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Introduction
Most epidemiologic studies of the health 
effects of ambient air pollution have focused on 
adverse effects associated with single pollutants. 
In reality, humans are simultaneously exposed 
to a complex mixture of pollutants that can 
vary both spatially and temporally (Dominici 
et al. 2010). Epidemiologic analyses that have 
examined multi pollutant health effects have 
typically relied on ambient monitoring data 
to estimate exposures (Hoffmann et al. 2012; 
Tolbert et al. 2007). Measurements from 
federal or state ambient monitoring networks 
often lack spatial and temporal coverage 
(Goldman et al. 2010; Sarnat et al. 2010) 
and do not account for exposures in different 
micro environments (e.g., in-vehicle and 
in-home exposures) where infiltration (Sarnat 
et al. 2006; Weisel et al. 2005) and indoor 
sources (Baxter et al. 2007; Meng et al. 2009) 
can contribute substantially. There is, therefore, 
a potential for exposure measure ment error 
that can lead to effect attenuation and reduced 
statistical power when measurements from 
ambient monitors are used as the exposure 
estimate in an epidemiologic study.

Complex relationships may exist between 
exposures to various pollutants, and between 
the exposure error associated with each 
pollutant. The magnitude of the exposure 
error may differ across pollutants (Tolbert 
et al. 2007). For example, pollutants with 
primarily local sources [e.g., carbon monoxide 
(CO), nitrogen oxides (NOx), elemental 
carbon (EC)] exhibit significant spatial hetero-
geneity (Goldman et al. 2010; Sarnat et al. 
2010; Strickland et al. 2013) that may not 
be captured by central-site (CS) ambient 
monitors. Exposures estimated from ambient 
monitors for these pollutants may be asso-
ciated with more error than monitor-based 
estimates for pollutants that are more spatially 
homogeneous [e.g., fine particulate matter 
(PM2.5; ≤ 2.5 μm in aerodynamic diameter), 
sulfate (SO4), ozone (O3)]. When exposure 
estimates do not take into account exposure 
factors such as time–location–activity patterns 
(including time spent indoors) (Monn 2001; 
Setton et al. 2011), significant indoor sources 
[e.g., gas stoves contributing to nitrogen 
dioxide (NO2) exposures] (Williams et al. 
2012), or housing characteristics [e.g., air 

exchange rate (AER), pollutant infiltration] 
(Sarnat JA et al. 2013), exposure error may 
be greater.

Previous studies have predominantly 
focused on quantifying and accounting for 
exposure error in single-pollutant models 
(Sarnat et al. 2010; Setton et al. 2011; 
Strickland et al. 2013). Zeka and Schwartz 
(2004) focused on a method for the analysis of 
health effects in multi pollutant studies that is 
resistant to measurement error. Among other 
findings, Zeka and Schwartz (2004) found an 
association between CO and daily mortality 
when traditional analysis did not, suggesting 
that a high degree of measurement error due 
to spatial hetero geneity of CO concentra-
tions may be contributing to the difference 
in findings. In another study, Schwartz and 
Coull (2003) provided alternative methods 
for estimating the effect of two exposures on 
an outcome that reduced bias at the cost of a 
small-to-moderate reduction in power.

The objective of the present analysis 
was to examine exposure errors for multiple 
pollutants and provide insights on the poten-
tial for bias and attenuation of effect estimates 
in single- and bipollutant epidemiologic 
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Background: Using multi pollutant models to understand combined health effects of exposure 
to multiple pollutants is becoming more common. However, complex relationships between 
pollutants and differing degrees of exposure error across pollutants can make health effect estimates 
from multi pollutant models difficult to interpret.

oBjectives: We aimed to quantify relationships between multiple pollutants and their associated 
exposure errors across metrics of exposure and to use empirical values to evaluate potential attenuation 
of coefficients in epidemiologic models.

Methods: We used three daily exposure metrics (central-site measurements, air quality model 
estimates, and population exposure model estimates) for 193 ZIP codes in the Atlanta, Georgia, 
metropolitan area from 1999 through 2002 for PM2.5 and its components (EC and SO4), as well as 
O3, CO, and NOx, to construct three types of exposure error: δspatial (comparing air quality model 
estimates to central-site measurements), δpopulation (comparing population exposure model estimates 
to air quality model estimates), and δtotal (comparing population exposure model estimates to 
central-site measurements). We compared exposure metrics and exposure errors within and across 
pollutants and derived attenuation factors (ratio of observed to true coefficient for pollutant of 
interest) for single- and bipollutant model coefficients.

results: Pollutant concentrations and their exposure errors were moderately to highly correlated 
(typically, > 0.5), especially for CO, NOx, and EC (i.e., “local” pollutants); correlations differed 
across exposure metrics and types of exposure error. Spatial variability was evident, with variance of 
exposure error for local pollutants ranging from 0.25 to 0.83 for δspatial and δtotal. The attenuation of 
model coefficients in single- and bipollutant epidemiologic models relative to the true value differed 
across types of exposure error, pollutants, and space.

conclusions: Under a classical exposure-error framework, attenuation may be substantial for local 
pollutants as a result of δspatial and δtotal with true coefficients reduced by a factor typically < 0.6 
(results varied for δpopulation and regional pollutants). 
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models. We used this approach to examine 
the robustness of the association for a 
pollutant of interest when a second pollutant 
is controlled for, that is, to examine the atten-
uation due to measurement errors present 
in both pollutants. In a previous analysis, 
alternative exposure estimates for ambient-
generated PM2.5, EC, SO4, CO, NOx, and 
O3 were developed, and spatio temporal 
patterns for each estimate were characterized 
in comparison with CS monitor measure-
ments (Dionisio et al. 2013). The exposure 
estimates were used in an epidemiologic study 
in the Atlanta, Georgia, metropolitan area, 
using a time-series design to examine the asso-
ciation between daily exposure to ambient air 
pollution and daily emergency department 
(ED) visits for asthma/wheeze during a 4-year 
study period (1999–2002) (Sarnat SE et al. 
2013). Using a modified set of the previously 
generated exposure estimates, we examined 
the exposure error and between-pollutant 
relationships and quantified potential 
attenua tion of model coefficients in single- 
and bipollutant models at the ZIP code level 
for ambient-generated PM2.5, EC, SO4, CO, 
NOx, and O3 in Atlanta. 

Methods
Estimates of exposure. Three estimates of daily 
exposure to ambient PM2.5, EC, SO4, CO, 
NOx, and O3 were derived for 193 ZIP codes 
in the 20-county Atlanta metropolitan area 
for use in an epidemiologic analysis of cardio-
vascular and respiratory outcomes based on 
data from ED visits. Each metric builds on 
previous metrics, incorporating the coarser 
measurements and model estimates and 
becoming increasingly more finely resolved. 
The three estimation approaches, or “metrics,” 
for exposure to ambient pollution include 
a) CS: CS measurements; b) AQ: a hybrid of a 
statistical model for regional background and 
a dispersion model for the local contribution 
to ambient air quality; and c) PE: a stochastic 
population exposure model. We used the 
AERMOD (American Meteorological 
Society/Environmental Protection Agency 
Regulatory Model) dispersion model, 
version 09292, for the local contribution to 
the AQ metric, and the U.S. Environmental 
Protection Agency’s (EPA) Stochastic Human 
Exposure and Dose Simulation (SHEDS) 
model (Burke et al. 2001) for the PE metric. 
The contribution from indoor sources was not 
included in any of the approaches because of 
the desire to associate exposure to ambient 
pollution with the health outcome. All three 
approaches estimate exposures to ambient 
pollution at each ZIP code centroid in the 
study area. Daily estimates (8-hr maximum 
for O3, 24-hr average for other pollutants) 
for 1999–2002 were generated for the three 
exposure estimation approaches.

CS measurements. CS measurements 
for each pollutant were obtained from 
the Southeastern Aerosol Research and 
Characterization (SEARCH) network (http://
www.atmospheric-research.com/studies/
SEARCH/), the Assessment of Spatial Aerosol 
Composition in Atlanta (ASACA) network 
(Butler et al. 2003), and the U.S. EPA’s Air 
Quality System (AQS) monitoring network 
(http://www.epa.gov/ttn/airs/airsaqs/aqsweb/)
(see Supplemental Material, Figure S1). Details 
regarding measurement methods, imputations 
for filling in missing data, and previous work 
using these monitors to characterize back-
ground air pollution levels have been reported 
previously (Dionisio et al. 2013; Metzger et al. 
2004; Tolbert et al. 2000). Daily 24-hr average 
concentrations of PM2.5, EC, and SO4 were 
taken directly from monitor measurements. 
Hourly concentrations for CO and NOx 
were aggregated to 24-hr averages, and hourly 
concentrations for O3 were aggregated to daily 
8-hr maximum concentrations.

AQ model estimates. AQ model esti-
mates were obtained by combining local- 
and regional-scale model results (based on 
CS measurements) to account for all major 
atmospheric processes, including local contri-
butions (driven by local-scale variation in 
pollutant emissions and meteorology) and 
regional contributions (background levels 
associated with large-scale synoptic patterns). 
The sum of the modeled regional background 
contribution and the local contribution was 
computed hourly to obtain total modeled 
ambient air concentrations at each ZIP code 
centroid for each pollutant being studied. To 
obtain estimates of the regional background 
contribution, we modified an approach devel-
oped to provide population-weighted daily 
averages of ambient pollution concentrations 
(Ivy et al. 2008) to provide spatially resolved 
hourly estimates of regional background 
pollution by removing local-source impacts 
modeled by hour of day and day of week. 
Local-scale pollutant contributions for PM2.5, 
EC, SO4, CO, and NOx at each ZIP code 
centroid were modeled using the AERMOD 
dispersion model, version 09292 (Cimorelli 
et al. 2005), which simulates concentra-
tions of pollutants directly emitted into the 
atmosphere. Because O3 is formed by photo-
chemical processes and has no direct emis-
sions, O3 concentrations were not modeled 
with AERMOD. Similarly, the SO4 concen-
trations estimated from AERMOD were 
from direct vehicle exhaust emissions and did 
not include the secondary SO4 contribution 
due to photochemical transformations in the 
atmosphere. Further details on methodology 
and modeling of the regional contribution, 
local-scale contribution, and computation of 
the AQ metric estimates have been reported 
previously (Dionisio et al. 2013).

PE model estimates. We used the SHEDS 
model (Burke et al. 2001) to derive PE model 
estimates of daily population exposures to 
ambient pollution at each ZIP code centroid. 
The SHEDS model is a stochastic popula-
tion exposure model that uses a probabilistic 
approach to estimate personal exposures for 
simulated individuals of a defined population 
based on ambient concentrations, distribu-
tions of residential AERs and particle infiltra-
tion parameters (i.e., penetration factors and 
deposition rates), and time spent in various 
micro environments (e.g., home, office, school, 
vehicle) from a large database of human 
activity diaries. Key inputs to the model are 
the AQ metric estimates described above, 
time–location–activity data from the U.S. 
EPA’s Consolidated Human Activity Database 
(McCurdy et al. 2000), spatially varying local 
AERs (Sarnat JA et al. 2013), and census tract–
level home-to-work commuting data (Bureau 
of Transportation Statistics 2000; U.S. EPA 
2012). Penetration and decay parameters used 
in the model are specific to each pollutant; 
however, they do not vary spatially or tempo-
rally (see Supplemental Material, Tables S1 
and S2). To derive model estimates for 
exposures to ambient pollution, consistent 
with the CS and AQ metrics, we excluded 
contributions from indoor source emis-
sions for this analysis. For additional details, 
see Supplemental Material, “Population 
exposure metric.”

Statistical analyses. We computed ZIP 
code–level summary statistics for each exposure 
metric for each pollutant. Statistics included 
the annual mean normalized pollutant 
concentrations, as well as the variance across 
days of the normalized pollutant concentra-
tions, for each exposure metric. To allow for 
comparisons across pollutants, we normalized 
ZIP code–specific pollutant concentrations 
for each exposure metric by dividing the daily 
pollutant concentration by the annual average 
CS measurement for that pollutant. We then 
compared the magnitude and spatial variability 
of normalized pollutant concentrations across 
pollutants and exposure metrics.

One standard approach for examining 
the health effects of multiple pollutants is 
to include each pollutant as an independent 
risk factor simultaneously in a single epide-
miologic model (Bell et al. 2007; Tolbert 
et al. 2007). The correlation between the 
exposure estimates, the degree of exposure 
error for each pollutant, and the correlation 
of exposure errors between pollutants must all 
be considered in order to assess the impacts 
of exposure error on health risk estimates in 
a multi pollutant model (Zeger et al. 2000; 
Zidek et al. 1996).

In the present analysis, exposure error, δ, 
was calculated as the difference between two 
exposure metrics. We present three types of 
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exposure error (δspatial, δpopulation, and δtotal). 
The exposure error due to a lack of spatial 
refinement in the exposure estimate is repre-
sented by δspatial = AQ – CS because our air 
quality models add spatial variability to the 
AQ metric compared with CS measurements, 
which lack spatial variability because the 
same CS measurement was used to represent 
exposure in each ZIP code. Exposure error 
introduced when human exposure factors 
are not included in an exposure estimate is 
represented by δpopulation = PE – AQ. Our 
PE metric includes variability due to human 
exposure factors such as time–location–
activity patterns of individuals, commuting 
patterns, and infiltration of ambient pollutants 
to the indoor environment. A third type of 
exposure error, δtotal = PE – CS, represents the 
combined exposure error when both spatial 
variability and human exposure factors are 
not accounted for. δTotal does not represent all 
potential sources of exposure error that may 
be present in a study; instead it represents the 
total exposure error that we were able to assess 
in this analysis. As with the pollutant concen-
trations, daily ZIP code–specific estimates of 
exposure error were normalized by dividing 
by the annual average CS measurement for 
that pollutant to allow for comparison across 
pollutants and types of exposure error. We 
also present the variance calculated across days 
of the normalized exposure error to aid in esti-
mating the degree of bias and attenuation of 
model coefficients.

We calculated the between-pollutant 
Pearson correlations over time for each 
exposure estimation approach—and for each 
type of exposure error—to provide informa-
tion on the collinearity of exposure estimates 
and exposure error that must be accounted for 
in a multi pollutant model. Correlations were 
calculated for each ZIP code individually, 
allowing the range of correlations to be 
compared across the study domain.

Estimates of the level of attenuation of 
model coefficients for single- and bipollutant 
models are presented to aid in the interpreta-
tion of future epidemiologic models including 
two or more pollutants. The attenuation 
factor (λ) for a classical error, single-pollutant 
framework is calculated as

 λ = 1/{1 + [var(δ)/var(xfine)]} [1]

 βobserved = λ × βtrue, [2]

where δ is the exposure error, xfine is the 
exposure metric with the greater degree of 
refinement (i.e., increased spatial resolution 
or inclusion of weighting by population 
factors), var(xfine) is the variance across days of 
xfine, and β represents the model coefficients. 
Assuming that the related epidemiologic 
analysis fits a time-series model separately for 

each ZIP code, β represents the association 
between the health outcome and the daily 
pollutant exposure. For simplicity, we present 
the attenuation factor λx1

 for pollutant x1 in a 
bipollutant model, assuming that pollutant x2 
has no effect (βx2

 = 0), given by the diagonal 
elements of

 λx1
 = S(S + V)–1 [3]

 βobserved,x1
 = λx1

 × βtrue,x1
, [4]

where S is the covariance of the exposure 
metrics with the greater degree of refine-
ment for x1 and x2, and V is the covariance 
of the exposure errors for x1 and x2. For the 
single- and  bipollutant models, an attenuation 
factor of λ = 1 indicates no attenuation (i.e., 
βobserved = βtrue), and λ = 0 (i.e., βobserved = 0) 
indicates null results. An attenuation factor 
of λ > 1 indicates bias away from the null, 
and λ < 0 indicates that the estimated coef-
ficient will be in the opposite direction of the 
true effect. For example, the λ associated with 
δspatial in a single-pollutant model reflects the 
attenua tion of model coefficients due to error 
from incomplete characterization of the spatial 
variation in the concentration of the pollutant 
in question.

All statistical analyses were completed in 
R, version 2.15.1 (R Foundation for Statistical 
Computing; http://www.r-project.org/). All 
mapping was done in ArcGIS 10 (ESRI; 
http://www.esri.com/software/arcgis/). 

Results
This study builds on previous work in which 
single-pollutant epidemiologic models were 
used to estimate the association between 
daily counts of ZIP code–level ED visits and 
ZIP code–specific exposures using the three 
metrics (Sarnat JA et al. 2013; Sarnat SE 
et al. 2013). Related analyses also showed that 
the temporal variation in the AQ measure 
was not always more variable than temporal 
variation in the CS metric (Dionisio et al. 
2013). The goal of the present analysis was 
to examine exposure error and between-
pollutant relationships and how these differ 
by pollutant pair and exposure metric. Using 
the empirical covariance structures allowed us 
to assess potential attenuation of model coef-
ficients in bipollu tant epidemiologic models.

Summary statistics for exposure metrics. 
Figure 1A presents ZIP code–specific 
normalized exposure metrics averaged across 
the entire study period (see Supplemental 
Material, Figure S2A, for an expanded version 
that shows the full distributions for each 
metric). Distributions of pollutant concentra-
tions differ by exposure metric—with the PE 
estimates being consistently equal to AQ esti-
mates for CO or lower than AQ estimates for 
NOx, EC, PM2.5, SO4, and O3—due to the 

penetration and decay parameters used in the 
SHEDS model (see Supplemental Material, 
Tables S1 and S2). There was no spatial vari-
ability for the CS metric because the same 
CS measurement was used for all ZIP codes. 
However, when AQ or PE modeling was used, 
we observed considerable spatial variability 
[i.e., variation among the 193 ZIP code–
specific estimates, as indicated in the box plots 
by a larger inter quartile range (IQR), and a 
larger range from the 5th to 95th percentiles]. 
For all pollutants except CO, PE estimates 
exhibited a lower degree of spatial variability 
than AQ estimates. Local pollutants (CO, 
NOx, and EC) had relatively more spatial 
variability in their AQ and PE metrics than 
did regional pollutants (PM2.5, SO4, and O3), 
which was expected given the variation of local 
source emissions such as traffic at the ZIP 
code level.

Between-pollutant correlations of exposure 
metrics. Box plots of pairwise Pearson 
correlation coefficients of daily, ZIP code–
specific exposure metrics for local–local and 
regional–regional pollutant pairs are presented 
in Figure 1B. All local–local and regional–
regional pollutant pairs showed moderate-to-
strong positive correlations for each metric; 
however, correlations for regional–regional 
pollutant pairs tended to be lower. For the 
regional–regional pollutant pairs, the median 
correlation for each pair was consistent across 
the three exposure metrics. In contrast, for 
each local–local pollutant pair, the correlation 
coefficient for CS measurements was lower 
than the median correlation for the AQ and 
PE metrics. Correlations of local–regional 
pollutant pairs were more varied and typi-
cally weaker than local–local and regional–
regional pollutant pair correlations, with the 
exception of correlations of CO, NOx, and 
EC with PM2.5 (see Supplemental Material, 
Figure S2B).

Spatial variability (described by the 
width of the box plot) was present to varying 
degrees for correlations within the AQ and 
PE metrics, with more spatial variability 
present for local–local pollutant correlations 
than for regional–regional pollutant correla-
tions, especially for the CO–EC and NOx–
EC pairs (Figure 1B). The degree of spatial 
variability for regional–regional pollutant 
pairs was similar for both the AQ and PE 
metrics. There was no spatial variability 
present for the between-pollutant correla-
tions of exposure for the CS metric, given 
that the same CS measurement was used for 
each ZIP code.

Summary statistics for exposure error. 
The magnitude and spatial variability of the 
three types of normalized exposure error 
(δspatial, δpopulation, and δtotal) across pollutants 
are presented in Figure 2A (see Supplemental 
Material, Figure S3A, for the full distribution). 
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The distribution of exposure error across ZIP 
codes was mostly negative (indicating that 
the exposure metric with a greater degree of 
refinement had a lower magnitude), although 
exposure errors were positive for a small 
number of ZIP codes. The magnitude of the 
exposure error varied by type of error, with 
the absolute value of exposure error greater 
for δpopulation and δtotal than for δspatial for 
regional pollutants, and with mixed results for 
local pollutants. With δspatial near zero for the 
regional pollutants (the median absolute value 
of δspatial across ZIP codes was < 0.12, indi-
cating similar magnitude for CS measurements 
and AQ estimates), their total exposure error 
(δtotal) consisted mostly of exposure error due 
to human exposure factors (δpopulation), indi-
cating greater differences in magnitude for AQ 
estimates relative to PE estimates. 

To assess the potential for spatially differ-
ential exposure error, we compared the spatial 
variability of exposure errors across ZIP codes. 
With the exception of δpopulation for CO, the 
spatial variability of exposure error was greater 
for local pollutants than regional pollutants 
(Figure 2A,C). For local pollutants, spatial 
variability was present to varying degrees 
across all types of error [smallest range of 5th 
to 95th percentiles of normalized exposure 
error, –0.64 to –0.13 (EC, δpopulation); largest 
range, –0.85 to 1.73 (NOx, δspatial)], with the 
exception of δpopulation for CO, which was 
near zero because of the use of a penetration 
factor of 1 (i.e., assuming free flow of outdoor 
and indoor air) in the SHEDS model for CO 
(see Supplemental Material, Table S2). In 
contrast, regional pollutants exhibited little 
spatial variability across types of exposure 

error, and the degree of spatial variability 
was consistent within a pollutant and across 
types of error.

Between-pollutant correlations of exposure 
error. The collinearity of exposure error was 
examined based on Pearson correlations 
between daily exposure error for local–local 
and regional–regional pollutant pairs 
(Figure 2B; see also Supplemental Material, 
Figure S3B, for local–regional pairs). The 
correlation of exposure error was highly 
dependent on both pollutant pair and type 
of exposure error. Between-pollutant correla-
tions of exposure error were mostly positive, 
although there were some ZIP codes with 
negative correlations, especially for CO. The 
correlation of exposure error due to a lack of 
spatial refinement (δspatial) was moderate to 
strong for local–local pollutant pairs (median 
correlation over all ZIP codes ranged from 
0.65 to 0.76), and relatively weak for regional–
regional pollutant pairs (median correlation 
ranged from 0.03 to 0.21). The correlation 
for δpopulation showed a near opposite trend, 
with weak, negative correlations of δpopulation 
for CO–NOx and CO–EC (–0.13 and –0.19, 
respectively), and moderate-to-strong positive 
correlations of δpopulation for NOx–EC (0.85) 
and the regional–regional pollutant pairs 
(ranged from 0.52 to 0.77). The magnitude 
of the correlation of total exposure error (δtotal) 
between local–local and regional–regional 
pollutant pairs varied, with median correlations 
of δtotal across ZIP codes ranging from 0.35 to 
0.72 (Table 1, Figure 2B).

Local–local  and regional–regional 
pollutant pairs showed a moderate degree 
of spatial variability in the correlation of 

δspatial (Figure 2B). The patterns of spatial 
variability of the correlation of δpopulation 
are more varied, with local–local pollutant 
pairs showing a larger degree of spatial vari-
ability than regional–regional pollutant pairs 
(5th to 95th percentile for correlation coef-
ficients of 0.56 to 0.93 for NOx–EC, –0.42 
to 0.63 for CO–NOx, and –0.46 to 0.59 for 
CO–EC). Although there was a large range 
of correlations across ZIP codes for δpopulation 
for CO–NOx and CO–EC in particular, the 
bulk of the correlations across the study area 
were relatively weak (25th to 75th percentile 
for correlation coefficients of –0.27 to 0.21 
for CO–NOx and –0.37 to 0.17 for CO–
EC. As reflected in comparisons of δspatial and 
δpopulation, we saw greater spatial variability 
in the correlation of δtotal for the local–local 
pollutant pairs, and very little spatial vari-
ability in the correlation of δtotal for the 
regional–regional pairs.

Variance of exposure error. For regional 
pollutants (PM2.5, SO4, and O3), variance 
across days of the normalized exposure error 
had very little spatial variability (i.e., box 
plots of the variance of normalized exposure 
error are narrow) and was < 0.20 for any 
type of error in any ZIP code (Figure 3A). In 
comparison, with the exception of δpopulation 
for CO, variance of the exposure error, as 
well as spatial variability of the variance, was 
present for local pollutants (Figure 3; see 
also Supplemental Material, Figure S4, for 
the full distribution). For the local pollut-
ants, the magnitude and spatial variability 
of the variance of normalized error differed 
depending on pollutant and type of error, 
with the variance of δspatial and δpopulation 

Figure 1. Relationships between the three ZIP code–specific exposure metrics. (A) Normalized exposure metrics for local and regional pollutants (see 
Supplemental Material, Figure S2A, for full extent of data and outliers). (B) Between-pollutant correlations of exposure for local–local and regional–regional 
pollutant pairs (see Supplemental Material, Figure S2B, for local–regional pollutant pairs). The bottoms and tops of boxes represent 25th and 75th percentiles, 
lines within boxes indicate the median, and the whiskers represent 5th and 95th percentiles; n = 193. 
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for NOx having the largest range of spatial 
variability, whereas the variance of exposure 
error for EC exhibited more modest spatial 
variability.

Attenuation of model coefficients. By 
compiling empirically determined parame-
ters related to the between-pollutant relation-
ships and their associated exposure error 
(Table 1), and utilizing Equation 3, we were 
able to quantify the potential attenuation of 
model coefficients in a bipollutant model. 
Table 1 presents the median values across all 
ZIP codes of the correlations over time and 
the variances across days for pollutant concen-
trations and their associated exposure errors. 
To calculate the attenuation factors, we used 

the individual ZIP code–specific values of 
these parameters (Figures 1B, 2B, and 3A; 
for the full range of parameter values across 
all ZIP codes, see Supplemental Material, 
Figures S2A, S3B, and S4). 

Figure 4 presents the potential attenua-
tion factors for single- and bipollutant 
epidemiologic models, based on empirical 
estimates of the relation ships between 
exposure metrics and their exposure error. 
The attenua tion factors presented for bipollu-
tant models were based on the assumption 
that one pollutant has a true effect on the 
health outcome and the other pollutant has 
no effect. For δspatial, we saw a clear distinc-
tion between local and regional pollutants, 

with more attenuation (typically, λ < 0.6) for 
both single- and bipollutant models of local 
pollutants, and less attenuation for regional 
pollutants (typically, λ > 0.6) [Figure 4A; 
λ  = 1 indicates no attenuation (i .e. , 
βobserved = βtrue), λ = 0 indicates null results, 
λ > 1 indicates bias away from the null, and 
λ < 0 indicates that the estimated coefficient 
will be in the opposite direction of the true 
effect]. The addition of a co-pollutant appears 
to increase attenuation. Results for δpopulation 
and δtotal are more varied, with attenua-
tion factors depending on the pollutant and 
co-pollutant (Figures 4B,C). For δspatial and 
δtotal, we observed notable spatial variability 
in the attenua tion factors (evidenced by wider 
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Figure 2. Relationships between the three types of exposure error. (A) Normalized exposure error for local and regional pollutants (see Supplemental Material, 
Figure S3A, for full extent of data and outliers). (B) Between-pollutant correlations of exposure error for local–local and regional–regional pollutant pairs (see 
Supplemental Material, Figure S3B, for local–regional pollutant pairs). The bottoms and tops of boxes represent 25th and 75th percentiles, lines within boxes 
indicate the median, and the whiskers represent 5th and 95th percentiles; n = 193. δspatial = AQ – CS; δpopulation = PE – AQ; and δtotal = PE – CS. (C) Map showing 
δspatial of NOx for ZIP codes in Atlanta metropolitan area. Blue and brown lines indicate major roads; colors indicate the percentile, where 5% = –0.85; 25% = –0.66; 
50% = –0.18; 75% = 0.63; and 95% = 1.73. 
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box plots) for local pollutants (except for δtotal 
for NOx). For δpopulation, and regional pollut-
ants for δspatial and δtotal, the degree of spatial 
variability depends on the type of exposure 
error, pollutant, and co-pollutants.

For comparison, the attenua tion factors 
for a bipollutant model with one local (NOx) 
and one regional (PM2.5) pollutant are 
presented in Figure 4D, showing significant 
differences in the attenuation factor across 
types of exposure error but smaller differences 
between single- and bipollu tant models. See 
Supplemental Material, Figure S5, for the 
attenuation factors for bipollutant models 
for all local–regional pollutant pairs. Results 
occasionally showed bias away from the null 
(λ > 1) for some bipollu tant combinations 
because of the strong correlations in both 
pollutant concentrations and exposure errors.

Discussion
An improved understanding of the degree 
of exposure error among pollutants and 
their dependent structure is needed to 
properly interpret results from epidemiologic 
models that include multiple pollutants. By 
examin ing three different exposure metrics 
and three types of associated exposure 
measure ment errors, we were able to empiri-
cally estimate bipollu tant relation ships and 
the potential for attenua tion of model coef-
ficients in related bipollu tant epidemiologic 
models. For bipollu tant models with local–
local pollutant pairs, δspatial and δtotal were 
likely to introduce attenuation of model coef-
ficients given the high correla tions between 
local pollutant concentrations [corr(x1, 
x2] > 0.80 for all local–local pollutant 
pairs), unequal and non zero variance 

of the exposure error for each pollutant 
[0.25 < var(δ) < 0.83], and moderate-to-high 
correlation of the exposure error for each 
pollutant pair [corr(δ1, δ2) > 0.52, except 
CO–NOx for δtotal]. For regional–regional 
pollutant pairs, the attenua tion of model 
coefficients was likely to be minimal given 
the relatively low variance of the exposure 
error [var(δ) < 0.16 for all regional pollutants 
and types of exposure error]. The empirical 
quanti fication of the above parameters 
resulted in a predicted attenuation factor due 
to δspatial that was typically < 0.6 for single- 
and bipollu tant models of local pollutants, 
with less attenuation for regional pollutant 
models (typically, λ > 0.6) and more varied 
results for δpopulation and δtotal.

The mean over all ZIP codes of AQ metric 
estimates that incorporated both regional 
background and local pollution contributions 
are similar in magnitude to CS measurements, 
although AQ metric estimates can exhibit 
spatial variability depending on local traffic 
patterns within the ZIP code, particularly for 
local pollutants. With the exception of CO, 
PE metric estimates for each pollutant were 
lower than their corresponding CS measure-
ment because of the infiltration and decay 
parameters incorporated into the SHEDS 
human exposure model and the inclusion of 
time–activity data based on diaries that indi-
cated that individuals spent the majority of 
their time indoors. PE metric estimates for 
CO were similar to AQ metric estimates 
because the penetration parame ter for CO was 
set to 1 (i.e., assuming full penetration of CO 
from the outdoor to the indoor environment). 
Pollutant contributions from indoor sources 
were not included in this study; thus, the 

Table 1. Parameters affecting attenuation and bias in bivariate pollutant models of pairs of local pollutants 
(CO, NOx, and EC) or pairs of regional pollutants (PM2.5, SO4, and O3). 

Parameter CO–NOx
a CO–EC NOx–EC PM2.5–SO4 PM2.5–O3 SO4–O3

AQ Corr(x1,x2) 0.96 0.86 0.88 0.76 0.52 0.62
PE Corr(x1,x2) 0.86 0.84 0.80 0.76 0.49 0.60

δspatial
Var(δ1)b 0.25 0.25 0.83 0.04 0.04 0.05
Var(δ2)b 0.83 0.30 0.30 0.05 0.02 0.02
Corr(δ1, δ2) 0.73 0.65 0.76 0.21 0.03 0.11

δpopulation
Var(δ1) 0.00 0.00 0.32 0.09 0.09 0.10
Var(δ2) 0.32 0.05 0.05 0.10 0.11 0.11
Corr(δ1, δ2)  –0.13 0.85 0.85 0.77 0.52 0.62

δtotal
Var(δ1) 0.25 0.80 0.80 0.12 0.12 0.16
Var(δ2) 0.80 0.33 0.33 0.16 0.16 0.16
Corr(δ1, δ2) 0.35 0.72 0.72 0.70 0.41 0.57

Corr, correlation. Data are presented as medians across all ZIP codes. 
aThe first pollutant in each pair corresponds to x1 and the second to x2. bVar(δ) represents variance of normalized 
exposure error.

Figure 3. Variance of exposure error. (A) Variance of normalized exposure error (δ) for local and regional pollutants (see Supplemental Material, Figure S4, for 
full extent of data and outliers). The bottoms and tops of boxes represent 25th and 75th percentiles, lines within boxes indicate the median, and the whiskers 
represent 5th and 95th percentiles; n = 193. δspatial = AQ – CS; δpopulation = PE – AQ; and δtotal = PE – CS. (B) Map showing variance of δspatial of NOx for ZIP codes in 
the Atlanta metropolitan area. Blue and brown lines indicate major roads; colors represent percentiles, where 5% = 0.58; 25% = 0.72; 50% = 0.83; 75% = 1.14; and 
95% = 4.14. 
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PE metric represents indoor and outdoor 
exposures to ambient pollution originating 
outdoors only.

Air quality models introduce spatial vari-
ability into AQ exposure estimates that is not 
captured when a single CS measurement is 
used for all ZIP codes in a study area. Spatial 
variability was much greater for pollutants 
with predominantly local sources (CO, 
NOx, and EC) compared with pollutants 
dominated by regional source contributions 
(PM2.5, SO4, and O3). This increase in spatial 
variability for local pollutants was mainly 
due to differences in traffic volume and 
patterns among different ZIP codes. Between-
pollutant correlations were strong for local–
local pollutant pairs, and moderate to strong 
for regional–regional pairs, reflecting the 

common emissions sources contributing to 
pollutant concentrations within each pair.

As expected, total exposure error (δtotal) 
for regional pollutants was made up mostly 
of exposure error due to human exposure 
factors (e.g., time–activity patterns, AER in 
the home), with a small contribution from 
unmeasured spatial variability. In contrast, 
for the local pollutants NOx and EC, there 
were substantial exposure error contributions 
from both human exposure factors and spatial 
hetero geneity in ambient concentrations. 
For CO, we saw a near-zero contribution 
from δpopulation (due to full penetration of 
CO indoors).

Potential impact of attenuation on 
epidemiologic model coefficients. In a multi-
pollutant model, the absolute magnitude 

of this bias will depend on the variance of 
the exposure error, the correlation between 
exposure estimates, and the correlation 
between exposure errors.

The present analysis builds upon the 
hypothetical simulation presented by Zeger 
et al. (2000) of predicted bias in regression 
coefficients in a bipollu tant epidemiologic 
model. In a bipollu tant model, we may not 
be concerned with bias if two regional pollut-
ants are included because of the near-zero 
(δspatial) and very low (δpopulation and δtotal) 
variance of exposure error for regional 
pollutants (Figure 3A, Table 1). However, 
in a bipollu tant model including two local 
pollutants, there is the potential for bias and 
attenuation of model coefficients because 
of a higher degree of variance of exposure 

Figure 4. Attenuation of model coefficients in a classical-error, single-pollutant framework and in bipollutant models, assuming that one pollutant has an effect 
and one pollutant has no effect. (A) λ for local–local and regional–regional pollutant pairs due to δspatial. (B) λ for local–local and regional–regional pollutant pairs 
due to δpopulation. (C) λ for local–local and regional–regional pollutant pairs due to δtotal. (D) λ due to δspatial, δpopulation, and δtotal for a local–regional pollutant 
example (i.e., PM2.5, PM2.5 and Nox). See Supplemental Material, Figure S5, for all local–regional pollutant pairs. The bottoms and tops of boxes represent 25th 
and 75th percentiles, lines within boxes indicate the median, and the whiskers represent 5th and 95th percentiles; n = 193. Solid-line boxes indicate attenua-
tion factors for single-pollutant models, and dashed-line boxes represent attenuation factors for bipollutant models. The top row of x-axis labels indicates the 
pollutant effect being considered (e.g., CO), and the bottom row of x-axis labels indicates the relevant model and the presence or absence of co-pollutants (e.g., 
CO, CO + NOx, CO + EC). For example, for the three plots representing attenuation factors for CO, the first plot is the set of attenuation factors for CO in a single-
pollutant model; the second is the attenuation factors for CO in a bipollutant model with NOx, assuming that NOx has no effect; and the third is the attenuation 
factors for CO in a bipollutant model with EC, assuming that EC has no effect. λ = 1 indicates no attenuation, λ = 0 indicates null results. 
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error. The effect in bipollu tant models that 
include one local and one regional pollutant 
will vary, depending on the pollutant pair. 
In addition, empirically determined attenua-
tion factors for single- and bipollu tant models 
show that the potential for attenuation in the 
estimated effects can be quite substantial for 
many pollutants and exposure error types, in 
particular for local pollutants (with the excep-
tion of δpopulation for CO) (Figure 4).

In addition to the potential for bias, the 
results presented here show that spatial vari-
ability is present in the exposure error for 
local pollutants and in the between-pollutant 
correlations of exposure error for local–local 
pollutant pairs. Figure 3B shows how the 
variance of spatial exposure error for NOx 
changed across the study domain, with the 
variance of spatial exposure error being highest 
in the urban core (within and immediately 
surrounding the blue circular line indicating 
a major road), lowest in the central ring of 
our study domain (ring surrounding the 
urban core), and increasing slightly again as 
you extend to the western boundary of the 
study domain. These results highlight the 
importance of charac terizing intra urban varia-
tions in exposure to avoid spatially varying 
differential exposure error. This is a particular 
concern when examining effect modifica-
tion of air pollution health risks obtained 
without spatially resolved exposure estimates. 
For example, observed effect modification 
by ZIP code–level socio economic measures 
(Sarnat SE et al. 2013), which exhibit strong 
spatial patterns, may be due at least in part 
to varying degrees of attenuation bias from 
spatially differential exposure error.

Finally, when multiple pollutants are 
included simultaneously in a model of asso-
ciations with health outcomes, bias away from 
the null may also occur. “Effect transfer” 
(Zidek et al. 1996) occurs when two corre-
lated pollutants are measured with differential 
exposure error, and the effect of the pollutant 
measured with more error is transferred to 
the pollutant measured with less error. In 
this case, a pollutant without an effect on an 
outcome may become associated with it.

Limitations. Limitations of this study 
include uncertainties in the more refined 
exposure metric estimates (including that 
small area variations in pollutant concentra-
tions may not be resolved due to sparsely 
distributed measurements used as inputs) 
and the exclusion of the influence of indoor 
sources. Although it is commonplace to use 
exposure to ambient sources as a proxy for an 
individual’s total exposure in an epidemio-
logic study, the inclusion of indoor sources 
would further enhance study findings.

Our findings may be generally applicable 
to study areas with similar source contribu-
tions (e.g., predominantly traffic-related local 

sources) and housing characteristics (e.g., 
low AERs). For any study area, the methods 
and models presented here may be applied 
if appropriate input data sets are used. With 
the exception of the locally derived AERs, 
all Atlanta-specific input data sets (e.g., CS 
pollutant measurements, traffic patterns, local 
emissions) were extracted from larger, publi-
cally available databases maintained by federal 
and state agencies; thus, similar input data 
sets for any study area could be compiled. If 
local AERs were not available, estimates could 
be made based on published distributions of 
AERs from various parts of the country.

Although the magnitudes of effects may 
differ, we expect that general conclusions 
from our analysis will be applicable to other 
geographic areas. For example, most study 
regions will have some pollutant concentra-
tions dominated by regional sources that are 
likely to remain spatially homo geneous and 
some pollutant concentrations dominated 
by local sources that are likely to be spatially 
hetero geneous within the study area. Thus, 
we believe that our conclusions about the 
spatial variability of exposure error being 
present, and the general likelihood of bias due 
to measurement error for certain pollutants, 
are likely to apply across studies.

In calculating the attenuation factor, we 
assumed a classical exposure measurement 
error framework. We recognize this is a strong 
assumption, but we feel it is more appropriate 
than assuming a Berkson error framework 
because the CS does not necessarily represent 
“average” exposure for any ZIP code on any 
given day. Because exposure measurement 
error is likely to contain both classical and 
Berkson type errors, depending on the pollut-
ants and study design, the assumption of a 
solely classical error framework implies limited 
applicability. Moreover, an assumption of our 
assessment of attenuation was that the effect 
estimate is not subject to residual confounding, 
the association between pollutant concentra-
tion and the health outcome is linear, and 
there is no effect modification between the 
pollutant association in a bipollu tant model. 
Further, we have implicitly assumed that 
the only bias present is additive (the present 
analysis does not consider multiplicative 
bias), and this should not impact the regres-
sion slope. Last, although empirical covariance 
structures and exposure errors have been used 
to quantify potential attenuation in bipollu-
tant models (assuming only one pollutant has 
an effect on the health outcome), our analysis 
does not address the potential for effect transfer 
in a bipollu tant model when both pollutants 
have an effect on the health outcome. A simu-
lation study including the covariance structures 
of data presented here is warranted to quantify 
the effect on model coefficients in a multi-
pollutant model.

In addition to the role of exposure error, 
additional factors must be considered as 
researchers further investigate epidemiologic 
analyses that include multiple pollutants. These 
include the possibility of non linear relation-
ships of the various pollutants with the health 
outcome, inter action or synergism among 
pollutants included in a single epidemiologic 
model, and the possibility of the high correla-
tion we have seen among pollutants leading 
to one pollutant appearing to be associated 
with the health outcome in an epidemiologic 
model when a correlated pollutant is the true 
causal association. A future simulation study 
that examines the applicability of the classical 
exposure measurement error framework and 
the degree of effect attenuation and transfer 
is warranted.

Conclusions
This analysis is one of the first to quantify 
the effects of correlated exposure measure-
ment error in bipollu tant models (Chang 
et al. 2011). To our knowledge, this is the 
first study to look in detail at the effects of 
spatial variation using dispersion models and 
stochastic personal exposure simulators in a 
multi pollutant context. We used empirical 
relation ships to show the potential for bias 
(particularly effect attenuation) in epidemio-
logic model coefficients for bipollu tant models 
[particularly for local pollutants (CO, NOx, 
and EC)] due to the presence of variance in 
the exposure error and correlation between 
pollutants and their errors. Further, we found 
evidence of the potential for spatially varying 
attenua tion and bias due to the spatial vari-
ability present in these parameters on the 
ZIP code level. As researchers move toward 
multi pollutant approaches, we must recog-
nize the potential effects on model coefficients 
depending on the relationships that exist 
between pollutants and their errors.
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