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Background: Residual confounding is challenging to detect. Re-
cently, we described a method for detecting confounding and justi-
fied it primarily for time-series studies. The method depends on an
indicator with 2 key characteristics: (1) it is conditionally indepen-
dent (given measured exposures and covariates) of the outcome, in
the absence of confounding, misspecification, and measurement
errors; and (2) like the exposure, it is associated with confounders,
possibly unmeasured. We proposed using future exposure levels as
the indicator to detect residual confounding. This choice seems
natural for time-series studies because future exposure cannot have
caused the event, yet they could be spuriously related to it. A related
question addressed here is whether an analogous indicator can be
used to identify residual confounding in a study based on spatial,
rather than temporal, contrasts.
Methods: Using directed acyclic graphs, we show that future air
pollution levels may have the characteristics appropriate for an
indicator of residual confounding in spatial studies of environmental
exposures. We empirically evaluate performance for spatial studies
using simulations.
Results: In simulations based on a spatial study of ambient air
pollution levels and birth weight in Atlanta, and using ambient air
pollution 1 year after conception as the indicator, we were able to
detect residual confounding. The discriminatory ability approached
100% for some factors intentionally omitted from the model, but
was very weak for others.
Conclusion: The simulations illustrate that an indicator based on
future exposures can have excellent ability to detect residual con-

founding in spatial studies, although performance varied by
situation.

(Epidemiology 2011;22: 823–826)

Residual confounding is difficult to detect, in part, because
assessment must be based on causal considerations. It is

not enough to model statistical associations accurately, as
associations may not mirror causal patterns.1

We have previously proposed a method for detecting
residual confounding or other forms of model misspecifica-
tion based. on the tenet that a cause must precede its effect.2,3

The method uses a variable with 2 key characteristics. The
variable should be independent of disease, absent confound-
ing, or other misspecification, and it should be associated
with the exposure and confounding covariates. Emphasizing
time-series studies, we previously argued that future levels of
many environmental exposures can often have the needed char-
acteristics: future exposures cannot have caused past disease,
and so an association with prior disease can be spurious.

Using future exposure variables in time-series studies
to detect temporal confounding is intuitively attractive—
future exposures cannot have caused prior health events and
yet could be spuriously related to the event. A related ques-
tion is whether an analogous variable can be used in spatial
studies to identify residual confounding, such as in studies
where region-specific pollutant concentrations are correlated
with region-specific disease rates. Risk factors such as smok-
ing could covary with pollutant concentrations across regions
and thus lead to spatial confounding. Although the nature of
confounding differs between spatial and time-series studies,4

the previously proposed method for detecting residual con-
founding can be similarly applied in spatial studies. We
present simulation results that evaluate the method’s perfor-
mance and discuss its strengths and weaknesses.

METHODS
To illustrate the approach for spatial studies, we con-

sider a study whose objective is to assess the association of
area-specific air pollution levels (eg, ambient ozone, AP0 in
the directed acyclic graph5,6 in Fig. 1) with the birth weight
of newborn infants in the same area (D1 in Fig. 1). An
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important presumption is that birth weight (D1) does not
affect future pollution levels (AP2), reflected by the absence
of an arrow from D1 to AP2. Furthermore, spatial factors that
affect health and are associated with future pollution levels (eg,
poverty) should often also be associated with earlier pollutant
levels, illustrated by U0 (Fig. 1). If these relationships hold, we
argue in the eAppendix 1 (http://links.lww.com/EDE/A501)—
and previously for time-series studies3—that, conditional on
AP0, future air pollutant levels should not be associated with
disease in the absence of confounding (Fig. 2), but associated
in its presence (Fig. 1). In this case, future pollutant levels
have key characteristics needed for an indicator of unmea-
sured confounding2,3 and can be used to detect it or other
model misspecification.

The model used to analyze the study should include the
exposure of interest (air pollutant level prior to outcome
occurrence, APa,i) and relevant covariates. Equation (1) illus-
trates a linear form:

E(Ya,i) � � � �*APa,i � �*covariatesa,i (1)

for infant i in area a, E(Ya,i) is the expected birth weight and
APa,i is a relevant, prenatal air pollutant level.

To use future area-specific air pollutant levels as an
indicator, we also fit the same model that now also includes

the indicator variable (area-specific, pollutant level measured
after infant i’s birth, say APa,i

f):

E(Ya,i) � � � �*APa,i � �*covariatesa,t � �*APa,i
f

(2)

If residual confounding and model misspecification are
absent and the assumed causal relationships are adequate
approximations, APa,i

f should be unassociated with Ya,i after
adjustment for covariates. An association between APa

f and
the outcome (� � 0) suggests residual confounding or other
model misspecification. Thus, we use the statistic I to test for
residual confounding:

I � �̂/�̂f (3)

where �̂ is the estimated slope and �̂ its standard error. Under
the null hypothesis of no model misspecification, I is approx-
imately normally distributed.

Simulations
We assess the indicator’s ability to detect residual

confounding using data from a spatial study of ambient air
pollution and birth weight in Atlanta. Use of simulations
allows us to specify the “true” causal relationships; using
estimated parameters to calculate the true, expected birth
weights makes the simulations realistic. We consider 2 am-
bient pollutants commonly assessed in the birth outcomes
literature, PM2.5 (�g/m3) and NO2 (parts per billion). We
assess relationships between pollutant levels during the first
month of pregnancy and birth weight of full-term infants. Zip
code-specific levels for each pollutant were a weighted aver-
age estimate.7

Each full-term infant (37–43 weeks’ gestation) was
assigned to the Zip code of the mother’s residence. We
calculated the ambient air pollution level for each infant’s Zip
code, averaged over the 4 weeks after the estimated concep-
tion date. Modeled covariates included gestational age
(weekly indicators); maternal education, age (linear spline
with 3 knots), tobacco use (yes/no), Medicaid (yes/no), and
race/ethnicity (non-Hispanic white, African-American, and
Hispanic); and the Zip code’s percent of population below the
poverty line. We included indicators for date-of-conception
in 2-week intervals, so comparisons were spatial.

We also calculated the air pollution level for each Zip
code averaged over the 4-week period beginning 1 year after
the conception date. Because these exposures occurred after
birth (8� weeks), they cannot have affected birth weight.
Future levels (APi,a

f) are included only in models that also
include pollutant levels prior to birth and a subset of the
covariates.

We used the model in Eq. (1), with Zip code as the area.
We fit this model (once) to the observed birth weights to
obtain model-predicted weights for each infant, and then
treated the model-predicted weights as the true expected

FIGURE 1. Directed acyclic graph showing basic causal rela-
tionships among exposure (air pollution, AP0), the health
outcome (birth weight, D1), an unmeasured covariate (U0),
and future air pollution (AP2). Confounding by Ui0 is present,
indicated by the backdoor path from AP0 to D1.

FIGURE 2. Directed acyclic graph showing basic causal rela-
tionships among exposure (air pollution, AP0), the health
outcome (birth weight, D1), an unmeasured covariate (U0),
and future air pollution (AP2). Confounding by U1 is absent, as
there is no open backdoor path from AP0 to D1.
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values in the simulations. To assess the indicator’s ability to
detect confounding, we first generated a birth weight for each
infant, using the true predicted values and adding a random
Gaussian error. We fit the correct model including the indi-
cator, and then, to simulate confounding, we fit a misspecified
model (incorrectly omitting a factor) along with the indicator.
In most scenarios, we omitted an actual, measured factor (eg,
smoking). In a few situations, we created 3 hypothetical
factors and included them when fitting the model to obtain
alternative true predicted weights. We subsequently omitted
one of the variables to simulate additional patterns of con-
founding. We calculated the proportion of simulations in
which I exceeded 1.96 in absolute value, rejecting the null
hypothesis of no confounding. We also calculated the area
under the receiver operating curve as a measure of discrim-
inatory ability. We include a program for simulating the
power to detect model misspecification due to omission of a
confounder (eAppendix 2, http://links.lww.com/EDE/A504).
The user can either specify parameters to generate data
hypothetically, or use actual observations to fit a model and
base simulations on the fitted parameters.

RESULTS
PM2.5 was negatively associated with birth weight in these

spatial analyses (Table 1, scenario 1; �̂ � 20.6/g/10 �g/m3).
Compared with the true model that generated the data, improp-
erly omitting various variables led to varying degrees of simu-
lated confounding. �̂ changed by about 70% when age was
omitted and by 700% when race was omitted (Table 1, column
3). The indicator’s ability to detect simulated confounding also
varied substantially. For the situations considered, the indicator’s
ability was weak when confounding was weak-to-modest, for
example, when age or tobacco was omitted (AUC � 0.51–0.56,
Table 1, column 5). However, this was sample-size dependent:
with quadrupling of the sample size, the ability to detect con-
founding (created when the poverty variable is incorrectly omit-
ted) increased from 19% (Table 1) to �50% (data not shown).
With stronger degrees of simulated confounding, the indicator
consistently signaled that confounding might be a problem (eg,
scenarios 5 and 6; AUC � 0.93–1.00, Table 1).

Simulation results were similar for NO2 (Table 2) and
also when we considered confounding by the hypothetical

TABLE 1. Simulation Results

Scenarios
Median

�a (SE (�̂))
Percent

Bias
Median

(I)

Proportion of Simulations in
Which Null Is Rejected

(Ho: �f � 0) AUC

1 (Correct model)b �20.6 (17.2) — �0.01 0.050 0.50

2 (Drop tobacco) 0.0 (17.3) 100 0.64 0.086 0.56

3 (Drop age) �5.8 (17.3) 72 0.19 0.042 0.51

4 (Drop percent below poverty line) �50.6 (17.1) 146 �1.06 0.184 0.65

5 (Drop Medicaid, tobacco, age, education) 61.4 (17.4) 398 1.85 1.00 0.93

6 (Drop race) �168 (17.3) 716 �5.48 1.00 1.00

True (connect) model stipulates an effect of exposure (PM2.5) on birth weight.
a�̂ is the estimated change in birth weight (g), per 10 �g/m3 change in PM2.5.
bCorrect model includes indicator for estimated date of conception (2-week intervals), gestational age (weeks), maternal tobacco use, education,

age, and Medicaid status, and Zip code-specific percent below poverty line and PM2.5 (see text).
AUC indicates the area under the receiver operating curve; it is 0.5 in the absence of discriminatory ability and 1.0 for perfect discriminatory

ability.

TABLE 2. Simulation Results

Scenario
Median

�a (SE (�̂))
Percent

Bias
Median

(I)

Proportion of Simulations in
Which Null Is Rejected

(Ho: �f � 0) AUC

1 (Correct model)b �12.1 (8.0) — �0.01 0.052 0.50

2 (Drop tobacco) �6.90 (8.0) 44 0.28 0.054 0.51

3 (Drop age) �8.9 (8.0) 26 0.07 0.048 0.50

4 (Drop percent below poverty line) �18.4 (8.0) 52 �0.55 0.106 0.55

5 (Drop Medicaid, tobacco, age, education) 7.9 (8.2) 165 1.27 0.224 0.68

6 (Drop race) �48.2 (8.0) 298 2.00 0.521 0.86

True model (correct) stipulates an effect of exposure (NO2) on birth weight.
a�̂ is the estimated change in birth weight (g), per 20 ppb change in NO2.
bCorrect model includes indicator for estimated date of conception (2-week intervals), gestation age (weeks), maternal tobacco use, education,

age, and Medicaid status, and Zip code-specific percent below poverty line and NO2 (see text).
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factors (Table 3). Although the ability to detect confounding
again varied, the indicator consistently signaled possible
residual confounding with these sample sizes when the de-
gree of simulated confounding was moderate-to-strong (eg,
when race or several variables were omitted �Table 2, sce-
narios 5 and 6�).

DISCUSSION
We extend a method to detect important residual con-

founding2,3 by describing and evaluating the method for
spatial studies. The ability to detect residual confounding was
excellent for some scenarios, such as when race was inten-
tionally omitted. As with any statistical technique, the ability
to detect residual confounding improves with stronger con-
founding and larger sample size. We omitted measured vari-
ables, such as race, merely to illustrate possible scenarios
based on relationships of real factors. In actual applications,
the factor creating confounding, if any, could be completely
unrecognized and unmeasured. Although few researchers
would omit race from a study of air pollution and birth
weight, an investigator could conceivably be unaware of, and
therefore omit, some other factor that affected air pollution
and birth weight in a manner similar to race.

The validity of this approach depends on the assump-
tions. False-positive indications could arise if, for example, a
factor affected both the outcome and future exposures but not
the exposure of interest. Our simulations suggest that the
method can discriminate situations where residual confound-
ing is present from those where it is not, although the strength
of this discrimination ability varies according to the situation.
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TABLE 3. Simulation Results

Scenario
Median

�a (SE (�̂))
Percent

Bias
Median

(I)

Proportion of Simulations in
Which Null Is Rejected

(Ho: �f � 0) AUC

1 (Correct model)b �20.9 (17.2) — �0.01 0.050 —

2 (Drop covariate 1c) �10.0 (17.4) 3 0.35 0.056 0.52

3 (Drop covariate 2c) 31.2 (18.9) 49 1.59 0.345 0.79

4 (Drop covariate 3c) 78.1 (20.8) 274 2.08 0.690 0.93

True (correct) model stipulates an effect of exposure (PM2.5) on birth weight.
Hypothetical factors Cov1–Cov3 were generated, with specified effects and correlations.
a�̂ is the estimated change in birth weight (g), per 10 �g/m3 change in PM2.5.
bCorrect model includes indicator for estimated date of conception (2-week intervals), gestation age (weeks), maternal

tobacco use, education, age, and Medicaid status, and Zip code-specific percent below poverty line, PM2.5, and hypothetical
variables covariates 1–3, with progressively stronger effect on birth weight (see text and footnote c).

cTrue � for covariates 1, 2, and 3: 50, 200, and 300, respectively.
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