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Development and evaluation of alternative approaches for
exposure assessment of multiple air pollutants in Atlanta, Georgia
Kathie L. Dionisio1, Vlad Isakov1, Lisa K. Baxter1, Jeremy A. Sarnat2, Stefanie Ebelt Sarnat2, Janet Burke1, Arlene Rosenbaum3,
Stephen E. Graham4, Rich Cook5, James Mulholland6 and Halûk Özkaynak1

Measurements from central site (CS) monitors are often used as estimates of exposure in air pollution epidemiological studies. As
these measurements are typically limited in their spatiotemporal resolution, true exposure variability within a population is often
obscured, leading to potential measurement errors. To fully examine this limitation, we developed a set of alternative daily
exposure metrics for each of the 169 ZIP codes in the Atlanta, GA, metropolitan area, from 1999 to 2002, for PM2.5 and its
components (elemental carbon (EC), SO4), O3, carbon monoxide (CO), and nitrogen oxides (NOx). Metrics were applied in a study
investigating the respiratory health effects of these pollutants. The metrics included: (i) CS measurements (one CS per pollutant); (ii)
air quality model results for regional background pollution; (iii) local-scale AERMOD air quality model results; (iv) hybrid air quality
model estimates (a combination of (ii) and (iii)); and (iv) population exposure model predictions (SHEDS and APEX). Differences in
estimated spatial and temporal variability were compared by exposure metric and pollutant. Comparisons showed that: (i) both
hybrid and exposure model estimates exhibited high spatial variability for traffic-related pollutants (CO, NOx, and EC), but little
spatial variability among ZIP code centroids for regional pollutants (PM2.5, SO4, and O3); (ii) for all pollutants except NOx, temporal
variability was consistent across metrics; (iii) daily hybrid-to-exposure model correlations were strong (r40.82) for all pollutants,
suggesting that when temporal variability of pollutant concentrations is of main interest in an epidemiological application, the use
of estimates from either model may yield similar results; (iv) exposure models incorporating infiltration parameters, time-location-
activity budgets, and other exposure factors affect the magnitude and spatiotemporal distribution of exposure, especially for local
pollutants. The results of this analysis can inform the development of more appropriate exposure metrics for future epidemiological
studies of the short-term effects of particulate and gaseous ambient pollutant exposure in a community.
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INTRODUCTION

Measurements from central site (CS) monitors are often used as
estimates of exposure in epidemiological studies investigating the
short-term health effects of air pollution.1–5 Fixed-site monitors
may be sufficient for representing ambient concentrations for
pollutants with limited spatial and temporal heterogeneity. For
pollutants with local source impacts, the concentrations measured
at CS monitors may not represent intra-urban variation in air
pollution levels.6–8 This may lead to exposure misclassification in
an epidemiology study, which can introduce statistical error that
affects the strength and significance of estimated health effect
associations.9

Alternatives to exclusive reliance on ambient concentration
data from central monitoring sites include various approaches,
such as spatially dense sampling campaigns or modeling (e.g., air
quality dispersion models, land use regression models) of
pollutant concentrations, which may increase the spatial resolu-
tion of ambient pollutant concentrations.7,10–17 Human exposure
models (such as SHEDS and APEX) can provide spatiotemporally
refined ambient exposure estimates by incorporating factors such
as human activity and behaviors of individuals as they move

through space and time, in addition to relevant demographic and
home environment characteristics (e.g., air exchange rate) that
impact outdoor to indoor air pollutant infiltration.17–19 Where
appropriate, the models could also be used to characterize the
contribution of indoor sources of air pollution to total exposures.

Although epidemiological studies of the adverse health effects
of exposure to ambient pollution have been conducted using
modeled mid- to long-term exposure estimates,20–24 few studies
of acute morbidity have used modeled daily, spatially refined,
estimates of ambient concentrations.25,26 To our knowledge, no
population-based studies of air pollution and acute morbidity are
available where spatially refined estimates of ambient population
exposure have been applied, beyond a few feasibility studies.27,28

Development and evaluation of alternative exposure assignment
approaches, which provide information on spatiotemporally
refined ambient concentrations and ambient population
exposures, are needed for use in improved population-based
acute health effects studies. The research presented here provides
a unique comparison of alternative exposure estimates obtained
from measurements, modeling of ambient pollution levels, and
human exposure models in a single study.

1National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA; 2Department of Environmental Health, Rollins School
of Public Health, Emory University, Atlanta, Georgia, USA; 3ICF International, Rohnert Park, California, USA; 4Office of Air Quality Planning and Standards, US Environmental
Protection Agency, Research Triangle Park, North Carolina, USA; 5Office of Transportation and Air Quality, US Environmental Protection Agency, Ann Arbor, Michigan, USA and
6School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA. Correspondence to: Dr. Kathie L. Dionisio, National Exposure Research
Laboratory, US Environmental Protection Agency, 109 T.W. Alexander Drive, Mail Code: E205-02, Research Triangle Park, NC 27709, USA.
Tel.: þ 919 541 1321. Fax: þ 919 541 0239.
E-mail: dionisio.kathie@epa.gov
Received 6 May 2013; accepted 15 August 2013; published online 25 September 2013

Journal of Exposure Science and Environmental Epidemiology (2013) 23, 581–592
& 2013 Nature America, Inc. All rights reserved 1559-0631/13

www.nature.com/jes

http://dx.doi.org/10.1038/jes.2013.59
mailto:dionisio.kathie@epa.gov
http://www.nature.com/jes


Presented here is the development of a suite of alternative
exposure metrics developed by the US Environmental Protection
Agency (EPA) in collaboration with Emory University and the
Georgia Institute of Technology for use in a time-series study
examining the relationships between ambient air pollution and
acute morbidity outcomes (based on daily emergency department
visits by ZIP code) in Atlanta, GA. The Atlanta study domain
includes the city’s downtown as well as surrounding suburban and
rural areas, and has a wide range of air pollution emissions from a
variety of point and mobile sources. The study examines a variety
of pollutants with a range of spatial and temporal variability,
including several that are highly influenced by local traffic
(elemental carbon (EC), carbon monoxide (CO), and nitrogen
oxides (NOx))8,29–32 as well as pollutants more dominated by
regional contributions (particulate matter with aerodynamic
diameter less than 2.5 mm (PM2.5), sulfate (SO4), and secondary
or regional ozone (O3)).31,33–36 To provide spatially refined
ambient concentrations and exposures for this study, we applied
a number of statistical, mechanistic, and behavioral models (e.g.,
AERMOD, SHEDS, and APEX) to develop five alternative exposure
metrics for each of the six pollutants.

In this paper, we outline the development of each exposure
assignment approach and conduct a detailed characterization of
how each alternative metric compares to CS monitor measure-
ments. We also discuss implications for use of these alternative
metrics in place of CS measurements in the Atlanta time-series
epidemiologic study. We hypothesize that each increasingly
complex exposure metric will show a greater degree of spatial
and temporal variability in the exposure estimates, especially for
traffic-related ambient pollutants. These refined exposure esti-
mates may then provide greater power in detecting epidemiolo-
gical associations of interest for pollutants with heterogeneous or
complex spatiotemporal patterns. Further details on the epide-
miological study design and the results from the related
epidemiological analyses using the various exposure metrics are
described in two related companion papers.37,38

MATERIALS AND METHODS
Study Design
The Atlanta study area encompassed 169 ZIP codes and extended about
70 km in each direction from the Atlanta city center. This analysis was
performed on a subset of the 225 ZIP codes included in the larger Study of
Particles and Health in Atlanta (SOPHIA) study, for the years 1999–2002.
The ZIP codes selected were based on availability of data for all exposure
estimation approaches, availability of census data for each ZIP code, and
the presence of the ZIP code during this study period (certain ZIP codes
included in the original SOPHIA study were discontinued before 1999).
Ambient pollutant data were measured and modeled for PM2.5 and two of
its components (EC and SO4), and gaseous pollutants (O3, CO and NOx), on
an hourly or 24-h basis from 1999–2002. We developed the five metrics of
exposure described below to characterize spatiotemporal patterns of
ambient concentrations and population exposures to these six pollutants
within the Atlanta study area. The similarities and differences in pollutant
concentrations between exposure metrics were compared. We examined
the spatial variability of exposure metrics across days and between
exposure metrics, the temporal variability of exposure metrics, including
seasonal variability, level of temporal variability across ZIP codes and
between exposure metrics, and daily correlations between exposure
metrics for the six pollutants. General classes of exposure metrics are
discussed in Özkaynak et al.10 Each of these pollutant-specific alternative
exposure metrics were subsequently applied in an epidemiological analysis
of daily emergency department visit data from each of the ZIP codes in the
Atlanta study area. Results from the related health effect analyses are
reported elsewhere as companion papers.37,38

Exposure Metric (i): CS Monitor Measurements
Pollutant measurements from central monitoring sites in the study area
comprise the primary exposure metric. Metric (i) included monitoring sites
from the Southeastern Aerosol Research Characterization (SEARCH)

network, the Assessment of Spatial Aerosol Composition in Atlanta
network, and the EPA’s Air Quality System (AQS) monitoring network.
Details regarding the CSs selected for each pollutant, including their
location, measurement methods, and imputations done to fill in for
missing data can be found elsewhere.39–41 In brief, hourly measurements
for CO were from the Dekalb Tech AQS site, and hourly NOx measurements
were from the Georgia Tech AQS site. Hourly O3 measurements for March/
April—October were largely from the Confederate Ave AQS site; the
Jefferson Street SEARCH site provided O3 measurements for November–
February. Daily 24-h average PM2.5, EC, and SO4 concentrations were all
from the Jefferson Street SEARCH site and have been detailed
previously39,42 (Figure 1). Hourly data for CO and NOx were aggregated
to daily 24-h average values; hourly data for O3 were aggregated to daily
8-h maximum values.

Exposure Metric (ii): Regional Background (BG)
To create metric (ii), we modified an earlier approach for creating
population-weighted daily averages of ambient pollution concentrations
to create spatially resolved hourly estimates of regional BG pollution by
removing local source impacts modeled by hour-of-day and day-of-week.12

The modified approach took ambient CS monitor hourly measurements for
each pollutant and removed local source contributions as modeled by
AERMOD (see exposure metric (iii) below) to infer hourly estimates of
regional BG pollution at each monitoring site, later interpolated to ZIP
code centroids as described below. Hourly measurement data from six NOx

monitors, four CO monitors, 14 O3 monitors, and five PM2.5 monitors were
used in this study; two PM2.5 composition monitors provided 24-h
measurements of EC and SO4. For details of locations of monitors used
for creating BG estimates see Figure 1. Regression models were developed
to predict hourly EC and SO4 from 24-h measurements (for additional
details see Supplementary Text 1).

The local source contribution at each monitor location for each pollutant
of mainly primary source origin (CO, NOx, PM2.5, and EC) was modeled as a
function of hour-of-day, day-of-week, month-of-year, and year using
AERMOD. These modeled contributions were then removed from the
hourly regulatory ambient CS measurements to yield regional BG
estimates. For the remaining two pollutants that are almost entirely of
secondary origin (O3 and SO4), the regional BG was assumed to be the
same as measured by the ambient monitors. Having estimated hourly
regional BG pollution levels at central monitoring sites, these estimates
were spatially translated across the study domain as described in
Supplementary Text 1.

Exposure Metric (iii): AERMOD
Local-scale hourly pollutant concentrations for PM2.5, EC, SO4, CO, and NOx

at each ZIP code centroid were also modeled using the AERMOD
dispersion model version 09292.43 AERMOD simulates concentrations of
pollutants directly emitted into the atmosphere. Because O3 is formed by
photochemical processes and has no direct emissions, O3 concentrations
were not modeled with AERMOD. SO4 concentrations output from
AERMOD are from direct vehicle exhaust emissions, and do not include
the secondary SO4 contribution because of photochemical transformations
in the atmosphere. The AERMOD model provides near-source pollutant
contributions from each stationary source at receptors on a designated
spatial scale by using emission source coordinates and stack parameters.
To estimate mobile source contributions to roadway concentrations, we
treated individual road links as elongated area sources in AERMOD. After
modeling, the contributions to air quality from all sources were added
together at each receptor (located at each ZIP code centroid).

Local emissions source data and meteorological data were input into the
AERMOD model, with major stationary source emissions data (including
airport sources at Hartsfield-Jackson Atlanta International Airport) coming
from the US EPA’s National Emissions Inventory from 2002. Roadway
emissions were estimated using detailed road network locations from an
improved methodology developed by the authors for a previous study,11

with link-specific highway vehicle emission rates estimated as the product
of traffic activity by vehicle class on individual road links and running
emission factors by vehicle class. Non-running vehicle emissions (e.g.,
idling emissions) were treated as part of background. Meteorological data
came from the National Weather Service site at the Hartsfield-Jackson
Atlanta International Airport and the Jefferson Street SEARCH site. For
detailed specifications of the AERMOD model, see Supplementary Text 2.
For details on model evaluation, see Supplementary Text 3.
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Exposure Metric (iv): Hybrid
As part of metric (iv), we used a combination of local- and regional-scale
modeling to account for all major atmospheric processes, including local
contributions (driven by local-scale variation in pollutant emissions and
meteorology) and regional contributions (background levels associated
with large-scale synoptic patterns), to provide spatially and temporally
resolved concentration surfaces in Atlanta. The sum of the regional BG
contribution (metric (ii)) and the local contribution from AERMOD (metric
(iii)) was computed hourly to obtain total ambient air concentrations for
each pollutant being studied, at each ZIP code centroid. As AERMOD does
not estimate O3 concentrations, the hybrid exposure metric for O3 was
identical to the regional BG.

Exposure Metric (v): APEX and SHEDS Exposure Models
Models were used to estimate population exposures to ambient pollution,
rather than approximating exposure using outdoor ambient pollutant
concentrations (as in metrics (i–iv)), at each ZIP code and for each
pollutant. As part of metric (v), we used the US EPA’s Stochastic Human
Exposure and Dose Simulation (SHEDS) model19,44,45 to estimate 24-h
PM2.5, SO4, and EC exposures, and 8-h maximum O3 exposures. The US
EPA’s Air Pollutants Exposure Model (APEX)46,47 outputs hourly estimates of
exposure to CO and NOx, which were aggregated to 24-h average
exposures (APEX estimates were used for CO and NOx as model runs for
the Atlanta study area had previously been completed). The SHEDS and
APEX models estimate population exposure distributions by accounting for
both the spatial variability in pollutant concentrations in locations where
people are exposed (outdoor, indoor, and in-vehicle), and person-level
variability in locations visited and time spent in each microenvironment, as
the simulated individuals move about the study domain. Key input to the
models were the hybrid pollutant concentrations from metric (iv), descri-
bed above, time-location-activity data from the US EPA’s Consolidated
Human Activity Database,48 spatially varying local air exchange rates
calculated as described in Sarnat et al,38 and census tract-level home-to-
work commuting data.47,49 Penetration and decay parameters used in the
models were specific to each pollutant, but did not vary spatially or
temporally. The exposure estimates represent exposure of individuals to
ambient pollution resulting from time spent in outdoor, indoor, or
vehicular microenvironments; the APEX and SHEDS models included
infiltration of ambient pollution to indoor microenvironments, but for this
application we did not include the contribution from indoor source
emissions because of the intended subsequent application of the exposure
estimates in an epidemiological analysis of health effects of air pollution
due to ambient sources. For detailed SHEDS and APEX modeling

specifications including penetration and decay parameters, see
Supplementary Text 4 and 5, and Supplementary Tables 2–5; for details
on model validation, see Supplementary Text 3.

Statistical Methods
Summary statistics and Pearson correlations between exposure metrics are
described below. The coefficient of variation (CV) for each pollutant was
calculated to allow for comparison of the differences in spatial and
temporal variability across pollutants. Defined as CV¼ s/m, where s¼
standard deviation and m¼mean, the CV is a dimensionless index that
allows for a normalized way to compare variability across pollutants with
different units. A higher CV indicates a greater degree of dispersion of the
variable. We define the ‘‘spatial’’ CV as the CV calculated across ZIP codes
over the study domain, resulting in one spatial CV for each day (n¼ 1461
for each pollutant and each metric), and quantifying the amount of spatial
variation in daily pollutant concentrations. The ‘‘temporal’’ CV was
calculated as the CV across days, with one temporal CV for each ZIP code
(n¼ 169 for each pollutant and each metric), and representing the
degree of temporal variability of pollutant concentrations over the entire
domain. GIS mapping was used to visually depict spatial variation. Pearson
correlations were used to compare temporal correlations for each pollutant
between exposure tiers.

All statistical analyses were completed in R version 2.13.2 (R Foundation
for Statistical Computing, Vienna, Austria). All mapping was done in ArcGIS
10 (Esri, Redlands, CA).

RESULTS
Summary statistics (Supplementary Table 1) and comparison
between exposure metrics (Figure 2) for each pollutant show that
for all pollutants the magnitude of 4-year annual mean hybrid
estimates across all ZIP codes approximates the magnitude of CS
monitor measurements well. In comparison, exposure model
estimates are lower than ambient concentrations for PM2.5, SO4,
EC, and O3 because of reduced residential infiltration and removal
of these pollutants indoors. Exposure higher than ambient
concentrations model estimates for CO and NOx are because of
inclusion of a roadway proximity factor in the APEX model. For
detailed discussion of the comparison between metrics for each
pollutant, and of the seasonal variability for each pollutant, see
Supplementary Text 6.
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Figure 1. Map of metropolitan Atlanta with monitoring site locations and population density. Letters reference monitor locations. The table
identifies station name, network, and air pollutants monitored, with air pollutants indicated by numbers (1¼NO2/NOx, 2¼CO, 3¼O3,
4¼ PM2.5 mass, 5¼ PM2.5 composition (SO4, EC). Population density is from 2000 Census data.
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Spatial Variability
As noted above and seen in the spread of the boxplots in Figure 2,
there are differences in the amount of spatial variation in annual
mean concentrations between ZIP codes for the various pollutants
and metrics. Figure 3 displays the spatial CVs that quantify this
spatial variation. Metrics (iv) and (v) have varying degrees of
spatial variability for each pollutant, evidenced by the range of
spatial CVs (Figure 3). Although mean ambient concentrations
from the hybrid estimates (metric (iv)) agree with those from CS
measurements (metric (i)), hybrid estimates vary spatially,
particularly for pollutants with predominantly local sources (EC,
CO, and NOx). These results are consistent with findings from
previous work conducted in Atlanta showing increased spatio-
temporal variability for traffic-related pollutants.31

The varying degrees of spatial variability can also be seen
visually in the selection of maps presented in Figure 4. The spatial
variability in ambient concentrations and larger spatial CVs
observed for metric (iv) for EC, CO, and NOx is also reflected

within the exposure modeling (metric (v); Figure 3, Supplementary
Figure 1), partially due to the fact that metric (iv) concentrations
are used as inputs in calculating the metric (v) estimates, but also
suggesting spatial variability in population exposures. We also
observe noticeable differences in both the magnitude and
structure of the variability in distributions between metrics (iv)
and (v), likely due to space- and time-dependent mobility and
infiltration factors incorporated in the exposure models.

There is little difference in the spatial CVs for PM2.5, SO4, and O3,
both between metrics (iv) and (v) and within metric (iv) or (v) for
each pollutant, with little to no spatial variation in either metric for
these three pollutants (mean spatial CVo0.16; Figure 3,
Supplementary Figure 1). The low spatial CV for PM2.5 and SO4

may be because PM2.5 and SO4 are largely derived from regional
sources, as seen in Figure 2 where the BG contribution dominates
over AERMOD. Thus, we do not expect to see spatial variability in
the concentrations of these pollutants at the ZIP code level, and
over the geographic scale of our study area. O3 concentrations are

Figure 2. Mean annual pollutant concentrations for each study ZIP code in Atlanta, GA (1999–2002). Note: metric (i): CS, metric (ii): regional
background, metric (iii): AERMOD, metric (iv): hybrid, and metric (v): APEX or SHEDS. Bottom and top of box represent 25th and 75th
percentiles, the band near the middle of the box is the median, and the ends of the whiskers are the 5th and 95th percentiles (n¼ 169 for each
pollutant, for each metric.).
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likely spatially homogeneous in our study area as they are mostly
driven by regional photochemistry at the ZIP code level. Note that
these pollutants may have increasing degrees of spatial variability
if more enhanced modeling or measurement data in fine-scale
microenvironments (e.g., near roadway, and at varying distance
from roadway) were being analyzed. PM composition, especially
the ultrafine component, for example, varies considerably when a
finer spatial scale than ZIP code level is examined.29,50 In addition,
the fine-scale variation in O3 photochemistry, particularly near
busy roadways, was not considered in our local emissions model
(AERMOD).

Local pollutants show a different pattern, with moderate spatial
variation for EC (Figure 4; mean spatial CV of B0.5 for metrics (iv)
and (v)). Although CO has low-moderate and NOx has moderate-
high spatial variability for metrics (iv) and (v), for both pollutants
the spatial CV of the exposure model estimates is lower than the

spatial CV of the hybrid estimates (Figure 3). EC, CO, and NOx all
exhibit a range of spatial CVs across the days covered by the study
period, evidenced by the wider boxplots (Figure 3). As shown
previously, spatial variability in ambient concentrations of these
pollutants is expected as their main source is local traffic
emissions.31 The lower degree of spatial variability across days
of exposure model estimates (metric (v)) compared with hybrid
estimates (metric (iv)) for CO and NOx is potentially due to the
relatively uniform air exchange rates used as input for the
exposure model, or to the influence of mobility and commuting
related exposure factors in these models that are accounting for
the movement of individuals between high- and low-
concentration areas.18 As a result of movement of commuters
between multiple ZIP codes on a given day, the daily average
exposure concentrations for commuters may be more similar than
ambient concentrations of each ZIP code individually.

Figure 3. Mean spatial CV for each day (1999–2002). Note: metric (i): CS, metric (iv): hybrid, and metric (v): APEX or SHEDS. Bottom and
top of box represent 25th and 75th percentiles, the band near the middle of the box is the median, and the ends of the whiskers represent
the 5th and 95th percentiles. The spatial CV¼ 0 for CS monitor measurements because the same CS measurement was applied to each
ZIP code.
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Temporal Variability
Temporal CV. For all pollutants except NOx, there is no
substantial difference in the mean temporal CV across ZIP codes
when comparing the three main exposure metrics (metrics (i), (iv)
and (v); Figure 5). This indicates that the overall degree of
temporal variability of PM2.5, SO4, EC, CO, and O3 is similar across
the exposure metrics. For PM2.5, SO4, and O3, the narrow boxplots
indicate little difference in the degree of temporal variability
across ZIP codes for metrics (iv) and (v) compared with EC, CO, and
NOx, where wider boxplots indicate differences in the degree of
temporal variability across ZIP codes not represented in CS
measurements. NOx exhibits a unique pattern, with the overall
degree of temporal variability (i.e., the mean temporal CV)

decreasing as the complexity of the exposure metric increases
(highest mean temporal CV for the CS measurements (metric (i)),
lowest mean temporal CV for the exposure model estimates
(metric (v)); Figure 5). This result is potentially due to regularizing
effects of commuting and related exposure factors varying across
the study domain.

In breaking down the hybrid estimates into the two component
parts (metric (iii): AERMOD and metric (ii): BG), we see that for
PM2.5 and SO4, AERMOD does provide added temporal variability
compared with the CS measurements (metric (i)), evidenced by
the wider boxplots for metric (iii) (Figure 2). However, as described
above, the magnitude of the AERMOD contributions from local
primary emissions for PM2.5 and SO4 are so low compared with the

Figure 4. Selection of GIS maps of Atlanta metropolitan area showing spatial variability for annual means of PM2.5, EC, and NOx for metric (iv):
hybrid. Boundaries delimited on maps are ZIP code boundaries. GIS maps for the full set of metrics, for all pollutants, all seasons, can be found
in Supplementary Figure 1.
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regional contributions that this added temporal variability is lost
when the AERMOD and regional components are combined.

Correlation between metrics. The regional pollutants (PM2.5, SO4,
and O3) all exhibit a strong daily correlation between the CS
measurements (metric (i)) and the hybrid estimates (metric (iv);
r¼ 0.90, 0.95, and 0.97 respectively), and between the CS
measurements (metric (i)) and the exposure model estimates
(metric (v); r¼ 0.84, 0.93, and 0.93 respectively), indicating that the
CS measurements co-vary over time with both the hybrid
estimates and the exposure model estimates (Table 1). In studies
where the day-to-day variability of ambient concentrations is
desired, hybrid estimates obtained using the methods presented
here may not provide greater temporal resolution as compared
with CS measurements for these pollutants. It is important to note
that in this case, the strong correlation between CS measurements
and hybrid estimates are partially due to the CS measurements

being used as input for the BG estimates (metric (ii)), which in turn
are used in calculating the hybrid estimates. The strong correlation
between CS measurements and exposure model estimates is
consistent with previous findings of a strong correlation between
ambient concentrations and personal exposures for PM2.5 and
SO4.51–54 Previous studies have typically found a weak correlation
between ambient concentrations and exposure estimates for
O3

51,52,55 with the main assumption that low infiltration and high
removal rates indoors may have contributed to this weak
correlation. In this instance, stronger correlations between CS
measurements and exposure model estimates for O3 may be due
to O3 exposures being based on BG estimates only (i.e., no metric
(iii): AERMOD modeling was done for O3), and due to the SHEDS
model predictions including O3 infiltration and decay parameters,
which do not vary temporally.

Pollutants dominated by local emission sources (EC, CO, and
NOx) exhibit a moderate daily correlation between the CS

Figure 5. Mean temporal CV for each study ZIP code in Atlanta, GA (1999–2002). Note: metric (i): CS, metric (iv): hybrid, and metric (v): APEX or
SHEDS. Bottom and top of box represent 25th and 75th percentiles, the band near the middle of the box is the median, and the ends of the
whiskers represent the 5th and 95th percentiles. The temporal CV for metric (i) is the same for each ZIP code because the same CS
measurement was used for each ZIP code.
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measurements (metric (i)) and the hybrid estimates (metric (iv);
r¼ 0.70, 0.54, and 0.58 respectively), and between the CS
measurements (metric (i)) and the exposure model estimates
(metric (v); r¼ 0.64, 0.63, and 0.73 respectively; Table 1). This
moderate correlation indicates that day-to-day variability at the CS
is different than that represented by the hybrid estimates or the
exposure model estimates, which may influence epidemiological
study results depending on the co-variance between exposure
and health outcome data at the ZIP code level. The decrease in
the metric (i)–metric (iv) and metric (i)–metric (v) correlations for
local pollutants as compared with regional pollutants may be a
result of the hybrid and exposure model estimates accounting for
local traffic-related sources of emissions, which may vary on a day-
to-day basis.8,29,30 This temporal variability in local source
emissions may not be captured by CS measurements. Previous
studies have found weak correlations between ambient concen-
trations and personal exposures for NO2,51,52,56 potentially for the
same reasons as explained above and potential NOx exposures
from indoor combustion sources.

All pollutants exhibited strong correlations between hybrid
estimates (metric (iv)) and exposure model estimates (metric (v)),
with correlations ranging from 0.82 to 0.98 for the six pollutants.
The strength of these correlations indicates that the day-to-day
variability of hybrid estimates as compared with exposure
model estimates is quite similar, most likely because exposure
models used the hybrid estimates as a main input. If temporal
variability alone is of interest (e.g., in a time-series study in a
geographically small study area) for these six pollutants, it may not
be necessary to consider both hybrid and exposure modeling to
obtain adequate estimates of temporal variability for these
pollutants.

Influence of Spatial and Temporal Variability on Exposure Metrics
for EC
In Figure 6, we have highlighted EC as an example of a spatially
and temporally varying pollutant dominated by local emissions
sources, which benefits from the modeling approaches presented
here. The hybrid estimates (Figure 6c) provide added spatial

variability, which is not present in the CS measurements
(Figure 6b), highlighting the differential exposure misclassification
which could occur on the spatial scale for EC if CS measurements
were used as the exposure estimate in epidemiological analyses
with geographically defined subpopulations. The exposure model
estimates (Figure 6d) provide an additional benefit for epidemiol-
ogy studies as these estimates take into account the added spatial
variability of hybrid estimates (because of hybrid estimates being
used as input to the exposure model estimates), yet also account
for the spatially varying air exchange rates in the study area
(Figure 6a). Additional exposure factors such as commuting
patterns and differences in time-location-activity budgets
included in the exposure model result in a reduced magnitude
of the exposure model estimates (Figure 6d) compared with
hybrid estimates (Figure 6c). The slight reduction in the spatial CV
of EC (Figure 3) when comparing exposure model and hybrid
estimates may be a result of commuting patterns, whereby
commuting between ZIP codes in a given day will result in less
spatial variability in exposure model estimates as compared with
hybrid estimates, which are inherently modeled for each ZIP code
individually. In addition, Figures 6e and f demonstrate that the
degree of temporal variability present in the EC concentrations
changes across the study domain, and is dependent on the
spatially varying EC concentrations, highlighting the potential for
introducing differential exposure misclassification on the temporal
scale if the non-spatially varying CS measurements were used as
the exposure estimate in epidemiological analyses.

DISCUSSION
Although previous related epidemiology studies of spatially
variable pollutants in this same study area of Atlanta have
reported associations with cardiovascular and respiratory out-
comes using CS monitor measurements,40,41,57–59 simulation
studies have suggested that error because of spatial variability
in ambient pollution may result in reductions in observed relative
risks by 43–68% for spatially heterogeneous pollutants such as
CO, NOx, and EC.60 This finding further motivated us to assess
the potential for exposure misclassification when using CS

Table 1. Mean and standard deviation of ZIP code-specific Pearson correlations between exposure metrics in Atlanta, GA: 1999–2002.

PM2.5 SO4 EC O3 CO NOx

Metric (i)—metric (iv) (CS—hybrid)
Overall 0.90±0.03 0.95±0.01 0.70±0.08 0.97±0.02 0.54±0.07 0.58±0.08
Winter 0.84±0.04 0.94±0.02 0.63±0.11 0.92±0.07 0.44±0.08 0.48±0.08
Spring 0.88±0.04 0.91±0.02 0.69±0.09 0.96±0.03 0.52±0.10 0.46±0.09
Summer 0.90±0.04 0.94±0.01 0.61±0.08 0.94±0.04 0.47±0.11 0.42±0.11
Fall 0.93±0.02 0.93±0.01 0.78±0.07 0.97±0.02 0.62±0.07 0.66±0.12

Metric (i)—metric (v) (CS—APEX/SHEDS)
Overall 0.84±0.02 0.93±0.01 0.64±0.07 0.93±0.02 0.63±0.04 0.73±0.04
Winter 0.80±0.02 0.90±0.02 0.58±0.07 0.85±0.06 0.57±0.06 0.68±0.05
Spring 0.82±0.04 0.88±0.01 0.62±0.07 0.88±0.03 0.63±0.05 0.63±0.07
Summer 0.84±0.03 0.92±0.01 0.57±0.08 0.89±0.04 0.54±0.08 0.55±0.06
Fall 0.86±0.02 0.91±0.01 0.73±0.08 0.92±0.02 0.69±0.03 0.79±0.03

Metric (iv)—Metric (v) (hybrid—APEX/SHEDS)
Overall 0.93±0.01 0.98±0.01 0.94±0.01 0.96±0.01 0.83±0.07 0.82±0.09
Winter 0.89±0.02 0.96±0.01 0.88±0.03 0.93±0.01 0.76±0.06 0.73±0.07
Spring 0.92±0.01 0.97±0.00 0.94±0.02 0.90±0.02 0.80±0.07 0.78±0.09
Summer 0.94±0.01 0.98±0.01 0.98±0.01 0.94±0.01 0.82±0.09 0.81±0.17
Fall 0.93±0.01 0.97±0.00 0.97±0.01 0.95±0.01 0.89±0.08 0.86±0.12

Abbreviations: APEX, Air Pollutants Exposure Model; CO, carbon monoxide; CS, central site; EC, elemental carbon; SHEDS, stochastic human exposure and dose
simulation.
Correlations between metrics for each ZIP code were calculated separately—the mean and standard deviation of the correlations across all ZIP codes are
presented here.

Exposure assessment: alternative approaches
Dionisio et al

588

Journal of Exposure Science and Environmental Epidemiology (2013), 581 – 592 & 2013 Nature America, Inc.



Figure 6. Influence of spatial and temporal variability on exposure metrics for EC. (a) GIS map of annual mean air exchange rate for each ZIP
code. (b) GIS map of annual mean EC concentration (metric (i): CS) for each ZIP code. (c) GIS map of annual mean EC concentration (metric (iv):
hybrid) for each ZIP code. (d) GIS map of annual mean EC concentration (metric (v): SHEDS) for each ZIP code. (e) GIS map of annual mean
temporal CV for each ZIP code for EC (metric (iv): hybrid). (f ) Temporal CV vs annual mean concentration for each ZIP code (metric (iv): hybrid).
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measurements in a health study60,61 so that error might be
minimized in future epidemiological studies.

To summarize our findings, air quality modeling of ambient
concentrations (metric (iv)) approximates mean CS measurements
(metric (i)) well, but includes a degree of spatial variability of
ambient concentrations that CS monitor measurements do
not capture, especially for local pollutants (EC, CO, and NOx).
Human exposure models incorporating infiltration parameters,
time-location-activity budgets, and other exposure factors also
introduce a certain level of spatial variability for local pollutants. The
mean level of temporal variability across ZIP codes for all pollutants
except NOx is represented well by CS measurements, however, for
local pollutants, there is a range of temporal variability across ZIP
codes that is not represented in CS measurements.

In applying the results of this analysis to exposure metrics for
future epidemiological studies, there are a few key points to consider.
First, exposure models not only introduce variability in predicted
exposures, but also may impact the magnitude and distribution of
the predicted exposure concentrations both within and across ZIP
codes. Second, exposure misclassification on both the spatial and
temporal scales may be introduced for local pollutants if CS
measurements are used as the estimate of exposure, because of
the spatial and temporal variability of local pollutant concentrations
or spatially varying exposure factors (especially infiltration and
commuting patterns), which are not accounted for in CS measure-
ments.37 Although air quality and exposure models have the ability
to introduce variability not present in CS measurements, the
potential to introduce greater uncertainty in the resultant health
effect estimates due to modeling error must be considered.4

When regional pollutants (PM2.5, SO4, O3) are of interest, CS
measurements may be sufficient to reflect spatial variability,
especially for time-series or case-crossover studies over large urban
or metropolitan scales, because of the limited local-scale spatial
variability of these pollutants at the ZIP code level, and due to the
strong temporal correlation between CS measurements and either
hybrid or exposure model estimates. However, in studies of local
pollutants (EC, CO, and NOx), both air quality modeling and
exposure modeling may need to be considered in order to
represent spatial variability adequately. In addition, air quality and
exposure modeling represent different levels of temporal variability
for local pollutants compared with CS measurements. Although the
strong correlation between hybrid and exposure model estimates
for local pollutants suggests that hybrid and exposure models
comparably represent day-to-day variability, it is important to
remember that exposure modeling estimates may represent
differences in the magnitude and spatial variability of pollutants
that the hybrid estimates do not. For all pollutants, if the
appropriate magnitude of exposure is desired at a fine spatial
and temporal resolution (i.e., when fine-scale spatiotemporal health
data are available), exposure models may be necessary to better
represent levels of human exposure because of the variety of
human exposure factors that they incorporate.

To our knowledge, no other single study has developed the
diverse range of spatial and temporal refinement in exposure
metrics presented here, compared both air quality and exposure
model results to CS monitor measurements, and further done so
for multiple pollutants. Including alternative exposure assessment
approaches in one study allows for a direct comparison of how
different methods perform relative to each other. This study
provides support for the development of alternative approaches
for specific epidemiological applications.9,59,62–65 Although the
study aimed to reduce exposure misclassification for traffic-related
pollutants (CO, NOx, and EC), pollutants of secondary origin (O3

and SO4), which previous work has shown have little spatio-
temporal variation in Atlanta, were included for comparison.31 The
inclusion of six pollutants allowed for comparison of how the
alternative approaches perform when applied to pollutants with
varying spatial and temporal patterns. In addition, the estimates

developed allowed for the investigation of how these exposure
surrogates might improve health effect estimates in a time-series
study.37,38

Results from this study should be followed with additional
studies analyzing exposure estimates from multiple alternative
exposure estimation approaches at different geographic locations.
Studies in locations with different meteorological conditions (e.g.,
the North-East where the residential air exchange rates may be
more variable), or with different emissions profiles (e.g., greater
quantity of industrial sources, less traffic, or a more concentrated
city center), may yield different results. Conclusions regarding
spatial variability may also vary when modeling is conducted at
finer spatial scales (e.g., PM2.5 or ultrafine PM may show increased
spatial variability in near-road environments). Further, the
resources required for completing local-scale modeling for PM2.5

and SO4 in the future should be weighed against the local versus
regional contribution for these pollutants, keeping in mind that
while PM2.5 concentrations measured at CSs within an urban area
may be highly correlated, some variation in their concentrations
can occur spatially on any given day, especially when analyzed at
a finer spatial scale.66 Temporal variability may differ in areas
where there are greater variations in meteorology from day-to-
day. Last, patterns of exposure model estimates may change in
areas where air exchange rates are higher than those in Atlanta.
For certain pollutants, the spatial and temporal variability
added when using air quality and exposure models demonstrate
the potential for exposure misclassification when using CS
measurements as estimates of exposure in an epidemiologic
study. Keeping the results of this analysis in mind, there must be
careful consideration in future epidemiological studies of the
choice of the exposure assignment approach, with consideration
given to the epidemiological study design, pollutant of interest,
and temporal and spatial scales of both exposure and health data.
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temporally-resolved air exchange rate as a modifier of acute air pollution related
morbidity. J Expo Sci Environ Epidemi 2013 doi:10.1038/jes.2013.32 (this issue).

39 Tolbert PE, Klein M, Metzger KB, Peel J, Flanders WD, Todd K et al. Interim results
of the study of particulates and health in Atlanta (SOPHIA). J Expo Anal Environ
Epidemiol 2000; 10: 446–460.

40 Peel JL, Tolbert PE, Klein M, Metzger KB, Flanders WD, Todd K et al. Ambient air pollu-
tion and respiratory emergency department visits. Epidemiology 2005; 16: 164–174.

41 Metzger KB, Tolbert PE, Klein M, Peel JL, Flanders WD, Todd K et al. Ambient air
pollution and cardiovascular emergency department visits. Epidemiology 2004;
15: 46–56.

42 Hansen DA, Edgerton E, Hartsell B, Jansen J, Burge H, Koutrakis P et al. Air quality
measurements for the aerosol research and inhalation epidemiology study. J Air
Waste Manag Assoc 2006; 56: 1445–1458.

43 Cimorelli AJ, Perry SG, Venkatram A, Weil JC, Paine RJ, Wilson RB et al. AERMOD: a
dispersion model for industrial source applications. Part I: General model
formulation and boundary layer characterization. J Appl Meteorol Climatol 2005;
44: 682–693.

44 Georgopoulos PG, Wang S-W, Vyas VM, Sun Q, Burke J, Vedantham R et al. A
source-to-dose assessment of population exposures to fine PM and ozone in
Philadelphia, PA during a summer 1999 episode. J Expo Anal Environ Epidemiol
2005; 15: 439–457.

45 Cao Y, Frey HC. Geographic differences in inter-individual variability of human
exposure to fine particulate matter. Atmos Environ 2011; 45: 5684–5691.

46 US EPA. Total Risk Integrated Methodology (TRIM) Air Pollutants Exposure
Model Documentation (TRIM.Expo/APEX, Version 4.5), Volume I: User’s Guide
2012, US EPA Office of Air Quality Planning and Standards, Research Triangle Park,
NC, EPA-452/B-12-001a.

47 US EPA. Total Risk Integrated Methodology (TRIM) Air Pollutants Exposure Model
Documentation (TRIM.Expo/APEX, Version 4.5), Volume II: Technical Support
Document 2012, US EPA Office of Air Quality Planning and Standards, Research
Triangle Park, NC, EPA-452/B-12-001b.

48 McCurdy T, Glen G, Smith L, Lakkadi Y. The National Exposure Research Labora-
tory’s Consolidated Human Activity Database. J Expo Anal Environ Epidemiol 2000;
10(6 Pt 1): 566–578.

49 US Department of Transportation Bureau of Transportation Statistics. Census
Transportation Planning Package (CTPP) 2000. Part 3 - Journey to Work 2000,
Available from http://transtats.bts.gov.

50 Westerdahl D, Fruin S, Sax T, Fine PM, Sioutas C. Mobile platform measurements
of ultrafine particles and associated pollutant concentrations on freeways and
residential streets in Los Angeles. Atmos Environ 2005; 39: 3597–3610.

51 Sarnat JA, Koutrakis P, Suh HH. Assessing the relationship between personal
particulate and gaseous exposures of senior citizens living in Baltimore, MD. J Air
Waste Manag Assoc 2000; 50: 1184–1198.

52 Sarnat JA, Schwartz J, Catalano PJ, Suh HH. Gaseous pollutants in particulate
matter epidemiology: confounders or surrogates? Environ Health Perspect 2001;
109: 1053–1061.

53 Brunekreef B, Janssen NA, de Hartog J, Oldenwening M, Meliefste K, Hoek G et al.
Personal, indoor, and outdoor exposures to PM2.5 and its components for groups
of cardiovascular patients in Amsterdam and Helsinki. Res Rep Health Eff Inst 2005;
127: 1–70.

54 Janssen NA, Lanki T, Hoek G, Vallius M, De Hartog J, Van Grieken R et al.
Associations between ambient, personal, and indoor exposure to fine particulate
matter constituents in Dutch and Finnish panels of cardiovascular patients. Occup
Environ Med 2005; 62: 868–877.

55 Liu L-JS, Delfino R, Koutrakis P. Ozone Exposure Assessment in a Southern Cali-
fornia Community. Environ Health Perspect 1997; 105: 58–65.

56 Williams R, Jones P, Croghan C, Thornburg J, Rodes C. The influence of human and
environmental exposure factors on personal NO2 exposures. J Expo Sci Environ
Epidemiol 2012; 22: 109–115.

Exposure assessment: alternative approaches
Dionisio et al

591

& 2013 Nature America, Inc. Journal of Exposure Science and Environmental Epidemiology (2013), 581 – 592

http://dx.doi.org/10.1038/jes.2013.15
http://dx.doi.org/10.1038/jes.2013.41
http://dx.doi.org/10.1038/jes.2013.32
http://transtats.bts.gov


57 Sarnat SE, Klein M, Sarnat JA, Flanders WD, Waller LA, Mulholland JA et al. An
examination of exposure measurement error from air pollutant spatial variability
in time-series studies. J Expo Sci Environ Epidemiol 2010; 20: 135–146.

58 Strickland MJ, Darrow LA, Klein M, Flanders WD, Sarnat JA, Waller LA et al.
Short-term associations between ambient air pollutants and pediatric asthma
emergency department visits. Am J Respir Crit Care Med 2010; 182: 307–316.

59 Tolbert PE, Klein M, Peel JL, Sarnat SE, Sarnat JA. Multipollutant modeling issues in
a study of ambient air quality and emergency department visits in Atlanta. J Expo
Sci Environ Epidemiol 2007; 17(Suppl 2): S29–S35.

60 Goldman GT, Mulholland JA, Russell AG, Srivastava A, Strickland MJ, Klein M et al.
Ambient air pollutant measurement error: characterization and impacts in a time-
series epidemiologic study in Atlanta. Environ Sci Technol 2010; 44: 7692–7698.

61 Goldman GT, Mulholland JA, Russell AG, Gass K, Strickland MJ, Tolbert PE. Char-
acterization of ambient air pollution measurement error in a time-series health
study using a geostatistical simulation approach. Atmos Environ 2012; 57: 101–108.

62 Bell ML, Dominici F, Ebisu K, Zeger SL, Samet JM. Spatial and temporal variation in
PM2.5 chemical composition in the United States for health effects studies. Environ
Health Perspect 2007; 115: 989–995.

63 Mauderly JL, Burnett RT, Castillejos M, Özkaynak H, Samet JM, Stieb DM et al. Is
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