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ABSTRACT: A Bayesian source apportionment (SA) method
is developed to provide source impact estimates and associated
uncertainties. Bayesian-based ensemble averaging of multiple
models provides new source profiles for use in a chemical mass
balance (CMB) SA of fine particulate matter (PM2.5). The
approach estimates source impacts and their uncertainties by
using a short-term application of four individual SA methods:
three receptor-based models and one chemical transport model.
The method is used to estimate two seasonal distributions of
source profiles that are used in SA for a long-term PM2.5 data set.
For each day in a long-term PM2.5 data set, 10 source profiles are
sampled from these distributions and used in a CMB application,
resulting in 10 SA results for each day. This formulation results
in a distribution of daily source impacts rather than a single value. The average and standard deviation of the distribution are used
as the final estimate of source impact and a measure of uncertainty, respectively. The Bayesian-based source impacts for biomass
burning correlate better with observed levoglucosan (R2 = 0.66) and water-soluble potassium (R2 = 0.63) than source impacts
estimated using more traditional methods and more closely agrees with observed total mass. The Bayesian approach also captures
the expected seasonal variation of biomass burning and secondary impacts and results in fewer days with sources having zero
impact. Sensitivity analysis found that using non-informative prior weighting performed better than using weighting based on
method-derived uncertainties. This approach can be applied to long-term data sets from speciation network sites of the United
States Environmental Protection Agency (U.S. EPA). In addition to providing results that are more consistent with independent
observations and known emission sources being present, the distributions of source impacts can be used in epidemiologic
analyses to estimate uncertainties associated with the SA results.

■ INTRODUCTION

Air quality standards are driven, in part, by health impacts of air
pollutants, and the policies to control sources of air pollutants
are often evaluated by improvements to human health. Ambient
air pollution has been estimated to contribute to greater than 3
000 000 premature deaths worldwide in 2010; of this burden,
the vast majority has been attributed to fine particulate matter
(PM2.5).

1 PM2.5 health impacts include both respiratory and
cardiovascular health outcomes.2,3 Given the potential health
impacts, the United States Environmental Protection Agency
(U.S. EPA) has set National Ambient Air Quality Standards
(NAAQS) for PM2.5, and a major goal for states and regional
communities is to meet those standards and protect public
health. It is suspected that PM2.5 health effects vary by
composition and source and may depend upon the mixture of
pollutants, leading to efforts to estimate relationships between
sources of PM2.5 and health effects.4−8

Controlling ambient PM2.5 concentrations ultimately means
controlling sources of PM2.5, which requires techniques for
estimating source contributions. However, PM2.5 sources

typically emit a mixture of pollutants, including gases and
particles, which mix in the atmosphere and can undergo
chemical transformations prior to impacting a specific receptor
location, making it difficult to quantify impacts. Source
apportionment (SA) involves one or more techniques that
are used to quantify how individual sources contribute to PM2.5

concentrations. SA techniques that rely on statistical analysis of
observations at monitor sites are referred to as receptor models.
These techniques include chemical mass balance (CMB) and
positive matrix factorization (PMF). In addition, chemical
transport models (CTMs) have used sensitivity parameters to
estimate source contributions. These different SA approaches
often result in source contributions that can differ in magnitude
and/or are poorly correlated (see Table S1 of the Supporting
Information). Determining which method’s set of source
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contributions is the most accurate is further complicated
because source impacts, in general, cannot be directly
measured. Without direct measurement of source impacts,
methods for estimating uncertainty vary across the SA
approaches, making it difficult to directly compare uncertainties
across methods. For example, some methods (e.g., CTMs) have
not provided source impact estimate uncertainties, while others
use bootstrapping or propagation of errors to estimate
uncertainties.
In this work, we build on an approach to combine multiple

SA model results to train a CMB method for long-term
application9−11 by extending the ensemble technique to include
a Bayesian formulation of weights used in ensemble-averaging
source impacts. In a Bayesian approach, probabilistic
distributions of the parameters of interest are estimated using
prior distributions, along with information from observed data.
Bayesian analysis has been used in a variety of applications and
can be especially useful for estimating model parameters that
are weakly informed by the observed data.
Bayesian techniques have previously been used in SA of

PM2.5
12−18 to estimate the model parameter, including source

impacts, which are positive and lognormally distributed. In this
work, a method is developed that incorporates Bayesian
techniques to estimate SA uncertainties. These uncertainties
are then used as weights to estimate an ensemble average of
source impacts similar to work by Lee et al.10 and Balachandran
et al.9 The Bayesian framework for estimating SA uncertainties
requires first placing prior distributions about a subjective
(expert-driven) view of uncertainties associated with each SA
method. Next, the root-mean-square error (RMSE) between an
initial ensemble average and each individual method is used as
the updated information about source impact uncertainties.
Using an inverse gamma (IG) prior to a normal data likelihood
leads to an IG posterior distribution of uncertainties for each
SA method. These uncertainty distributions are then used as
weights to obtain an updated ensemble. One advantage of this
method is that it obviates the need to assume lognormally
distributed data sets. This assumption can be problematic for
receptor models, which can result in zero or negative impacts.
Also, the approach incorporates several different models and
provides a way to compare methods using a consistent
estimation of uncertainties.
The objective of this work is to refine our previously

developed ensemble approach for apportioning PM2.5 to
sources by incorporating a Bayesian technique to obtain
multiple realizations of ensemble-averaged source impacts,
which are subsequently used for deriving multiple realizations
of source profiles. We then compare results using this approach
to results using our previous ensemble approach as well as
results using individual receptor models.

■ METHODS
Ensemble Averaging. The method developed here

extends an ensemble SA method10,9 and comprises three
steps: (1) Bayesian ensemble-averaging source impacts over a
short-term time period, (2) using these source impacts to
develop regionally and seasonal specific source profiles, and (3)
using the new source profiles to apportion sources for a long-
term data set. We use SA results from three receptor models
and one chemical transport model for July 2001 and January
2002. We use two CMB methods: CMB-LGO,19 which
incorporates gas-based constraints, and CMB-MM,20 which
uses molecular marker observations. We use one factor analytic

method, PMF21 and one CTM, the community multiscale air
quality (CMAQ) model.22 We use results from previous work
for CMB-MM23 and CMAQ with tracers.24 We also applied
EPA-CMB, version 8.0 (referred to here as CMB-RG, for
“regular”),25,26 but these results were used for comparison and
were not included in the ensemble.
In the work developed by Balachandran et al.,9 an ensemble

average of source impacts is calculated in a two-step process.
First, an equally weighted average of source impacts is
calculated (eq 1, with N = 0 in eq 2)
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where wjlk is the weight for source j from method l on day k and
Sjlk is the source impact for source j from method l on day k.
Next, the root-mean-square error (RMSE) is calculated
between each method and the ensemble average (eq 3).
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The uncertainty is set to be equal to the RMSE of each method,
and the square is used to weight an updated ensemble average
(eq 2, with N = 2 and τ = RMSE). Finally, the uncertainty of
the updated ensemble average is calculated using weighted
propagation of errors with covariance.9 To compare the
ensemble to the individual SA methods, we use the root-
mean-square average of the daily source impact uncertainties to
reflect the overall method uncertainty (σ̅Sjlk)

9,27 (eq 4).
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Bayesian Ensemble Averaging. One limitation of the
method described above is that, for any source (for any
method), the estimated source impact uncertainty is the same
for each day, because the RMSE does not change on a daily
basis. A more realistic interpretation is that the RMSE should
be viewed as an “average” uncertainty and that the true
uncertainty comes from a distribution whose mean is equal to
the RMSE. In Bayesian ensemble averaging, a posterior
distribution of uncertainties is calculated using a prior
distribution and treating the estimated RMSEs as the data.
For each day of the short-term application of the four SA
methods, source impact uncertainties are sampled from the
Bayesian-based posterior distribution using a Monte Carlo
technique. These uncertainties are used as weights to calculate
ensemble-averaged source impacts.
It is assumed that estimates of source impacts vary randomly

around “true” source impacts (see the Supporting Information
for further discussion of potential biases). Therefore, Sjlk, the
impact from source j and method l on day k, can be viewed as a
surrogate measure of the true source impact and that the
average of these methods, Sj̅k, can be treated as the true source
impact. A consequence is that that these errors are normally
distributed, so that for any day k

τ− ̅ ∼S S normal(0, )jlk jk jlk
2

(5)
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We wish to obtain posterior samples of τjlk
2 and use them to

calculate an ensemble average using eqs 1 and 2. First, we
assign an IG (scaled inverse χ2) distribution to each variance
component. The IG distribution is specified by a density
function with two known parameters α and β and denoted as
IG(α, β).
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The error of the data [Sjl(k = 1), ..., Sjl(k = K)] with respect to
the average has a likelihood given by the normal density.
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The posterior distribution of τjlk
2 given the data is found from
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The last expression is proportional to an IG distribution.
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It is important to note that the above distribution has mean
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and for small values of α and β, the mean is approximately the
square of the RMSE in eq 3. Typically, prior information about
τjlk
2 can be incorporated in α and β. We approach this method in
two ways. To reflect a lack of knowledge, we can use non-
informative priors by setting α = β = 0.0001. In addition, we
can use the distribution of method-specific uncertainties and
have informative priors (see Figure S1 of the Supporting
Information). For CMAQ, we use non-informative prior
information because uncertainties are not directly available
from the model application. Again, this allows us to sample
multiple realizations of weights (i.e., uncertainties) that are used
in ensemble averaging. Ensemble averaging is conducted for 30
days in the summer (July 2001) and 30 days in the winter
(January 2002). For each day in the ensemble, we used 30
samples from the posterior distributions, resulting in 30
ensemble-averaged source impact estimates for each of the 30
days in the short-term period.
Development of Seasonal Source Profiles. We develop

source profiles in the same manner as Lee et al.10 We solve the
chemical mass balance equation (eq 11), where Ci is the
measured concentration of species i, and treat the source profile
matrix, f ij, as the unknown and the source contribution, Sj, as
known using the ensemble-based source impacts (S ̅j).

= ̅ +C f S ei ij j i (11)

The source profiles, f ij, are recalculated using a nonlinear
optimization program (the Lipschitz Global Optimizer) to
minimize the χ2 value
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where σCik

2 is the square of the measurement uncertainty of
species i on day k. Source profiles, f ij, are estimated
simultaneously, for each day, for the primary sources GV,
DV, DUST, BURN, and COAL. The optimization is con-
strained to ensure that estimates of new source profiles are
realistic. These constraints include that the sum of PM2.5
species in the source profiles, accounting for mass from metal
oxides and organic matter, is less than 1. There are also lower
and upper bounds for all species in the derived source profiles.
These bounds are set to be between 1/3 and 3 times the average
values in measurement-based source profiles (MBSPs).19 When
3 times the average for a specific species is greater than 1, the
upper bound is set to 0.99.
This optimization is conducted for each set of ensemble-

averaged source impacts. For the standard ensemble, we use
ensemble-averaged source impacts from Balachandran et al.9 to
calculate ensemble-based source profiles (EBSPs) for 30 days in
July 2001 (summer) and January 2002 (winter) each. For the
Bayesian ensemble, source profiles are derived for both the
non-informative prior and informative prior cases. We sample
30 estimates of weights for each of the 30 days in the ensemble;
this leads to 900 source profiles for summer and winter each,
which represent distributions of two seasonal Bayesian
ensemble-based source profiles (BBSPs). For the EBSPs, the
average of the 30 source profiles is used in the long-term SA
and the standard deviation is treated as the source profile
uncertainty. For the Bayesian ensemble, profiles used in the SA
are sampled from the distribution of 900 source profiles.
Because we have 30 replicates of 30 days in the ensemble, we
calculate variability for each species in the source profiles in two
ways. We calculate 30 standard deviations across the replicates,
r, for each day, k (i.e., within day variation) (eq 13), and 30
standard deviations across the days, k, for each replicate, r (i.e.,
between day variation) (eq 14).
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SA for a Long-Term Data Set. Long-term SA is conducted
for a 9.5 year data set (8/1/98−12/31/07) with 3107 days of
measurement data collected from the Jefferson St. SEARCH
site (JST) in Atlanta, GA.28 We use a method that uses gas
concentrations of SO2, CO, and NOx to constrain the solutions
and is referred to as CMB-GC and very similar to CMB-LGO,
another method that uses gas constraints.19 We conduct SA
using MBSPs, EBSPs, and BBSPs for nine source categories:
gasoline vehicles (GV), diesel vehicles (DV), dust (DUST),
biomass burning (BURN), coal combustion (COAL), and
ammonium sulfate, ammonium bisulfate, ammonium nitrate,
and other organic carbon (OC), which largely represents
secondary organic carbon (SOC). We use winter EBSPs and
BBSPs from November to March and summer EBSPs and
BBSPs from April to October. When using BBSPs, 10 source
profiles are sampled from the 900 distributions and result in 10
SAs for each day. This formulation results in a distribution of
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10 daily source impacts rather than a single value with an
estimated uncertainty. The average and standard deviation of
the 10 SA results are treated as the daily source impact and
uncertainty, respectively. These are compared to EBSP- and
MBSP-based source impacts and uncertainty, which are
calculated using an effective variance approach.26 We also
compare results to using the CMB-RG and PMF.21,26 The
CMB-RG and PMF results were available from 1/1/99 to 12/
31/04 and used in earlier ensemble studies.9,10

■ RESULTS AND DISCUSSION
Ensemble Averaging. We evaluate the ensemble method

for each of the three steps. First, we evaluate all three cases of
the ensemble-averaged source impacts (standard, Bayesian non-
informative priors, and Bayesian informative priors). We expect
the overall averages and uncertainties to be very similar because
the mean of the IG distribution should approximately equal the
RMSE; however, this may not always be the case with
informative priors. All three cases of ensemble averaging result
in average source impacts and overall uncertainties that are very
similar, indicating that the ensemble is stable (see Table S2 of
the Supporting Information).
Source Profile Variability. The distribution of species

BBSPs, shown as boxplots, of σf ij(r) (between day variation) is

greater than σf ij(k) (within day variation), indicating that
between day variation is greater than within day variation
(summer BURN profile using non-informative priors in Figure

1). In addition, the average ratio of the between day variability
to within day variation, [σf ij(r)/σf ij(k)], ranges from 1 (e.g., Pb
and Zn in DUST profiles) to more than 16 (Si in summer
DUST profile) (see Tables S3 and S4 of the Supporting
Information). BBSPs are expected to be more variable across
days than within days because ensemble-averaged source
impacts used to derive source profiles have greater variability
across days than within days. This indicates that variability in
meteorology (e.g., because of changes in source region,
atmospheric processing, and emission composition) plays a
more important role in source profile variability than the
uncertainty of ensemble source impacts that were used to
derive the source profiles.
The new source profiles derived using Bayesian and standard

ensembles are most different from MBSPs for BURN and
COAL (see panels a−e of Figure S2 of the Supporting
Information). BURN profiles show strong seasonality for Br,
Ca, NH4, and K, which are higher in summer profiles (see
Figure S2d of the Supporting Information). This suggests that
seasonal variability may be driven in part by variation in fuel
type because summer impacts from biomass burning have
contributions from long-range transport of western U.S.
wildfires, whereas winter/early spring impacts are expected to
be dominated by the local prescribed fires that occur
predominately in the early spring. In addition, the summer
BURN profiles are enriched in Ca, suggesting entrainment of
crustal material in summer BURN emissions. Bayesian-derived

Figure 1. Boxplots of within day variation [σf ij(k)] and between day variation [σf ij(r)] for 16 species in the BURN summer Bayesian profile using

non-informative priors (BBSP-NIP).
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COAL profiles also have differences from the MBSP profile
(see Figure S2e of the Supporting Information). Most
significantly, the Bayesian COAL profiles have lower OC
than MBSPs. In addition, there is a distinct seasonality: higher
OC in winter versus summer. This is in contrast to the EBSP
COAL profiles derived by Lee et al.,10 which have higher OC in
summer than in winter, likely because of the ability of this
method to include some secondary OC formation.
New GV source profiles have OC/elemental carbon (EC)

ratios of ∼2.2, very similar to the MBSP ratio of ∼2.3. For DV,
the EC/OC ratio is approximately ∼4.1, slightly higher than
MBSP ratios of 3.7. Some species, such as OC, have smaller
variation in OC in GV than MBSPs. In addition, the OC/EC
ratios in GV profiles do not show a distinct seasonality. DUST
profiles are very similar to MBSPs. However, DUST profiles
derived by Lee et al.10 had ∼0.2 OC, higher than in this study
(∼0.07), suggesting that the DUST profiles derived in this
work do not reflect a mixed dust source containing traffic dust
emissions.
Source profiles are also evaluated by analyzing the

distributions of species in the BBSPs (see panels a−e of Figure
S4 of the Supporting Information). The limits of species
concentrations were set to be between 1/3 and 3 times the
average values in MBSPs. For some species, their values in the
BBSPs are distributed between these limits; these are typically
major and tracer species for a given source. However, the
modes of these distributions are typically the lower limit and,
occasionally, the upper allowable limit. For example, for about a
third of the days, the Bayesian summer BURN profiles result in
EC values of 0.003, the minimum allowable limit (see Figure
S4d of the Supporting Information). This suggests that, for
those days, BURN profiles may not have converged to a
realistic source profile. However, because this occurs only in a
minority of days and 10 of 900 source profiles are sampled for
each day in the long-term SA, the effect is minimal. A
consequence of this is that uncertainties of BBSPs are not
necessarily lower than MBSPs. Nevertheless, for some

important tracer species, such as potassium in BURN, the
distributions show distinct seasonality and variation. In the
winter, the distribution of potassium is tighter and has a lower
mean than in the summer (see Figure S4d of the Supporting
Information).

Long-Term SA. Both ensemble methods affect the amount
of mass apportioned to SOC and biomass burning by exhibiting
strong seasonal differences. When using CMB-RG and CMB-
GC with MBSPs, wintertime SOC levels are comparable to or
slightly greater than summertime levels (Figure 2 and Table S5
of the Supporting Information). PMF also has little seasonal
variation in SOC but suffers from potentially underestimating
SOC in the summer. CMB-GC has a clear summer/winter split
for SOC of 2.66/1.41 μg m−3 with BBSPs and 2.55/1.81 μg
m−3 with EBSPs. The largest seasonal difference using BBSPs
and EBSPs is for biomass burning. The summer/winter split is
1.63/3.95 μg m−3 with BBSPs and 1.21/2.26 μg m−3 with
EBSPs. Having more biomass burning impacts in the winter is
expected because both prescribed fires and fireplace usage are
greater in these months. This seasonal variation is only slightly
evident in CMB-GC with MBSPs (1.59/1.73 μg m−3) and PMF
(2.70/2.85 μg m−3). Seasonal variation is also seen for GV
using BBSPs and EBSPs, which are thought to have greater
impacts in winter when cold-start emissions contribute
significantly to GV emissions and when meteorological
conditions lead to less dispersion.
In CMB, the reduced χ2 value is often used as a metric for

goodness of fit. Using BBSPs leads to comparable but higher
reduced χ2 values than with EBSPs or MPSPs (Table 1).
Nevertheless, one important limitation of receptor models that
is addressed with BBSPs is that zero-impact days are drastically
reduced, a consequence of averaging 10 SA results per day.
Typical of receptor models, all three predict total mass to
approximately 90% of measured PM2.5.
Source impact uncertainties using BBSPs are generally

smaller than using EBSPs and MBSPs for all source categories,
except biomass burning (see Figure S3 of the Supporting

Figure 2. Average source impacts and overall uncertainties (as defined in eq 12) for primary source categories and SOC from 1999 to 2004 (results
are not shown for ammonium sulfate, ammonium bisulfate, and ammonium nitrate).
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Information). Because the uncertainties in BBSPs come from
the standard deviation of 10 sets of SA, the higher uncertainties
in biomass burning are reflective of a higher variation in BURN
source profiles. This indicates that biomass burning impacts are
a major source of uncertainty in SA work. In addition, the 10
sets of SA can each be used for 10 different epidemiologic
analyses. This can provide a direct way to estimate uncertainties
associated with the SA results in health analyses.
Evaluation of the Method. A major assumption in our

method is that SA errors between each method’s source impact
and the ensemble average are normally distributed with a mean
of 0. Three SA methods, CMB-GC with MBSPs, CMB-RG, and
PMF, had results for 1994−2004, of which July 2001 and
January 2002 results for CMB-GC and PMF were used in the
ensemble. We compared the 1999−2004 results against the
long-term SA from both Bayesian-based ensemble cases.
Histograms of errors between Bayesian-based source impacts
and CMB-GC with MBSPs, PMF, and CMB-RG (see Figure S4
of the Supporting Information) show that the errors can be

reasonably taken to be normally distributed, supporting eq 5, a
major assumption in this work. In addition, the error
histograms are not centered at 0 for winter time SOC and
BURN impacts from CMB-based methods using MBSPs. This
indicates the distinct bias of traditional CMB-based methods:
winter time SOC is overestimated, and winter time BURN
impacts are underestimated. In addition, SOC impact errors
from PMF are centered at ∼1 in the summer, indicating an
overall underestimation of summertime SOC from PMF (see
the Supporting Information for further discussion of bias).
To further evaluate the various SA methods, we compare

results for BURN and SOC impacts to independent measure-
ments of levoglucosan, water-soluble organic carbon (WSOC),
and water-soluble potassium (K+). In 2007, a field campaign
was undertaken to measure levoglucosan, a tracer for biomass
burning, and WSOC, at the South Dekalb (SDK) site located
approximately 10 miles southeast of JST. Given this proximity,
the measurements of levoglucosan and WSOC at SDK are
taken as representative of conditions of JST. There are a total of
55 samples, taken every sixth day, and we compare BURN and
SOC impacts from five SA methods for the corresponding days:
CMB-GC with MBSPs, EBSPs, two BBSPs (with non-
informative and informative priors), and PMF. It should be
noted that PMF was rerun for a data set from 1999 to 2007 that
included fractionated OC data. We make three comparisons:
BURN impacts with both levoglucosan and K+ measurements
and the sum of BURN and SOC impacts with WSOC (Figure 3
and Table S5 of the Supporting Information).
All five of the SA methods apportion the sum of BURN and

SOC impacts similarly, and all methods have similar
correlations. The highest correlations are for CMB-GC−
MBSP and PMF (R2 ∼ 0.7) and the lowest correlations are
for CMB-GC−BBSP using informative priors (R2 ∼ 0.6)
(Figure 3). However, the methods split the WSOC into BURN
and SOC fractions differently. The BBSPs have the highest
correlation (R2 ∼ 0.5−0.6) between BURN impacts and
levoglucosan, while the other methods have R2 ∼ 0.02−0.3.

Table 1. CMB-GC SA Evaluation Metrics Using Four Source
Profile Sets for 8/31/98−12/31/07 (3107 Days of SA
Results out of 3149 Total Days): BBSPs with Informative
Priors (BBSP-IP), BBSPs with Non-informative Priors
(BBSP-NIP), EBSPs, and MBSPs

BBSP-IP BBSP-NIP EBSP MBSP

reduced χ2 5.28 5.70 3.45 4.86
predicted/observed PM mass 0.94 0.93 0.90 0.87

zero impact days

informative priors non-informative priors EBSP MBSP

GV 0 0 0 0
DV 3 6 204 154
DUST 0 0 15 54
BURN 0 0 4 5
COAL 9 9 184 267
SOC 24 25 60 25

Figure 3. Comparison of source impacts for BURN and SOC and WSOC, levoglucosan, and K+. The first row compares BURN and levoglucosan.
The second row compares BURN and K+. The last row compares the sum of SOC and BURN impacts and WSOC.
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The BBSPs also have the highest correlation (R2 ∼ 0.5−0.6)
between BURN impacts and K+.
WSOC is viewed as having two major sources: biomass

burning and secondary organic aerosol (SOA) formation.29,30

The Bayesian approach produces a higher correlation between
biomass burning and both levoglucosan and water-soluble
potassium than the other methods, suggesting a more accurate
split between biomass burning and SOC. Using non-
informative priors produces a higher correlation with
levoglucosan than using informative priors and may be due
to the influence of CMAQ. There is a greater influence from
CMAQ when using non-informative priors because all SA
methods are essentially treated equally. CMAQ is weighted less
when using informative priors. Because there is no accepted
method for calculating uncertainties in CMAQ, we still use
non-informative priors for CMAQ, while the other SA methods
use informative priors. This further suggests that uncertainties
calculated by the routine-specific approaches are not appro-
priate in comparing the accuracy of the different SA methods.
One limitation of the ensemble-averaging method is that it is

dependent upon short-term applications of CMAQ (and CMB-
MM, but it expected that CTMs will be used more than CMB-
MM in ensemble averaging). As more CTM-based SA is
conducted, the Bayesian method should be applied using short-
term applications for different time periods. The use of
informative priors led to lower correlations between BURN
impacts and measured levoglucosan than with non-informative
priors. However, SA results using non-informative priors are, in
general, highly correlated with informative priors. In this work,
we use IG priors with a normal likelihood function, in part,
because the resulting posterior distributions have closed-form
expressions that can be sampled from efficiently. The use of
non-conjugate priors may lead to improved results.
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