled for day of the week using indicator variables and
the number of emergency room visits for noncardiovascular disease. To simplify calculations
by avoiding ties, we added a small random number to the temperature and dew point (which
did not change the estimate of the parameter or its standard error). We found little evidence
of autocorrelation of residuals (Durbin-Watson = 2.155, p = .40 by simulation). In the
model for CVD visits, the parameter estimate for NO2 was .020 (rate ratio = 1.020) and the
standard error estimated in PROC GAM was .018. The standard error estimated using the
new estimator was .020, about 10% larger than that obtained using SAS. This difference
is important for evaluating the stability of results, for interval estimation, and would affect
any meta-analysis that used this result.

6. DISCUSSION

Our results provide evidence that the variance estimator in Equation (2.10) works well
with finite samples—at least for the situations considered. More work, however, needs to
be done to verify that its perfomance remains good under other conditions. Our results also
further support and are consistent with the work of Klein et al. (2002) and of Ramsey et al.
(2003) who showed that the variance estimation procedures used in commercially available
programs could be inadequate. These tendencies of commercial software to underestimate
variances have been attributed to concurvity in the data (Ramsay et al. 2003), and to in-
adequate linear approximations used for the smooth functions (Dominici, McDermott, and
Hastie 2003). Recognition of these and other problems has motivated reanalyses of at least
20 studies of air pollution and health effects with the overall conclusion that use of GAMs,
implemented with the faulty variance estimator, was associated with smaller standard errors
than use of generalized linear models (Health Effects Institute 2003).

We have presented and evaluated a variance estimator for up to three splines, extending
the previous work of Hastie and Tibshirani (1990) who presented explicit results for a single
spline, and of Flanders, Klein, and Tolbert (2003). Implementation of this approach for more
splines is straightforward; for example, perhaps using the recursive equations given, but as
the number of splines increases, of course, computations become more and more onerous.
Our result also applies directly to the case of only one or two splines by simply taking S1

and/or S2 equal to 0.
Our arguments depend heavily on the assumption of consistency of β and η, and

convergence of the backfitting algorithm as argued by Hastie and Tibshirani (1990). We
have not investigated performance of the variance estimator when that assumption might
fail. Conditions other than those noted by Hastie and Tibshirani (1990) may also lead to
consistency. In particular, we might also expect consistency if the number of (say, time)
points remains fixed, but the expected mean increases for each point, other parameters
remain constant, and the model is correctly specified with judicious choice of degrees of
freedom for the splines. More work on consistency, not the focus of this article, remains. For
example, the application to time series should probably be based on futher specification of
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assumptions because, as the number of time points increases, the complexity and in general
the number of parameters in the underlying model could potentially increase proportionately.
Yet additional work could allow for potential serial autocorrelation, although our example
did not suggest important residual autocorrelation. We also note that after development
of the expression for variance (Flanders, Klein, and Tolbert 2002, Flanders et al. 2003;
equation 10), we became aware that another estimator was in the process of being developed
to correct the errors in the commercially available software (Dominici, McDermott, and
Hastie 2002). Comparison now shows our formulation to be equivalent to theirs (Dominici,
McDermott, and Hastie 2003): one simply substitutes a combined smoothing matrix, S,
in place of (I–V1–V2 − V3) in the expression for W in Equation (2.10). Our independent
derivation, results of our empiric evaluations and our example show that the commercially
available estimates can be too small, and that the alternative estimator has good finite sample
properties, at least in the situations considered. In particular, our work provides empiric
evidence, complimenting work of Dominici et al. (2003), that use of Equation (2.10) for
analysis of real data can lead to confidence limits with appropriate coverage properties,
again at least for the situations considered.

Some investigators in air pollution epidemiology have so far avoided use of GAMs as
the primary method of analysis because of concerns about the variance estimator (Klein
et al. 2002), choosing instead to use Poisson regression models with splines for time with
many knots and chosen, in part, based on a priori considerations. The Monte Carlo exper-
iments suggest—in agreement with simulations of Klein et al. (2002) and of Ramsey et
al (2003)—that the standard error provided by commercially available software can have
substantial error. The estimator evaluated here performed nicely with finite samples in sim-
ulations completed so far. Importantly, as illustrated in our simulations, the correction has
a substantial effect on the estimated standard errors and confidence interval when applied
to data based on an ongoing study in Atlanta (Tolbert et al. 2000), and on hypothetical data.
This underestimation is further illustrated in the example, using data from our ongoing study
of air pollution in Atlanta. The simulations suggest that, at least for situations like those
considered here, the assumptions may be adequately achieved and that the new estimator
can perform well in such real situations. As noted by Lumley and Sheppard (2003), major
challenges air polllution epidemiology remain, particularly including model selection in the
face of measurement error and confounding.

APPENDIX

Equations for β̂ and var(β̂) in terms of the individual smoothing matrices like Equations
(2.8) and (2.10), but that apply with any number of splines can be obtained recursively as
follows. Start with expressions for β̂ (such as Equation (2.8)) and var(β̂) (i.e., Equation
(2.10)) that apply with J − 1 splines, in terms of smoothing matrices S1, S2, . . . , SJ−1,
matrix A (the n × n matrix ∂2l/∂ ∂η∂ηt, as in Equation (2.8)). Expressions for β̂ and
var(β̂) that apply with one additional spline (say, SJ ) is obtained by substituting: (I −
SiSJ)−Si(I −SJ) in place of Si for i = 1, 2, . . . , J − 1 and A(I −SJ) for A throughout.
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This recursive approach is justified by writing the system of J + 1 linear Equations in
unknowns β̂ and �f 1 . . . ,

�fJ , comparable to Equations (2.4)–(2.7); eliminating �fJ ; and
rearranging to obtain a reduced system of J equations in J unknowns. The new system of
equations has the same form as the original, provided we identify (I − SiSJ)−Si(I − SJ)
with Si for i = 1, 2, . . . , J − 1 and A(I − SJ) with A throughout.
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