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a b s t r a c t

The adverse health effects of ambient ozone are well established. Given the high sensitivity of ambient
ozone concentrations to meteorological conditions, the impacts of future climate change on ozone
concentrations and its associated health effects are of concern. We describe a statistical modeling
framework for projecting future ozone levels and its health impacts under a changing climate. This is
motivated by the continual effort to evaluate projection uncertainties to inform public health risk
assessment. The proposed approach was applied to the 20-county Atlanta metropolitan area using
regional climate model (RCM) simulations from the North American Regional Climate Change Assess-
ment Program. Future ozone levels and ozone-related excesses in asthma emergency department (ED)
visits were examined for the period 2041e2070. The computationally efficient approach allowed us to
consider 8 sets of climate model outputs based on different combinations of 4 RCMs and 4 general
circulation models. Compared to the historical period of 1999e2004, we found consistent projections
across climate models of an average 11.5% higher ozone levels (range: 4.8%, 16.2%), and an average 8.3%
(range: �7%e24%) higher number of ozone exceedance days. Assuming no change in the at-risk popu-
lation, this corresponds to excess ozone-related ED visits ranging from 267 to 466 visits per year. Health
impact projection uncertainty was driven predominantly by uncertainty in the health effect association
and climate model variability. Calibrating climate simulations with historical observations reduced dif-
ferences in projections across climate models.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Tropospheric ozone is an ambient air pollutant regulated world-
wide due to its adverse effects on human health (Anenberg et al.,
2010) and vegetation (van Dingenen et al., 2009). As a secondary
pollutant, ozone is produced through photochemical oxidation of
carbon monoxide and volatile organic compounds in the presence
of nitrogen oxides and sunlight. Consequently, ozone
hang).
concentrations are highly sensitive to meteorological conditions
and emissions pathways that affect the availability of precursors.
Empirical studies have demonstrated associations between
observed ozone levels and (1) precursor levels (Nail et al., 2011;
Blanchard et al., 2012), and (2) meteorological variables including
temperature, air stagnation, wind speed, and cloud cover at various
spatial and temporal scales (Jacob and Winner, 2009).

Coherent evidence from climate model simulations suggests
that the growing anthropogenic greenhouse gas emissions will
likely result in higher surface temperatures and more frequent
extreme weather events in the future (Intergovernmental Panel on
Climate Change (IPCC) 2012). These environmental changes have
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the potential to increase future ambient ozone concentrations,
which may have important public health implications including
increased mortality and morbidity (Murazaki and Hess, 2006).
Timely knowledge on the health impacts of climate change can play
an important role in supporting regulatory policies that protect
public health and maintain environmental sustainability (Menne
and Ebi, 2005; Frumkin et al., 2008). While numerous studies
have examined projections of future heat-related health outcomes
(Huang et al., 2011; Peng et al., 2011), the number of studies on
future air pollution-related outcomes is more limited (Sujaritpong
et al., 2013).

Previous studies on future ozone projections have predomi-
nantly utilized chemical transport models (CTM) driven by climate
model outputs (Hogrefe et al., 2004; Knowlton et al., 2004; Bell
et al., 2007; Tao et al., 2007; Tagaris et al., 2009; Lei et al., 2012;
Orru et al., 2013). These studies have consistently reported global
and regional increases in future ozone levels. CTMs are 3-
dimensional numerical models that use emissions inventory and
meteorological data to simulate the complex atmospheric chem-
istry and physics involved in ozone formation. While CTMs provide
large spatial coverage and incorporate current scientific knowledge
on environmental processes, one limitation is that their outputs are
deterministic and thus provide only a single projection for a given
scenario with no associated measure of uncertainty. Therefore
uncertainty quantification on health impact projections based on
CTMs has mainly focused on the sensitivity of outputs in response
to different emission scenarios and inter-model comparisons (Post
et al., 2012).

In this paper we describe a statistical framework for projecting
future ozone levels and corresponding emergency department (ED)
visit health impacts. In contrast to CTMs, our statistical approach is
motivated by its ability to provide measures of uncertainty (in
terms of standard errors) for projections under a given scenario.
Our approach is also motivated by the increasing interest in eval-
uating air pollution projection uncertainties that can be used in
public health risk assessment (Mastrandrea et al., 2010).

Our framework involves the following steps. First, using his-
torical observations for the period 1999e2004, we develop a sta-
tistical prediction model of daily ozone concentrations as a function
of meteorological variables and important ozone precursors: non-
methane volatile organic compounds (VOC), and nitrogen oxides
(NOx). Our prediction model builds upon the extensive literature on
statistical models for ambient ozone (Thompson et al., 2001; Cheng
et al., 2007; Camalier et al., 2007; Chang et al., 2010). Findings from
these models have been used for obtaining air quality forecasts, as
well as providing insights on factors that influence ozone concen-
trations. Second, future ozone concentrations for the period 2041e
2070 are then projected using future meteorology from climate
model simulations and projected precursor levels as predictors.
Finally, using a locally-derived concentration-response function,
health impact projections due to climate- and precursor-related
changes in future ozone levels are made. Uncertainties in the
modeled ozone-meteorology/precursor relationship are propa-
gated through the projection stages and quantified. The approach is
applied to the 20-county Atlanta metropolitan area, a region
currently with ozone levels exceeding the US National Ambient Air
Quality Standards.

An additional important advantage of projecting ozone con-
centrations using a statistical model is that it requires considerably
less computational effort compared to CTMs. Variation in climate
simulations by different models is a well-recognized source of
uncertainty (Jun et al., 2008; Knutti, 2010). Due to the effort
required for running CTMs, previous analyses using these models
have typically only examined outputs from one general circulation
model (GCM) or one regional climate model (RCM), which makes
synthesizing findings across studies difficult. In this analysis using
our statistical approach, we made ozone projections based on
simulations from multiple climate models. Climate model outputs
were obtained from the North American Regional Climate Change
Assessment Program (NARCCAP) (Mearns et al., 2009), which is an
international collaboration examining projection variability due to
the choice of GCM and RCM. In this study 8 different GCM-RCM
combinations were examined.

2. Materials and methods

2.1. Data collection

We acquired individual records of ED visits to acute care hos-
pitals in the 20-county Atlanta metropolitan area for 1999e2004.
The ED database is part of the larger Study of Particles and Health in
Atlanta (SOPHIA) (Strickland et al., 2010). Using International
Classification of Diseases 9th Revision (ICD-9) diagnosis codes, total
ED visits due to asthma and wheeze (ICD-9 codes 493 and 786.07)
were aggregated on each day. We restricted the study period to the
warm months of March to October.

Daily 8-h maximum ozone, 24-h average VOC, and 24-h average
NOx concentrations for 1999e2004 were obtained from the Jeffer-
son St. site, a centrally-located monitor in the SouthEastern Aerosol
Research and Characterization (SEARCH) network. Daily meteoro-
logical conditions for 1999e2004, including minimum, maximum
and average temperature, dew-point temperature, total precipita-
tion, and total solar radiation (global horizontal irradiance), were
obtained from the National Climatic Data Center and the National
Solar Radiation Data Base for monitors located at the Hartsfield-
Jackson Atlanta International Airport.

Climate model outputs of daily maximum surface temperature,
3-h precipitation and 3-h solar radiation were obtained from
NARCCAP for the historical period of 1999e2000 and for the future
period of 2041e2070. NARCCAP is a public database of RCM sim-
ulations available as 50 km by 50 km gridded output. All NARCCAP
simulations were conducted under the IPCC Special Report on
Emissions Scenarios (SRES) A2 emissions scenario (Nakicenovic,
2000). The A2 scenario represents the higher end of IPCC emis-
sion scenarios and entails large population increases, high carbon
dioxide emissions, and weak environmental concerns.

To assess uncertainties in RCM projections, we examined
NARCCAP simulations from 8 combinations of different RCMs
driven by boundary conditions of different GCMs, as available at the
time of this analysis. The RCMs include: the Canadian Regional
Climate Model (CRCM, http://www.cccma.ec.gc.ca/data/crcm.
shtml), the Handley Regional Model 3 (HRM3, http://www.
metoffice.gov.uk/precis/), the Regional Climate Model version 3
(RCM3, users.ictp.it/wpubregcm/RegCM3), and the Weather
Research & Forecasting model (WRFG, http://www.wrf-model.org/
index.php). The GCMs include: the Community Climate model
version 3 (CCSM3), the Canadian Global Climate Model version 3
(CGCM3), the Geophysical Fluid Dynamics Laboratory (GFDL)
Climate Model version 2.1, and the United Kingdom Hadley Centre
Climate Model version 3 (HadCM3). Detailed descriptions on the
RCM and GCM characteristics are summarized by NARCCAP online
(http://www.narccap.ucar.edu/). The following 8 RCM-GCM com-
binations were conducted by NARCCAP and examined in this study:
CRCM-CCSM, CRCM-CGCM3, HRM3-GFDL, HRM3-HadCM3, RCM3-
CGCM3, RCM3-GFDL, WRFG-CCSM, and WRFG-CGCM3. For each
combination, we extracted data for the one grid cell that contained
the airport monitoring station, as calibrations were not improved
when considering data from all grid cells. The 3-h data were pro-
cessed to obtain daily total precipitation and total solar radiation
for the historical and future periods.

http://www.cccma.ec.gc.ca/data/crcm.shtml
http://www.cccma.ec.gc.ca/data/crcm.shtml
http://www.metoffice.gov.uk/precis/
http://www.metoffice.gov.uk/precis/
http://users.ictp.it/%7Epubregcm/RegCM3
http://users.ictp.it/%7Epubregcm/RegCM3
http://www.wrf-model.org/index.php
http://www.wrf-model.org/index.php
http://www.narccap.ucar.edu/
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2.2. Ozone prediction models

We considered the following process-based statistical model for
predicting daily 8-hmaximum ozone concentrations: on each day t,

Yt ¼ b0 þ b1NOxt þ b2ðNOxt Þ2 þ b3NOxt logðVOCtÞ þ vt ; (1)

where Yt is the square-root of daily 8-h maximum ozone and εt

represents daily variation (residual error) not explained by the
predictors. The above model is based on work by Nail et al. (2011)
and it is intended to account for the complex non-linear relation-
ship between ozone and its precursors. We further assume the
regression coefficients are linearly dependent on meteorology.
Based on best prediction performance (as described below), in the
final model we parameterized b0 as a function of maximum tem-
perature, solar radiation, and precipitation; b1 as a function of
maximum temperature and precipitation; b2 as a function of
maximum temperature; and b3 as a function of precipitation. These
meteorological variables were selected because of their availability
in climate model outputs. We included all main effects of the
meteorology, even though some are weakly correlated with ozone,
because these variables are related to the ozone production and
removal process (Jacob and Winner, 2009). See Supplementary
Material Section 1 for detailed model specification. Finally, we
allowed for autoregressive residual errors vt in order to model
additional temporal-dependence due to other unmeasured vari-
ables. The residual error accounts for additional physical and
chemical processes that are not captured by the predictors. We
assumed vt ¼ avt�1 þ εt, where coefficient a is a parameter that
controls the strength of temporal correlation, and component εt

represents independent Normal error. Additional model formula-
tions such as inclusion of relative humidity and wind speed as
predictors, transformation of the meteorological variables, and
non-linear effects of the meteorological variables, did not improve
model fit or prediction performance.

We assessed the prediction performance of the ozone models
using an out-of-sample cross-validation approach. Specifically, we
divided the complete dataset into ten parts of equal sample size.
Repeating the process for each part, one part was then treated as a
test dataset while the other nine parts were used for model fitting.
Root-mean-squared errors (RMSE) between the back-transformed
predicted levels and observed levels for each left-out dataset
were evaluated, as well as the empirical coverage probabilities of
the prediction intervals.

2.3. Climate model calibration

Prior to application in ozone projections, we performed a sta-
tistical calibration of the NARCCAP climate model outputs. This was
accomplished by modeling the differences between climate model
outputs and observed meteorology during the historical period of
1999e2000 for each parameter of interest (i.e., daily maximum
temperature, total precipitation, and total solar radiation). For
CRCM-CCSM and WRFG-CCSM, only data during 1999 were avail-
able for calibration. Because our objective was not to project daily
meteorology, but to assess climate change over a long future period,
we considered a rank-based approach that resolves the distribu-
tional difference between two variables. Specifically, let x[i] and z[i]
denote the ith largest value of the observed value and the climate
model output, respectively. The rank-based bias correction assumes
x[i] ¼ G(z[i]) , where G denotes a calibration function. We modeled G
as a non-linear function using penalized cubic splines. We also
constrained G to be non-decreasing in order to maintain a one-to-
one mapping between observed and modeled values. In our
application, the numbers of observed and modeled values were the
same; hence the rank-based approach is equivalent to methods
based on sample quantiles (Maurer, 2007; Zhou et al., 2012). This
calibration procedure was carried out for each of the three mete-
orological variables from each RCM-GCM combination separately.
The resulting calibration functions were applied to corresponding
climate model outputs for the future 2041e2070 period to obtain
calibrated future daily meteorological data. We note that one cen-
tral assumption in this calibration approach is that the bias function
estimated using historical data remains unchanged in the future
period.

2.4. Ozone projections

Future VOC and NOx levels were obtained by multiplying the
1999e2004 VOC levels by 8% and NOx levels by 29%, based on the
A2 scenario comparing 2050 to 2000 emission levels for industri-
alized countries (OECD90) (IPCC, 2000; Hogrefe et al., 2004). To
cover the 30-year future period, we repeated the 6-year historical
VOC/NOx time series (increased by 8 and 29%, respectively) 5 times.
These data where then combined with future daily meteorological
variables (raw and calibrated variables from each of the 8 RCM-
GCM combinations) and used as predictors in the ozone predic-
tion models to obtain time-series of daily ozone forecasts for March
to October during the period 2041e2070. Because the statistical
model was developed based on historical observations, our esti-
mates represent a counterfactual experiment of what ozone levels
would have been if future meteorology, VOC and NOx levels had
occurred in the historical period.

Uncertainties in the ozone predictions were quantified by
Monte Carlo simulations. Specifically, we first generated 5000 re-
alizations of the regression coefficients from a multivariate Normal
distribution based on the parameters’ estimated values and
covariance matrix. For each parameter realization, we generated a
corresponding time-series of the autoregressive vt errors. The
future VOC, NOx, and meteorological variables were then applied to
the 5000 regression equations for each ozone prediction model,
resulting in a total of 5000 simulated time-series of future daily
ozone levels for each climate model combination from which the
projection intervals were obtained. In the end, for each RCM-GCM
combination, our approach incorporated ozone projection un-
certainties from two sources: (1) estimation of the ozone model
parameters (uncertainty in b’s); (2) variations in daily ozone not
explained by the predictors (uncertainty due to vt).

2.5. Health impact projections

Finally, annual excess ED visits (EED) for asthma/wheeze
attributable to future climate-related changes in ambient ozone
levels was estimated by

EED ¼ M �
�
elDX � 1

�

where M is the expected number of annual ED visits; l is the esti-
mated association between 3-day moving average 8-h maximum
ozone concentrations obtained from a Poisson time-series analysis
(See Supplementary Material Section 1); and DX is the estimated
change in 3-day moving average of 8-h maximum ozone levels
between the future period (2041e2070; projected levels) and the
historical period (1999e2004; observed levels). Again a Monte
Carlo approach was used to obtain estimates of EED and their
associated uncertainties. Specifically, 5000 simulations of l were
generated from a Normal distribution based on its estimated value
and standard error from the Poisson model. Then, for each RCM-
GCM combination, 5000 realizations of EED were obtained by
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randomly combining realizations of the 5000 b’s and 5000 DX’s
based on the ozone projections. Here we report the mean, the 2.5%
quantile, and the 97.5% quantile of the EED sampling distribution as
the estimated value and its 95% projection/prediction interval (PI)
for EED, respectively.

Additional details on all the statistical model formulation and
estimation algorithms are provided in the Supplementarymaterials
Section 1.
3. Results

The study included 178,645 asthma/wheeze ED visits (mean of
146 per day) for the 1999e2004 period. Table 1 gives the summary
statistics for the observed ozone, NOx, and VOC levels, and mete-
orological variables. During this period, the average daily 8-
h maximum ozone level at the Jefferson St. monitor was 51.8 ppb
(range: 2.2e139 ppb). NOx and VOC levels were only weakly
correlated with the three meteorological variables (correlation
<0.20).

We estimated that an interquartile range (IQR, 22 ppb) increase
in three-day moving average 8-h maximum ozone concentration
was associated with a 1.033 (95% confidence interval, CI95: 1.017,
1.049) increase in daily asthma/wheeze ED visits during March to
October. The relative risk estimates were robust against increasing
temporal control (Supplementary Fig. S1).
Table 1
Summary statistics of daily 8-h maximum ozone, 24-h NOx, and 24-h VOC levels and
meteorological variables for 1999e2004 (MarcheOctober).

Mean Median SD

Ozone (ppb) 51.8 49.5 21.1
Maximum temperature (�F) 79.1 81.0 10.1
Solar radiation (W/m2) 5128 5484 1787
Precipitation (mm) 0.12 0.00 0.38
NOx (ppm) 0.037 0.028 0.030
VOC (ppmc) 0.255 0.209 0.161

SD: standard deviation.
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Fig. 1. Contour plots of estimated 8-h maximum ozone as a function of NOx and VOC at
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the points represent observed combinations of precursor levels and depict the range of ozo
Parameter estimates in Equation (1) are given in Supplementary
Table S1. Fig. 1 shows daily 8-h maximum ozone levels as a function
of NOx and VOC, given fixed values of maximum daily temperature,
solar radiation, and precipitation. The contour lines denote the
ozone levels predicted by the model and show clear non-linear
relationship. Also higher maximum temperature was associated
with higher ozone levels (panel A versus B); and precipitation was
associated with lower ozone levels (panel B versus C). We found
evidence of moderate temporal correlation between daily ozone
levels with the autoregressive parameter a estimated to be 0.54
(CI95: 0.49, 0.58). Our prediction algorithm resulted in an RMSE of
12.6 ppb (range: 12.4e20.0) in daily ozone concentrations. Pre-
diction intervals obtained from the ozone models were also well
calibrated where the 95% PI’s included the true daily ozone levels
94.3% of the time. Across the entire study period, the out-of-sample
predictions gave an average daily 8-h maximum ozone level of
52.4 ppb (95% PI: 51.2e53.7 ppb), which is similar to the true
observed average value (Table 1).

Across RCM-GCM combinations, the range of correlation be-
tween daily observed and simulated meteorological variables dur-
ing 1999e2000 were 0.62e0.71 for maximum temperature, 0.15 to
0.34 for solar radiation, and �0.06 to 0.06 for precipitation. To
compare the distribution differences between the observations and
climate model output, Supplementary Figs. S2eS4 show the
empirical cumulative distribution function for each meteorological
variable for each RCM-GCM combination. In our study region,
climate simulations consistently produced higher than observed
daily total solar radiation. The distributions of simulated daily total
precipitation differed considerably from the observed data, largely
due to discrepancies in simulating no or low precipitation days.

Table 2 presents the changes in maximum temperature, solar
radiation, and precipitation (MarcheOctober) between the future
period (2041e2070) and the historical period (1999e2004) based
on climate model outputs from the 8 NARCCAP RCM-GCM combi-
nations. Calibration of climate model outputs reduced variability
among the projections as measured by the lower between-model
standard deviation. Direction of the projected changes also
changed for several models and meteorological variables. Overall,
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Table 2
Projected changes in average meteorological conditions (MarcheOctober) between
2041e2070 and 1999e2004. Quantile calibration was based on climate model
outputs from years 1999 and 2000.

Climate models Max temperature
(�F)

Solar radiation
(W/m2)

Precipitation
(mm)

Raw Calibrated Raw Calibrated Raw Calibrated

CRCM-CCSMa 10.6 1.8 1068 65 �0.033 0.028
CRCM-CGCM3 4.1 3.9 860 340 0.004 �0.011
HRM3-GFDL 4.9 4.1 693 206 �0.011 �0.014
HRM3-HADCM3 �0.6 �0.1 �89 �320 0.016 �0.002
RCM3-CGCM3 �1.2 4.3 574 257 0.020 �0.036
RCM3-GFDL �3.6 3.4 417 296 0.015 �0.009
WRFG-CCSMa 4.5 2.5 824 �26 �0.046 �0.021
WRFG-CGCM3 �0.5 2.9 427 165 0.001 �0.029

Between-model
average

2.25 2.86 597 123 �0.005 �0.013

Between-model SDb 4.58 1.48 355 216 0.024 0.019

a Only year 1999 was available for calibration.
b SD: standard deviation.
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using calibrated climate model outputs, we found consistent pro-
jections of increased futuremaximum temperature (3.6%) and solar
radiation (2.4%) and decreased future precipitation (9.8%) in the
Atlanta region compared to observed levels in 1999e2004.

Table 3 presents projected average daily 8-h maximum ozone
levels for 2041e2070 using the raw and calibrated climate model
outputs. The 95% projection intervals account for uncertainties in
the associations between daily ozone levels, and meteorology and
precursor levels. The ensemble estimates were obtained by pooling
Monte Carlo simulations from all RCM-GCM pairs. Overall, average
ozone levels were projected to be 6.0 ppb (11.5%) higher in the
period 2041e2070 compared to the historical period when using
calibrated climate model outputs. Again, we found that using
calibrated climate model outputs reduced the variability of average
projected ozone levels across the different climate model combi-
nations (range: 54.3e60.2 ppb, SD: 1.90 ppb) relative to using the
raw outputs (range: 54.0e74.6 ppb, SD: 6.71 ppb). Since most of the
PIs of the ozone projections overlapped, it was not possible to
identify systematic differences in results by RCM or GCM. We also
note that the projection intervals are relatively low (about 3 ppb)
and are similar across RCM/GCM.

As an indication of the regulatory and health relevance of these
projected ozone levels, we examined the number of days per year
during MarcheOctober with daily 8-h maximum ozone concen-
trations exceeding 75 ppb. This threshold corresponds to the US
National Ambient Air Quality Standard for ozone, above which
levels are considered to be unhealthy for sensitive groups by the US
Table 3
Projected average daily 8-hmaximum ozone concentrations (ppb) (MarcheOctober)
for the 2041e2070 period. 95% projection intervals are given in parenthesis. Esti-
mates are based on 5000 Monte Carlo simulations from ozone prediction model
estimated during 1999e2004.

Climate models Raw Calibrated

CRCM-CCSM 74.6 (72.6, 76.7) 54.3 (52.8, 55.8)
CRCM-CGCM3 65.0 (63.2, 66.7) 57.5 (56.0, 59.2)
HRM3-GFDL 65.7 (63.9, 67.4) 56.9 (55.3, 58.4)
HRM3-HADCM3 61.1 (59.5, 62.8) 58.8 (57.3, 60.4)
RCM3-CGCM3 56.8 (55.2, 58.4) 60.2 (58.6, 61.9)
RCM3-GFDL 54.0 (52.5, 55.5) 59.9 (58.3, 61.6)
WRFG-CCSM 65.4 (63.6, 67.2) 56.8 (55.3, 58.4)
WRFG-CGCM3 56.4 (54.8, 58.0) 57.7 (56.1, 59.2)

Between-model SDa 6.71 1.90
Pooled ensemble 62.4 (53.3, 75.5) 57.8 (53.7, 61.1)

a Calculated using the point estimates.
EPA Air Quality Index. The number of exceedance days during the
historical period was 34 per year. Calibrated climate simulations
projected an increase in the number of exceedance days ranging
from�2.6 to 8.3 (�7%e24%) withmean 2.8 (8.3%) per year between
2041e2070 and 1999e2004. Climate model specific estimates and
95% projection intervals are given in Supplementary Table S2.

We estimated an expected annual ED visit count for asthma/
wheeze of M ¼ 33,551 based on observed data. Fig. 2 shows the
estimated annual EED visits attributable to climate and precursor-
related changes in future ozone levels relative to the historical
ozone level of 52 ppb (i.e., the 3-daymoving average 8-h maximum
ozone concentration during 1999e2004). Across RCM-GCM pairs,
we found consistent increases in estimated EED visits in the future
compared to historical period, especially when calibrated model
outputs were used (range of EED visits point estimates: 267 to 466;
average of 377 across GCM/RCM combinations). We also considered
health impact projections that did not incorporate uncertainties in
future ozone levels (indicated by gray color). Specifically, for each
RCM-GCM combination, we averaged the projected changes across
the 5000 Monte Carlo simulations and used them directly in the
EED visit calculations. This only led to a minor reduction in the
interval lengths.

4. Discussion

This paper presents an analytic framework that combines
observed air pollution, meteorological, and health data, and climate
model simulations for estimating future health impacts of air
quality. For predicting future ozone concentrations, the advantages
and disadvantages associated with using an empirical statistical
model versus a CTM are analogous to that between statistical and
dynamical downscaling of numerical model outputs (Murphy,
1999; Cooney, 2012). One limitation of a statistical model is that
prediction performance can depend on the choice of predictors.
Therefore it is crucial that the projection estimates incorporate
prediction standard errors that can reflect lack of fit, as done here. A
statistical model may also not fully account for the complex non-
stationary spatial relationship between ozone and its predictors.
To minimize this effect, the study area should be restricted to a
geographical region where all variables exhibit limited spatial
heterogeneity, as is the case for ozone and meteorology in Atlanta
(Wade et al., 2006). Consequently, the local projection provided
here does not account for changes in transport of ozone and its
precursors, which can contribute to large projection uncertainties
(Lei et al., 2012). Moreover, the statistical model developed for
projection is specific to both the study location and the chosen
reference period. The complex relationship between precursors,
other chemicals, and meteorology for ozone production is likely to
vary across region and time (Lei and Wang, 2014).

CTM simulations are known to exhibit bias due to errors in in-
puts and inadequate mathematical representation of the underly-
ing atmospheric processes. For example, Davis et al. (2011) showed
that the Community Multiscale Air Quality Model (CMAQ) tends of
underestimate how ozone increases with temperature. In the
health impact analysis by Hogrefe et al. (2004), the R2 value be-
tween observed and CMAQ modeled daily 8-h maximum ozone
values was 0.63, while our ozone prediction model had a slightly
higher average R2 value of 0.66. For CTM projections, changes in
ozone levels are obtained by comparing CTM simulations con-
ducted between a historical and a future period. Here the algo-
rithms describing atmospheric processes are assumed to be
identical in both periods. In contrast, a statistical modeling
approach is based on the empirical association between ozone and
meteorology/precursors, which is assumed to hold in the future
period.
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The gain in computational efficiency for projection of future
ozone levels allowed us to examine EED visits from 8 GCM-RCM
combinations under the common IPCC A2 emissions scenario.
There is evidence that the numerical biases in GCM can be ampli-
fied by RCM (Noguer et al., 1998). Our results demonstrate that by
calibrating and downscaling gridded raw climate model output
against historical observations, we reduced disagreement in the
projection estimates from different climate models. Similar find-
ings have been shown recently for modeling extremes (Ahmed
et al., 2013). An important future research direction is developing
ensemble approaches to synthesize results from different climate
models (Kang et al., 2012; Chanlder, 2013).

This work has potentially significant public health implications.
EDs are likely to be particularly stressed under climate change
based on the specific populations that they serve, including the
very young, elderly, and underserved (Hess et al., 2009). Charac-
terizing acute morbidity via ED visits is thus central for public
health planning and emergency preparedness related to climate
change. We note that our applied findings of 377 EED visits per year
attributable to climate-related changes in ozone levels in the future
compared to historical period in Atlanta suggest only a small per-
centage (z1%) increase over the current expected annual ED visit
numbers of 33,551. However, our estimates should be viewed as
conservative from a public health impacts perspective for several
reasons. ED visits more likely represent severe asthma exacerba-
tion, and do not account for less severe morbidity experienced by
the broader population, for which patients may self-medicate or
visit outpatient clinics.

Previous analyses on the health impacts of future ozone levels
have mainly focused on mortality and hospital admissions due to
cardiovascular and respiratory disease and over a larger
geographical domain. Nonetheless, our results are consistent with
several studies using CTMs in the United States. Under the A1B
business-as-usual emission scenario, Tagaris et al. (2009) found a
moderate increase in annual daily maximum 8-h ozone between
2050 and 2001 in the state of Georgia. Under the A2 emissions
scenario, both Hogrefe et al. (2004) and Bell et al. (2007) found an
increase in summertime daily maximum ozone in the 2040’s and
2050’s over the Atlanta region compared to historical levels. For
example, focusing solely on the impact of altered future climate,
Bell et al. (2007) observed a 4e8% increase in summertime 1-
h daily maximum ozone levels between the 2050’s and 1990’s in
Atlanta using current-day precursor levels. The average number of
8-h maximum ozone NAAQS exceedance days per summer were
estimated to increase to approximately 34 in the 2050’s compared
to approximately 28 in the 1990’s (a 21% increase) (Bell et al., 2007),
similar to the estimated increase in ozone exceedance days of �7%
to 24% per year in the current analysis. Across 50 eastern US cities in
the Bell et al. study, climate-related changes in ozone were pro-
jected to result in an average 2.1% increase in hospital admissions
for asthma. This estimated percentage increase in hospital admis-
sions was larger than observed in the current analysis for ED visits.
Comparison of results, however, is difficult considering the
different geographic scales, health outcome types, and ages
considered (e.g., focus on the nonelderly by Bell et al.) and differ-
ences in specificity of the concentration-response function (e.g.,
Bell et al. applied a previously published function observed for the
Seattle population).

The proposed framework to project future ozone levels can also
be utilized to examine additional uncertainties. First, this study
only examined the SRES A2 scenario in order to compare variation
due simulations from different GCM/RMC combinations; however
different emission scenarios can contribute large variability in
projections (Tao et al., 2007; Lei et al., 2012). Second, we only
considered one scenario for future VOC and NOx levels. Other future
projections of changes in VOC/NOx levels can be used to account for
technological development and policy implementations in
response to climate change (Liao et al., 2007; Wardekker et al.,
2012). Particularly, we did not distinguish biogenic versus anthro-
pogenic VOC. Because biogenic emission is more sensitive to
climate change, a more in-depth account of VOC associated with
future vegetation growth is desirable (Guenther et al., 2012).

For the IPCC 5th Assessment Report, future climate simulations
have been conducted under 4 representative concentration path-
ways (RCPs), reflecting a range of possible trajectories of future
greenhouse gas concentrations (Moss et al., 2010). The A2 scenario
in this study falls within the higher end of the RPC projections
based on future temperature increases (Rojelj et al., 2012).
Concurrently, a set of Shared Socio-economic Pathways (SSPs) have
been developed to examine how various socio-economic scenarios
can result in future climates associatedwith the 4 RCPs (van Vuuren
et al., 2011). Under different storylines, the SSPs include quantita-
tive projections in population demographics (accounting for
fertility and migration), urbanization, and economic development
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from different projection models. The SSP data will play an
important role in evaluating additional uncertainties related to
health impact assessment not examined in this study. For example,
health impact projections can be sensitive to age-structure because
children and the elderly may be more susceptible to the acute
health effects of air pollution (Silverman and Ito, 2012; Park et al.,
2013). Sensitivity to changes in wealth distribution is also
possible as ED utilization varies across socioeconomic strata
(Largent et al., 2012), possibly due to disparity in effective asthma
management and access to health care (Ungar et al., 2011). Finally,
population growth and the influence of increasing asthma preva-
lence, especially in vulnerable populations, should also be consid-
ered (Moorman et al., 2012.) In this study, uncertainty in the health
effect of ozone contributes considerably in the health impact in-
terval estimates. This underscores the need of continual epidemi-
ological research on identifying vulnerability to environmental
stressors among sub-populations and obtaining the corresponding
concentration-response functions for health impact assessment.

In summary, we describe a computationally efficient statistical
modeling approach to project future ozone level and its health
impacts. We found an increase in ED visits due to asthma and
wheeze that is attributable to future increases in ambient ozone
concentrations during 2041e2070 in the Atlanta metropolitan area.
Sensitivity of EED projections to choice of climate model combi-
nation, climatemodel calibration, and ozone projection uncertainty
was assessed. Ultimately, uncertainties in the EED projections were
mainly due to uncertainties in the health association and climate
model variation.
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