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h i g h l i g h t s

< We ensemble averaged three receptor models and one chemical transport model.

< We develop a method to calculate new estimates of source impact uncertainties.

< The ensemble average had better performance measures than the individual methods.

< The ensemble has lower relative uncertainties as compared to the individual methods.
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a b s t r a c t

An ensemble-based approach is applied to better estimate source impacts on fine particulate matter

(PM2.5) and quantify uncertainties in various source apportionment (SA) methods. The approach

combines source impacts from applications of four individual SA methods: three receptor-based models

and one chemical transport model (CTM). Receptor models used are the chemical mass balance methods

CMB-LGO (Chemical Mass Balance-Lipschitz global optimizer) and CMB-MM (molecular markers) as well

as a factor analytic method, Positive Matrix Factorization (PMF). The CTM used is the Community

Multiscale Air Quality (CMAQ) model. New source impact estimates and uncertainties in these estimates

are calculated in a two-step process. First, an ensemble average is calculated for each source category

using results from applying the four individual SA methods. The root mean square error (RMSE) between

each method with respect to the average is calculated for each source category; the RMSE is then taken to

be the updated uncertainty for each individual SA method. Second, these new uncertainties are used to

re-estimate ensemble source impacts and uncertainties. The approach is applied to data from daily PM2.5

measurements at the Atlanta, GA, Jefferson Street (JST) site in July 2001 and January 2002. The procedure

provides updated uncertainties for the individual SA methods that are calculated in a consistent way

across methods. Overall, the ensemble has lower relative uncertainties as compared to the individual SA

methods. Calculated CMB-LGO uncertainties tend to decrease from initial estimates, while PMF and CMB-

MM uncertainties increase. Estimated CMAQ source impact uncertainties are comparable to other SA

methods for gasoline vehicles and SOC but are larger than other methods for other sources. In addition to

providing improved estimates of source impact uncertainties, the ensemble estimates do not have

unrealistic extremes as compared to individual SA methods and avoids zero impact days.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Controlling fine particulate matter poses unique challenges in

developing strategies to improve public health and welfare (e.g.,

improved visibility). Unlike most other air pollutants, fine partic-

ulate matter (i.e. particles with an aerodynamic diameter less than

2.5 mm, or PM2.5) is comprised of a heterogeneous mix of chemical

species, some of which are emitted directly from a variety of

sources and others that are formed via atmospheric processes

which convert gaseous species into condensed-phase compounds.

The health concern over PM2.5 has grown as associations have been

found between PM2.5 mass and health outcomes (Dockery et al.,
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1993; U.S.EPA, 2009), and has led EPA to regulate PM2.5 as a criteria

pollutant as part of the US EPA’s National Ambient Air Quality

Standards (NAAQS).

Addressing PM2.5 levels relies on quantifying source-to-air

quality relationships, a process often termed source apportionment

(SA). Historically, SA of PM2.5 has been conducted using receptor-

based modeling approaches such as chemical mass balance (CMB)

modeling (Watson et al., 1984) or factor analytic (FA) approaches

such as positivematrix factorization (PMF) andUNMIX (Henry,1997,

2003; Paatero and Tapper, 1994). Receptor-based modeling

approaches typically solve a mass balance equation that is used to

reconstruct the mass of each measured species (Equation (1)):

Ci ¼ fijSj þ ei (1)

where Ci, is the measured concentration of species i (mg species

i m"3), fij is the amount of species i emitted per unit amount from

source j (mg of species i per mg of PM2.5 emitted from j), Sj, is the

impact of source j (mg PM2.5 m"3), and ei is the error for the ith

species between the measured concentration, Ci, and the calculated

concentration, fijSj. The most commonly used CMB approach, using

more routinely available PM2.5 observations (elemental and organic

carbon: EC/OC, ionic and metal species), and EPA’s CMB 8.2 soft-

ware, is referred to here as CMB-regular, or CMB-RG, (U.S.EPA,

2004). CMB has also been applied using organic molecular

markers, referred to here as CMB-MM, which allows identification

of more primary organic sources than are typically quantified using

CMB-RG (Cass, 1998; Zheng et al., 2007, 2002). Another CMB

approach, called CMB-LGO, uses CMB and incorporates gaseous

species measurements to constrain results (Marmur et al., 2005).

Positive matrix factorization (PMF, version 3.0) (Paatero et al.,

2003; Paatero and Tapper, 1994; U.S.EPA, 2008) is a commonly

used factor analytic approach. Receptor models can be readily

applied for long time periods for which observational data is

available.

Recently, chemical transport models (CTMs), such as the

Community Multiscale Air Quality (CMAQ), have been used to

quantify source impacts on PM2.5 (Baek et al., 2005; Byun et al.,

1998; Cohan et al., 2005; Koo et al., 2009; Marmur et al., 2006b;

Wang et al., 2009; Yang et al., 2000; Yarwood et al., 2007). CTMs

utilize emissions inventories and meteorological information to

model transport and atmospheric chemistry in a three dimensional

grid, and calculate source impacts over a large spatial domain and

over time scales that may not be available from observations.

Another advantage of using chemical transport models is that they

can directly link and quantify the impacts of gaseous emission

sources on particulate matter, a weakness of receptor-based

approaches.

There have been several efforts to determine relationships

between sources of PM2.5 and health outcomes (Laden et al., 2000;

Mar et al., 2000; Marmur et al., 2006a; Sarnat et al., 2008; Stolzel

et al., 2005; Thurston et al., 2005), though with different results.

In Thurston et al. (2005) traffic sources were not significantly

associated with both CVD and non-accidental mortality, and, as the

authors note, the factor analytic approaches were limited in their

ability to separate gasoline and diesel fractions. Subsequently,

Sarnat et al. (2008) compared epidemiologic model results using

a factor analytic SA method, PMF, and an optimized CMB method,

CMB-LGO (Lipschitz global optimizer) (Marmur et al., 2005) to

apportion sources for four years of speciated PM2.5 data in Atlanta

and using individual compounds that are viewed as reasonable

tracers for various sources. They found good agreement in RRs for

CVD and respiratory outcomes between using PMF, CMG-LGO and

tracers, implying different SA methods yield similar results when

incorporated into epidemiologic models. However, a positive

association was shown between biomass burning and CVD

outcomes but not respiratory outcomes, whereas a number of

previous studies showed positive associations with respiratory but

not CVD outcomes (Ito et al., 2006; Mar et al., 2006). As the authors

note, several recent studies corroborate their findings, but there

also may be confounding effects across source categories

(Barregard et al., 2006; Barrett et al., 2006; Ostro et al., 2007; Sarnat

et al., 2008). Thurston et al. (2005), who incorporated nine factor

analytic SA results into epidemiologic models for Phoenix, AZ and

Washington D.C., found that variability in SA results across inves-

tigators/methods increased 95% confidence intervals (CI) of relative

risk ratio (RR) per inter-quartile range by approximately 15%.

However, contributions from similar factors sometimes differed by

an order of magnitude, making inter-comparisons between

methods and their associations with health less clear (Grahame and

Hidy, 2007).

Both receptor and emissions-based SA approaches have limita-

tions that can affect their inclusion in health studies. Receptor-

based SA results can vary substantially from method to method,

and some approaches lead to bias and increased variability

(Barregard et al., 2006; Barrett et al., 2006; Christensen et al., 2006;

Christensen and Amemiya, 2003; Henry, 1987; Marmur et al.,

2006a; Ostro et al., 2007; Sarnat et al., 2008). With a limited

number of factors identified or source profiles available, these

methods assign mass from other sources to available factors/sour-

ces, leading to bias. Typical receptor model applications use source

profiles, or identify factors, associated with only about 80% of the

estimated PM2.5 emissions (Baek, 2009). The necessary resources

required to apply CTMs over long periods inhibit their use, and they

are subject to uncertainties in emission and meteorological inputs

and model parameterizations.

A number of studies have evaluated SA results (Brinkman et al.,

2006; Christensen and Gunst, 2004; Lee et al., 2009, 2008; Marmur

et al., 2006a; Marmur et al., 2006b; Rizzo and Scheff, 2007; Tauler

et al., 2009). Marmur et al. (2006a) showed that CMAQ had

significantly less variability in fractional source impacts, than CMB-

LGO, effectively precluding its use to provide source impact esti-

mates that can be differentiated in terms of health impact associ-

ations in acute epidemiologic-based studies (Marmur et al., 2006a,

2006b). Christensen and Gunst (2004) evaluated the difference in

CMB results for a simulated data set using four approaches to

calculating source impacts and found that the weighted least

squares approach performed better than the effective variance

approach in most cases and was “slightly superior” in cases where

the source profile variability is large. Christensen and Schauer

(2008) showed that perturbations to species concentration uncer-

tainties can lead to relatively large differences in PMF results. Lee

and Russell (2007) found that source impact uncertainties in

CMB-RG were more affected by source profile error contributed

than measurement error.

Using an ensemble of air quality models has provided a means

to evaluate air quality models (Delle Monache et al., 2006; Dennis

et al., 2010; Rao et al., 2011; Wilczak et al., 2006). Ensemble aver-

aging has been limited to CTMs and has often focused on uncer-

tainties in modeling ozone concentrations. However, Lee et al.

(2009) showed that using an ensemble average of SA results from

four receptor models and one CTM resulted in improved fitting

statistics, reduced variability (compared to individual receptor

models) and reduced the number of days with no impact from

sources that are known to be present. In this work, we build on the

work of Lee et al. (2009) by ensemble averaging results from four SA

methods and assessing SA uncertainties in the ensemble results.

This work updates the approach by Lee et al. (2009) in three ways:

this method uses a two step process to calculate the ensemble,

uncertainties are calculated using propagation of errors that
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includes covariance terms, and new estimates of uncertainties are

calculated for the individual SA methods that are used in the

ensemble. A compelling reason to quantify uncertainties is that

they can be incorporated into epidemiologic studies, which can

ultimately lead to improving our understanding of the relationships

between PM2.5 sources and health outcomes. Further, they can be

used to inform policy makers of the effectiveness of control

measures.

2. Methods

2.1. Ensemble source apportionment

Ensemble averaging of SA results is conducted in two steps. In

the first step source impact estimates and the uncertainties from

the SA methods described above (see SI for more on how uncer-

tainties were calculated for each SAmethod) are averaged together.

In the second step, the initial ensemble is used to re-estimate SA

method uncertainties, which are then used as weights to calculate

an updated average. Next, uncertainties for the updated ensemble

source impact are re-calculated. In part, this can address concerns

that the uncertainties provided by the traditional methods are

biased. This process of re-estimating SA method uncertainties and

re-updating the ensemble can be further iterated if desired.

The initial ensemble average, SjðtkÞ, for source j at time tk, is

calculated using a weighted average:

SjðtkÞ ¼

PL
l¼1 wjlðtkÞ % SljðtkÞ
PL

l¼1 wjlðtkÞ
(2)

where wjlðtkÞ is the weight for source j from method l, and SljðtkÞ is

the source impact for source j frommethod l. Theweights (Equation

(3)) are based on each method’s source impact uncertainties and

the value of N determines if and how much source impact uncer-

tainties weight the average:

wjl ¼
1

s
N
Slj

(3)

While there can be any choice for the weights, here we focus on

using the inverse of the individual SAmethods’ uncertainty squared

(i.e. N ¼ 2) and equal weighting (N ¼ 0). We also evaluate a mixed

case, in which we use equal weighting for the initial ensemble and

inverse square weighting for the updated ensemble. As discussed

below, our focus is on the mixed case since we find that it provides

the best results over both seasons. The initial and updated

ensemble average uncertainty is calculated using weighted prop-

agation of errors that includes covariance terms (Equation (4), see

SI for derivation (Taylor and Kuyatt, 1994)):
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where Sl is the PM2.5 impact of source j (source index not shown for

clarity) from method l. The middle matrix term in the right hand

side of Equation (4) is a scaled uncertainty covariance matrix which

takes into account the source impact uncertainties from the

individual SA methods as well as the covariance of source impacts

acrossmethods; thus, each element s2SmSn , where bothm and n index

the SA methods that range from 1 to L, is equal to (Equation (5)):

s
2
SmSn

¼
sSmsSn*Covðm;nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Covðm;mÞ*Covðn;nÞ
p (5)

Where sSm and sSn are source impact uncertainties frommethodsm

and n, Cov (m,n) is the covariance of source impacts from methods

m and n and Cov (m,m) and Cov (n,n) are the variances of source

impacts from methods m and n, respectively.

The root mean square error (RMSE) for each method is deter-

mined by comparison against the ensemble average (Equations (6)

and (7)):

RMSEjl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PK
k¼1

)

Sjlk " Sjk

*2

K

v

u

u

t

(6)

where Sjlk is the source impact for source j, frommethod l, on day k

and Sjk is the ensemble average for source j on day k, and K is the

total number of days used in the ensemble. We then set the RMSE

for each method as the updated uncertainty for each day (Equation

(7)):

s
0
jlk ¼ RMSEjl (7)

where s
0
jlk

is the re-estimate of the source impact uncertainties for

source j, from method l, on day k. A major consequence of using

Equation (7) is that for a specific source the updated source impact

uncertainties are the same for each day. We set new uncertainties

in this way because regression analyses between SAmethod source

impacts ðSjklÞ and their errors ðSjkl " SjkÞ from the ensemble aver-

ages found little correlation. Next, new ensemble averages and

uncertainties are calculated based on the weighted propagation of

errors using the updated uncertainties for each SA method. The

above procedure can be done using both the absolute and fractional

source impacts and we focus here on results using absolute source

impacts (both approaches were tested with similar results). Finally,

we evaluate the individual SA methods and the ensemble by

comparing the average source impact (by source category and

season). To compare uncertainties betweenmethods, we define the

overall method uncertainty, ðsSjkl Þ, as the root mean square average

of the daily updated source impact uncertainties (Pachon et al.,

2010) (Equation (8)):

sSjl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

K

X

K

k¼1

s
2
Sjkl

v

u

u

t (8)

As discussed previously, the base case was conducted using four

SA techniques. SA impacts included previous results for CMB-MM

(Zheng et al., 2007) and CMAQ (Baek et al., 2005) were used as

inputs into the ensemble, and we applied CMB-LGO and PMF, for

1999e2004 using speciated PM2.5 data from the SEARCH Jefferson

St (JST) monitoring site (Edgerton et al., 2005, 2006; Hansen et al.,

2003). The JST data set contains daily speciated concentrations of

ions (sulfate, nitrate, and ammonium), organic carbon (OC),

elemental carbon (EC), and trace metals. Data also includes speci-

ated organic molecular markers for two one month periods (July

2001, January 2002) used as part of the CMB-MM work (Zheng

et al., 2007). Further details on these methods can be found in

Lee et al. (2009) and references therein.

Ensemble averaging was conducted for July 2001 to represent

summer, and January 2002 to represent winter (SA results from

CMAQ and CMB-MM were available for these months). Source
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impacts from individual SA methods used in the ensemble were

binned into nine source categories (Lee et al., 2009), and included

five primary sources and four secondary sources. Primary sources

include gasoline vehicles (GV), diesel vehicles (DV), dust (DUST),

biomass burning (BURN), and coal combustion (COAL). Secondary

categories include sulfate, nitrate, ammonium and other organic

carbon (Other OC), which was treated as a surrogate for secondary

organic carbon (SOC). CMAQ simulations tended to be biased high

for sulfate, nitrate and ammonium inwinter (Dennis et al., 2010). To

account for this, we did not use CMAQ results for sulfate, nitrate and

ammonium to calculate the ensemble impact in the equalweighting

case. In addition, we performed a sensitivity analysis of the

ensemble by replacing CMB-LGOwith CMB-RG since this method is

more widely used. We did not use both at the same time because

they are very highly correlated, relying on similar data. A second

sensitivity analysis was conducted by not including CMAQ results as

such results may not be as readily available or for as long of a period.

However, CTM-based source impact files are becoming increasingly

available (Napelenok et al., 2006; Yarwood et al., 2007).

3. Results

3.1. Ensemble source impacts and uncertainties

Comparison of the four methods shows the relative biases of

these methods across sources (Fig. 1, Fig. S1 and Tables S1 and S2).

For example, CMB-LGO has significantly higher SOC impacts,

especially in winter. PMF tends to have higher source impacts for

DV and BURN with lower impacts for SOC. CMB-MM has higher

estimates of SOC in summer and higher estimates of GV in winter.

CMAQ has higher DUST impacts in both seasons and higher BURN

and COAL impacts in winter. The three receptor models, as ex-

pected, have very similar results for ionic species while CMAQ

estimates are higher. Ensemble averaging provides daily source

apportionment that results in no zero-impact days, reduced vari-

ability (Fig. 2) and updated uncertainties to the daily source

impacts in the five individual source apportionment methods.

Ensemble averaging overcomes some limitations of the individual

SA methods (e.g., when a particular method apportions PM2.5 mass

poorly for a given source, or does not resolve a set of sources for

a given day). The ensemble avoids performing poorly for any

particular source, a major limitation of traditional SA methods. The

ensemble, for both seasons, has the lowest estimated relative

uncertainty for all cases, when averaged across all sources (i.e. the

average of the overall relative uncertainties for each source)

(Table 1).

In summer, the ensemble, using inverse square weighting,

has the lowest overall relative uncertainties (i.e. RMSE divided

by average source impact) for BURN (49%), COAL (45%), and SOC

(42%) and has the second lowest overall relative uncertainties

for GV (77%), DV (36%) and DUST (62%). With equal weighting,

the ensemble has the lowest overall relative uncertainties for DV

(38%), DUST (48%) and BURN (35%), and has the second lowest

uncertainties for GV (65%), COAL (39%) and SOC (40%). With
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Fig. 1. Average source impacts and overall uncertainties (Equation. (8)) for the four SA methods and the ensemble (error bars represent one sigma) for July 2001 (note the changes

in scales). For each method, the first data point (1) shows source impact and initial uncertainties. The second point (2) shows source impact and updated uncertainties using equal

weighting (EW*). The third point (3) shows source impact and updated uncertainties using inverse square uncertainty weighting (ISW). The ensemble has three data point for the

EW and ISW and a mixed case (4), respectively. The mixed case uses EW for the initial ensemble and ISW for the updated ensemble. *NOTE: the EW case does not include CMAQ

results for secondary sulfate, secondary nitrate and secondary ammonium.
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mixed weighting, the ensemble has the lowest overall relative

uncertainties for DV (36%), DUST (55%), BURN (33%), and SOC

(29%). CMB-LGO has the lowest overall relative uncertainty for

GV and CMAQ for COAL.

The ensemble overall relative uncertainties in winter are

generally higher than in summer (Fig. S1). Also, source impacts in

winter are more varied between methods than in summer leading

to greater RMSEs between the SA methods and the ensemble.

Choice of weighting does not result in large differences in the

overall relative uncertainties in the ensemble averages for primary

sources and SOC, though there can be large differences in the

magnitude of source impacts (Fig. 1 and Fig. S1 and Tables S1 and

S2). For example, the average GV source impact for the summer

ensemble with inverse square weighting is 0.53 ( 0.21 (mg m"3)

and is driven by CMB-MM which has an average impact of

0.36 mg m"3 and an initial overall uncertainty of 0.35 mg m"3. With

equal weighting, the ensemble GV has an average of

0.62 ( 0.40 mg m"3. With mixed weighting, the average source

impact for the ensemble is 0.55 ( 0.38 mg m"3. However, source

impacts across the three cases are in general highly correlated, with

low correlations only for SOC in the summer and DUST and SOC in

winter (Table S3).

The ensemble results, as compared to measured PM2.5, recon-

struct PM2.5 mass between 75% and 110% over all cases (Table 2). A

somewhat low bias may be expected because the typical range of

identified sources in receptor models account for only about 80% of

the inventoried PM2.5 emissions (Baek, 2009). In the work shown

here, total mass from receptor models are biased slightly low in

summer and slightly high inwinter. There were no results for BURN

or COAL in summer for CMB-MM, which may be why the predicted

to observed PM2.5 ratio is low for that method. CMAQ results for

total PM2.5 are biased low by about 20% in the summer and high by

a factor of 2 in thewinter. The ensemble, when using inverse square

weighting, slightly under estimates PM2.5 in both seasons. The

ensemble results correlate more strongly with measured PM2.5 in

both seasons than other methods except PMF, regardless of

weighting, having R2 values between 0.84 and 0.96 (Table 2).

Sensitivity analyses were performed by re-running the

ensemble in two different ways. First, the ensemble was run using

CMB-RG results in lieu of CMB-LGO. In both seasons, using mixed

weighting, the ensemble results change little because CMB-RG and

CMB-LGO results are highly correlated for all source categories

(Figs. S7eS8). Second, we also ran the ensemble without CMAQ

results (i.e. ensemble with CMB-LGO, PMF and CMB-MM). In both

seasons, changes are noted for GV, DUST, BURN and SOC since

CMAQ is not always strongly correlated with receptor model

results. Nevertheless, the changes are within the 67% confidence

intervals of the full ensemble (Figs. S9 and S10).

4. Discussion

The ensemble gives insight into how well each SA method

works, and provides improved estimates of source impacts and

improved estimates of source impact uncertainties by SA method.

The ensemble also overcomes poor or unrealistic performance
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Fig. 2. Ensemblewithmixedweighting for July 2001. NOTE: CMB-RG results shownhere are not included in the base ensemble, but are used in the sensitivity analysis (Figs. S7 and S8).

Table 1

Average overall relative uncertainties for equal weighting (EW), inverse square

weighting (ISW) and a mixed case (MIX) using both EW and ISW for summer (July

2001) and winter (January 2002). The values shown are averaged over all source

categories, excluding sulfate, nitrate and ammonium. Note: For MIX, the base SA

methods have uncertainties based on EW.

CMB-LGO PMF CMB-MM CMAQ ENS.

Summer

Initial 97% 38% 143% 222% e

EW 81% 76% 80% 72% 45%

ISW 76% 69% 72% 93% 52%

MIX e e e e 45%

Winter

Initial 172% 53% 143% 388% e

EW 219% 167% 202% 282% 59%

ISW 152% 124% 88% 409% 74%

MIX e e e e 62%
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(e.g., high day to day variability or days where source impacts are

zero for sources known to present). The ensemble allows for

comparison of uncertainties by calculating them in a consistent

manner and avoids the need for bootstrapping methods or poorly

characterized uncertainties in source profiles. For example, CMB-

MM and PMF have very different GV impacts in winter (2.42 and

1.07 mg m"3) with low overall uncertainties when calculated using

traditional methods (0.44 and 0.33 mg m"3). Thus, while the

average source impacts are very different, the overall relative

uncertainties are similar, 26 and 31%, respectively, making it

difficult to determine which model provides more accurate esti-

mates. The ensemble reconciles this inconsistency, suggesting

uncertainties in both PMF and CMB-MM are larger. In another

study using CMB-MM, it was shown that GV source impact

uncertainties are sensitive to the percentage of high emitting

vehicles for weekend traffic; when smoker vehicles are assumed to

be 5% of the GV fleet, GV source impact uncertainties on Saturdays

decrease from 51% to 25% while for other days they are below 17%

(Lough and Schauer, 2007). Nevertheless, assumptions of fleet

composition, vehicle type, driving conditions and driver behavior,

all of which are significant sources of uncertainty, affect these

types of analyses. Therefore, the uncertainties in Lough and

Schauer (2007) should be viewed as tighter than achieved in

general applications. In PMF, uncertainties are calculated by

bootstrapping, which reflects how similar the bootstrapped data

set’s correlation structure is to the original data set, and may not

reflect the actual factor contribution uncertainty.

Inverse square weighting leads to the ensemble being heavily

influenced by a particular method (e.g., CMB-MM for GV), having

initial uncertainties that are apparently biased low. This indicates

that, given no other information, all methods should be weighted

equally, (i.e., using equal weighting). When using mixed weight-

ing, the base case SA methods are also treated equally, but the

updated ensemble is weighted by the new uncertainties to base

case SA methods. We recommend mixed weighting because this

incorporates the new uncertainties as weights to the updated

ensemble average and performed well in the evaluation

measures.

Ensemble averaging also allows uncertainties in CTM-based

source impacts to be readily estimated. To our knowledge, this is

the first work to estimate PM2.5 source impact uncertainties in

CMAQ. As new techniques are developed to estimate CTM uncer-

tainties, ensemble averaging can provide a means to evaluate these

estimates.

Another approach to evaluating the ensemble quantitatively is

to compare our results with estimates of secondary organic carbon

(SOC) impacts from other work (Table 3). Recently, Pachon et al.

(2010) found that the regression method for estimating SOC had

the lowest overall relative uncertainty, when compared to the EC

Tracer Method, CMB-RG and PMF. They showed that both CMB-RG

and PMF have high overall uncertainties that ranged from 47% to

56% for CMB-RG and 59% to 120% for PMF in summer and winter,

respectively. The regression method estimated SOC to be

1.68 ( 0.14 mg m"3 and 0.80 ( 0.11 mg m"3 in July 2001 and

January 2002, respectively. The ensemble estimates are

comparable to the regression method’s average impact and

overall uncertainty for July 2001, but are higher for January 2002

(Table 3). The correlation of the ensemble-based SOC with the

regression-based SOC is very encouraging since the regression

method includes ozone concentrations, which are not used in any

of the receptor models included in the ensemble. In addition, the

regression method was more strongly correlated with measured

water-soluble organic carbon (WSOC), which is hypothesized to be

primarily from secondary reactions. This indicates a better fit with

SOC than the other methods. WSOC is, likewise, not used in any of

the ensemble methods. Further, it is interesting that the correlation

Table 2

Ratio of calculated to observed PM2.5 for July 2001 and January 2002. Calculated PM2.5 is defined as the sum of source impacts from the nine source categories. Observed PM2.5

is from JST measurements, which use a gravimetric- based method similar to the Federal Reference Method (FRM). (*NOTE: Values are recalculated here because Lee et al.

(2009) used a different protocol for calculating measurement uncertainties).

CMB-LGO PMF CMB-MM CMAQ Ensemble

(EW)

Ensemble

(ISW)

Ensemble

(MIX)

Lee et al.

(2009)*

July 2001 Avg. calc./obs. PM2.5 0.78 0.84 0.71 0.77 0.77 0.81 0.79 0.74

St. Dev. calc./obs. PM2.5 0.10 0.13 0.09 0.29 0.10 0.10 0.10 0.08

R2 0.94 0.97 0.93 0.58 0.96 0.96 0.96 0.96

Slope (Std. Error) 0.68 (0.03) 0.66 (0.02) 0.71 (0.04) 0.53 (0.09) 0.63 (0.02) 0.68 (0.03) 0.65 (0.03) 0.65 (0.02)

Intercept (Std. Error) 1.77 (0.78) 2.95 (0.53) "0.08 (1.10) 4.28 (2.05) 2.41 (0.57) 2.30 (0.62) 2.42 (0.61) 1.54 (0.59)

Reduced Chi-Square 9 60 54 594 158 51 83 20

January 2002 Avg. calc./obs. PM2.5 0.97 1.02 1.01 2.05 0.98 1.13 1.10 0.99

St. Dev. calc./obs. PM2.5 0.16 0.14 0.15 0.84 0.17 0.19 0.18 0.21

R2 0.83 0.88 0.84 0.34 0.84 0.85 0.84 0.76

Slope (Std. Error) 0.74 (0.06) 0.90 (0.06) 0.76 (0.07) 1.21 (0.32) 0.65 (0.05) 0.78 (0.06) 0.76 (0.06) 0.65 (0.07)

Intercept (Std. Error) 2.53 (0.83) 1.26 (0.84) 2.84 (0.91) 8.86 (4.28) 3.61 (0.70) 3.78 (0.81) 3.68 (0.83) 3.69 (0.92)

Reduced Chi-Square 7 107 72 1661 212 71 124 805

Table 3

Secondary Organic Carbon (SOC) Results for July 2001 and January 2002 (mg m"3). NOTE: Ensemble with MIX uses EW uncertainties in base case SA methods.

Summer Winter

Uncertainty ((s) Uncertainty ((s)

Average SOC Ens. with EW Ens. with ISW Ens. with MIX Average SOC Ens. with EW Ens. with ISW Ens. with MIX

CMB-LGO 1.93 ( 0.72 1.19 e 2.43 ( 1.21 2.00 e

PMF 1.06 ( 1.17 0.77 e 0.69 ( 1.05 0.54 e

CMB-MM 3.23 ( 1.73 2.39 e 1.89 ( 0.89 1.77 e

CMAQ 1.40 ( 1.06 1.15 e 0.97 ( 0.71 0.76 e

Ensemble with EW 1.81 ( 0.73 e e 1.45 ( 0.68 e e

Ensemble with ISW 1.42 ( e 0.60 e 0.90 ( e 0.48 e

Ensemble with MIX 1.76 ( e e 0.60 1.31. ( e e 0.63
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between the ensemble SOC and the PMF SOC is very low (R2 ¼ 0.01

for July 2001).

To evaluate the choice of weighting, we conducted York

regression (Saylor et al., 2006; York et al., 2004) between the

ensemble and the regression method SOC impacts and found that

mixed weighting reproduced regression method results better that

equal or inverse square weighting (R2 ¼ 0.82 and slope ¼ 0.87 for

summer 2001) (Fig. S9). A similar analysis was performed for

January 2002 (Fig. S10). It has been suggested that CMB based

methods overestimate SOC because primary OC from some sources

are not considered (Zheng et al., 2007; Zheng et al., 2002). Updated

emissions information that include improved estimates of primary

OC emissions in the winter, which suggest that gasoline vehicles

emit more OC in cold weather than is captured in current inven-

tories, can significantly alter howOC is apportioned (Donahue et al.,

2009; Subramanian et al., 2006). It is expected that improved

source profiles for CMB based methods and improved emissions

processing in CTMs should lead to improved correlation of SOC

estimates between the ensemble and the regression methods.

5. Conclusions

Commonly used methods to apportion sources of PM2.5 have

a number of issues that complicate their appropriate use. Results

from the application of different SA methods can disagree

substantially. Furthermore, calculation of source impact uncer-

tainties varies from method to method, leading to very different

uncertainty estimates and making inter-comparisons of source

impacts and their associated uncertainties difficult. Here we

average an ensemble of SA methods, which includes two CMB

methods, PMF and CMAQ to estimate updated source impacts and

uncertainties. Three weighting cases, equal weighting, inverse

square weighting and a mixed case are evaluated.

Ensemble averaging results in source impact estimates that have

reduced variability compared to individual SAmethods, avoids zero

impact days and resolves source impacts for all days. The choice of

weighting impacts ensemble-based average source impacts and

uncertainties, but in general ensemble source impact uncertainties

are lower or very comparable with individual SA method uncer-

tainties. Over both seasons, mixed weighting in the ensemble

reproduces PM2.5 better than equal or inverse squareweighting and

agrees better with SOC estimates from a separate approach (Pachon

et al., 2010). In the absence of any prior information which would

indicate otherwise, mixed weighting should be used.

The ensemble method provides updated uncertainties for the

individual SA methods that are calculated in a consistent way

across methods. In general, CMB-LGO and CMB-MM overall

uncertainties, averaged over primary sources and SOC, decrease in

summer and increase in winter as compared to those found using

the traditional approach for these methods. The ensemble method

also provides a way to estimate source apportionment uncer-

tainties in CMAQ. CMAQ source impact uncertainties are compa-

rable to other SA methods for GV and SOC and larger than other

methods for DV, DUST and BURN.
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